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ABSTRACT

Segmentation of the various parts of the brain is a challenging area in medical imaging and it is a prerequisite
for many image analysis tasks useful for clinical research. Advances have been made in generating brain image
templates that can be registered to automatically segment regions of interest in the human brain. However, these
methods may fail with some subjects if there is a significant shape distortion or difference from the proposed
models. This is also the case of newborns, where the developing brain strongly differs from adult magnetic
resonance imaging (MRI) templates.

In this article, a texture–based cerebellum segmentation method is described. The algorithm presented does
not use any prior spatial knowledge to segment the MRI images. Instead, the system learns the texture features
by means of a multi–scale filtering and visual words feature aggregation. Visual words are a commonly used
technique in image retrieval. Instead of using visual features directly, the features of specific regions are modeled
(clustered) into groups of discriminative features. This means that the final feature space can be reduced in size
and also that the visual words in local regions are really discriminative for the given data set. The system is
currently trained and tested with a dataset of 18 adult brain MRIs. An extension to the use with newborn brain
images is being foreseen as this could highlight the advantages of the proposed technique.

Results show that the use of texture features can be valuable for the task described and can lead to good
results. The use of visual words can potentially improve robustness of existing shape–based techniques for cases
with significant shape distortion or other differences from the models. As the visual words based techniques are
not assuming any prior knowledge such techniques could be used for other types of segmentations as well using
a large variety of basic visual features.
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1. INTRODUCTION

Medical imaging has evolved strongly over the past 30 years and images are used to support decisions in not only
in radiology.1, 2 To aid also less experienced physicians to image analysis–based decision support is an important
research domain. For many applications the regions of interest in medical images are very small and structures
in the images need to identified to concentrate the processing onto these regions of interest.3 Segmentation is
thus often a first preprocessing step in medical image analysis to concentrate the further processing onto the
areas of interest.4

Thus, segmentation is often regarded as one of the major preprocessing tasks in medical imaging. It allows
further study of precise regions of interest for a large variety of clinical applications. Quantitative analysis of
the various structures present in the brain can lead to better diagnosis or treatment planning in diseases such as
for Alzheimer5 or brain tumors. The techniques described in this article focus on the analysis of the cerebellum
region in brain MRI (Magnetic Resonance Imaging), which has been an intensive research area over the past
years and is known to have relation to diseases such as age–related degeneration in adults6 or supratentorial
brain injury in newborns.7
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Manual segmentation of brain structures, while producing excellent results based on the experience of the
user, is often time–consuming and thus does not allow to work on large–scale data sets. In contrast, automatic
segmentation can lead to relatively accurate results and is much faster, thus allowing to treat much larger
amounts of data and compare the results across many cases. Many of the automatic segmentation techniques
for MRI brain images are partly or totally based on atlases, templates or other types of spatial priors built upon
statistical information from several subjects.8, 9 Such model–based segmentation can improve results strongly
when cases are relatively standard but has a risk to deliver poor results in situations where the model building
is difficult.

The cerebellum structure in the brain, the main target of this article, consists of two regions: cortex and
white matter. Texture plays an important role in the visual aspect of these regions. Whereas the white matter
has a light, homogeneous appearance, the cortex contains rich, dark patterns. Figure 1 shows an example of
these two regions.

Figure 1. Example slice showing the visual appearance of cerebellum cortex and white matter.

The state of the art for cerebellum segmentation often neglects this texture information and relies only on
prior knowledge such as probability maps. Even methods specifically designed to take advantage of texture
to segment the cerebellum, rely most often on atlases10 or user interaction.11 Problems arise when there are
insufficient amounts of data to create an atlas or when the shape and spatial appearance of the subjects are
largely variable.

In this text a segmentation method is presented that makes no use of any prior spatial knowledge for the
segmentation. The system learns the three–dimensional texture patterns present in the cerebellar region from
a subset of training patients and classifies the voxels of new images based on the texture features. The method
is evaluated with a freely–available adult brain MRI dataset. The currently used data set is small and having
more training samples can potentially increase the performance of the segmentation in an important way.

One of the future goals of the article is the integration of the segmentation and local analysis for image
retrieval.3, 12 Retrieval in the case of brain images or the cerebellum needs to concentrate on small local areas
to detect abnormal regions and has to use 3D information13, 14 for the retrieval of the cases and include clinical
data for case–based information retrieval15–17 in an environment using information fusion.18

This article is organized as follows: Section 2 explains the data sets used and the main techniques that are
employed in the article, Section 3 lists the main results that are then discussed in Section 4, before the article
concludes with Section 5

2. MATERIALS AND METHODS

In this section, information on the image database and the theories supporting the experiments are presented.
The framework of the system is based on two main ideas: the 3D wavelet transform for multi–scale texture
feature extraction and visual words19, 20 as descriptors, which are based on the patterns actually occurring in a
particular data set.



2.1 Adult brain data set

An MRI database of brain images of 18 adult subjects∗ is used in this article. For each subject, T1–weighted
volumetric images that are positionally normalized into the Talairach orientation (rotation only) are available.
Image resolutions vary between δx, δy = 0.837 to 1.0 millimeters per pixel, and δz = 1.5 millimeters in all cases.
An expert segmentation is available for each subject. For evaluation, cerebellum cortex and cerebellum white
matter are considered and no distinction between left and right hemispheres is made. An example of the images
contained in this dataset and their annotated ground truth can be seen in Figure 2.

Figure 2. Example slice from the database with annotated cerebellum regions.

2.2 Multi–resolution analysis

Wavelet theory consists of a framework allowing for multi–resolution and multi–scale analysis of images by
using scaled and translated versions of a function ψ, the mother wavelet, as shown in Equation 1. A common
formulation for the scale definition is based on the minimum number of scales that guarantees that the transform
is invertible. In this formulation, scales change according to a dyadic scheme, where s = 2j defines the current
scale.
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σ2 = 1.6σ1 (4)
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j (5)

The choice of using Gaussian functions is made based on their good isotropic properties, which allows to analyze
images without making prior choices of orientation. The extracted coefficients are obtained by using the difference
of Gaussians (DoG), which provides a good approximation to the Laplacian of Gaussians or Mexican Hat wavelets
when the variance parameters σ1,2 of two Gaussian functions g1,2 satisfy σ2 ≈ 1.6σ1. Since the functions are

∗The MR brain data sets and their manual segmentations were provided by the Center for Morphometric Analysis at
Massachusetts General Hospital and are available at http://www.cma.mgh.harvard.edu/ibsr/.



calculated in physical dimensions, there is no need for having anisotropic variance parameters of g1,2. The
resulting wavelets are shown in Equation 3. The number of scales used for the wavelet transform is three, with
j ranging from 0 to 2. The initial variance parameter is σ0 = 0.5 to assure the finest resolution for the wavelet
detector at the initial scale.

With each wavelet function, a volumetric image is constructed with the same resolution as the MR image,
which showed enhanced texture characterization when compared to decimated wavelet transforms in.21

2.3 Visual Words

The term texture often has a fuzzy definition and refers to the (sometimes regular or periodic) visual character-
istics of the pixel values within a certain region and their relationships, which is not always made explicit by
human observers. Since the wavelet transform can describe the transient of the values in the voxel surroundings,
a way of aggregating this information for a region of interest is needed. Visual words19, 22 have been widely used
in image retrieval and image classification for describing images (or regions of interest) similar to the bag–of–
words approach used for text retrieval or text similarity matching.23 For each voxel, this technique maps a set
of continuous low–level features in an area of interest around the pixel, e. g. gray values or wavelet coefficients,
into a compact discrete representation consisting of visual words as shown in Figure 3. The visual words are
clusters centers in the feature space spanned by wavelet coefficients of similar patterns that actually occur in the
data set. This guarantees to have a set of visual features actually corresponding to discriminative patters that
do occur in the database. Every image or region is described by the histogram of occurrences of the multi–scale
visual–words in a neighborhood around every voxel of this region.

Figure 3. MRI slices and their corresponding representation in the visual words domain.

In this way the local visual word representation maps a feature space for a pixel or region into a space of
visually meaningful cluster centers created based on the entire database.

2.4 Gray level histograms

In order to evaluate the suitability of the three–dimensional multi–scale visual words for segmenting the cere-
bellum, the use of gray level histograms was investigated as well. Gray level histograms describe patterns by
using the gray values of a neighborhood around a given voxel, regardless of their relative position. This method
has been used in texture description literature24 and features derived from it proved to be valid for classifying
medical images25 and for many other medical imaging tasks.



2.5 Experimental configuration

The performance of the segmentation is measured by cross–validation separating the data set into training and
test data. The classification scheme, shown in Figure 4, is as follows: first, the images are pre–processed in
order to reduce the inter–image variability of gray level values among similar regions. This normalization step
is achieved by using a histogram equalization filter. Then, the images from the training set are used to compute
a visual vocabulary. This is done by clustering the multi–scale feature space computed around each pixel in the
image using k–means with k = 50 and assigning the 50 cluster centers as the visual words. The value 50 was
chosen experimentally and a fairly wide range in terms of size of the visual vocabulary are in principle possible.
This visual vocabulary of 50 visual words is used to describe both training and test sets in the visual word
domain, by assigning to every voxel the label of the visual word nearest to its multi–scale feature vector. Once
the images are described in the visual word domain, a 1–Nearest–Neighbor classifier is trained to classify the
voxels into three classes: cerebellum cortex, cerebellum white matter and non cerebellum. The classifier uses the
histogram of occurrences of visual words in a cubic block centered in the voxel to be classified. The experiment
is repeated with various block sizes.
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Figure 4. Classification flow diagram using visual words.

For comparison, a similar system based on gray level histograms is also evaluated as shown in Figure 5. In this
case, there is no multi–scale feature extraction or visual vocabulary definition. Instead, the images are directly



used for classification using the cubic block histogram of gray levels. The number of bins for the histograms is
equal to the number of visual words used in the previous experiment. This is done in order to have an equal
number of features in the classification step. The histogram analysis serves as a baseline for the evaluation of
the system.
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Figure 5. Classification flow diagram using the gray level histogram.

3. RESULTS

This section summarizes the main results of the experiments.

3.1 Performance of the three–dimensional multi–scale visual word configuration

Results for the segmentation were evaluated using four different block sizes for the histogram of visual words,
ranging from 5 to 11 pixels. Table 1 shows the confusion matrices for each of the block sizes. Particularly
cerebellum cortex and non cerebellum pixels are mixed up. A larger block size leads to better performance for
non cerebellum and cortex areas whereas performance for white matter was best with a block size of 7× 7× 7.
The best performing techniques have approximately 70% of the pixels in each of the classes correctly classified,
showing a reasonably good performance.

Table 2 summarizes the results in terms of sensitivity and specificity for each of the classes considered. The
overall results show to increase with a larger block size and only for the white matter the specificity is better for
a smaller block size than 11 × 11 × 11. Performance gains are in the range of 8–10%, so important differences.
Specificity for the best performance with a block size 11 is between 80–90% and sensitivity around 70% showing
again the possibility to segment these structures without using any prior models or assumptions.

Figure 6 shows the differences in accuracy as the size of the block increases. The figure underlines the increase
of classification accuracy with a varying size of the blocks.

3.2 Performance of the gray level histogram configuration

As a baseline for results comparison a simple histogram intersection using grey level values of the same region
sizes and with the same quantization (50 parameters) are used. Results for the gray level histogram configuration



Table 1. Confusion matrices for the multi–scale visual words configuration with varying block size. Labels assigned by
the system are shown in columns

(a) 5× 5× 5 block

Non Cerebellum Cerebellum Cortex Cerebellum White Matter
Non Cerebellum 57.44% 26.77% 15.79%
Cerebellum Cortex 27.86% 56.41% 15.73%
Cerebellum White Matter 17.29% 14.94% 67.77%

(b) 7× 7× 7 block

Non Cerebellum Cerebellum Cortex Cerebellum White Matter
Non Cerebellum 64.31% 23.72% 11.98%
Cerebellum Cortex 24.91% 61.77% 13.32%
Cerebellum White Matter 14.30% 16.47% 69.23%

(c) 9× 9× 9 block

Non Cerebellum Cerebellum Cortex Cerebellum White Matter
Non Cerebellum 71.76% 19.23% 9.01%
Cerebellum Cortex 24.20% 62.66% 13.14%
Cerebellum White Matter 13.66% 17.81% 68.54%

(d) 11× 11× 11 block

Non Cerebellum Cerebellum Cortex Cerebellum White Matter
Non Cerebellum 77.34% 16.05% 6.61%
Cerebellum Cortex 23.89% 64.09% 12.02%
Cerebellum White Matter 13.76% 19.88% 66.36%

Table 2. Specificity and sensitivity results for each class with the multi–scale visual words configuration

(a) Not cerebellum

Block Size Specificity Sensitivity
5x5x5 73.16% 57.44%
7x7x7 76.12% 64.31%
9x9x9 76.82% 71.76%

11x11x11 77.09% 77.34%

(b) Cerebellum cortex

Block Size Specificity Sensitivity
5x5x5 73.35% 56.41%
7x7x7 76.36% 61.77%
9x9x9 80.78% 62.66%

11x11x11 83.91% 64.09%

(c) Cerebellum white matter

Block Size Specificity Sensitivity
5x5x5 84.22% 67.77%
7x7x7 87.91% 69.23%

9x9x9 90.62% 68.54%
11x11x11 92.90% 66.36%



(a) 5× 5× 5 block (b) 7× 7× 7 block

(c) 9× 9× 9 block (d) 11× 11× 11 block

Figure 6. Example results of the classification using multi–scale visual words for the same slice and varying block size

are computed for two block sizes, 7 × 7 × 7 and 11 × 11 × 11, only as these obtained the best results for the
visual words. Table 3 shows the confusion matrices for these two experimental configurations. The results show
that the grey level values are not sufficient to separate particularly white matter and non cerebellum areas of
the images. Most of the white matter was incorrectly classified for both block sizes, even worse for the block size
of 11.

Table 3. Confusion matrices for the gray level histogram configuration with varying block size. Labels assigned by the
system are shown in columns

(a) 7× 7× 7 block

Not Cerebellum Cerebellum Cortex Cerebellum White Matter
Not Cerebellum 61.31% 24.19% 14.51%
Cerebellum Cortex 36.84% 54.54% 8.62%
Cerebellum White Matter 56.65% 13.90% 29.45%

(b) 11× 11× 11 block

Not Cerebellum Cerebellum Cortex Cerebellum White Matter
Not Cerebellum 77.42% 15.52% 7.05%
Cerebellum Cortex 46.67% 46.93% 6.40%
Cerebellum White Matter 76.49% 9.94% 13.57%



Sensitivity and specificity were also calculated for this experiment, shown in Table 4. Again, the results show
a much lower sensitivity and specificity for the grey level based segmentation than for the previous approach
using visual words. Specificity are relatively high (70–90%) for white matter and cortex but in these cases the
sensitivity is very low. The opposite is true for the non cerebellum pixels, that are the majority classes with a low
specificity and and reasonable sensitivity. This means that grey levels alone are not sufficient for separating the
three classes and basically misses out on much of the cortex and white matter classifying this into the majority
class of the background.

Table 4. Specificity and sensitivity results for each class with the gray level histogram configuration

(a) Not cerebellum

Block Size Specificity Sensitivity
7x7x7 61.24% 61.31%

11x11x11 50.47% 77.42%

(b) Cerebellum cortex

Block Size Specificity Sensitivity
7x7x7 75.92% 54.54%

11x11x11 84.54% 46.93%

(c) Cerebellum white matter

Block Size Specificity Sensitivity
7x7x7 86.02% 29.45%

11x11x11 93.01% 13.57%

Figure 7 shows the comparison of visual words and gray level histograms in terms of class–wise accuracy for
the same block sizes. The results show that for non cerebellum pixels the accuracies differ only slightly between
the two techniques, so classification with grey levels alone works reasonably well for this majority class. On the
other hand for both cortex and and white matter the performance difference is enormous and these are the two
classes that we are most interested in. This underlines that grey level information alone is not sufficient for this
classification problem and models or texture information are required for obtaining a good performance.

Figure 7. Comparison of classification accuracy using visual words and gray level histograms.

4. DISCUSSION

The results obtained for the segmentation with the various techniques and settings show that our multi–scale
visual word approach has a good performance for the task in terms of accuracy, specificity and sensitivity. As can



be seen in Figure 6 and Tables 1 and 2, there is an important performance gain when the features are computed
in larger block sizes. This shows that texture information in a relatively large neighborhood is important for
class membership. Figure 6 shows that this improvement is mostly due to the reduction of the false positives for
both cerebellum classes within the not–cerebellum region. These are actually the classes most interesting for this
classification and underlines the importance of using a larger neighborhood for the analysis. For the cerebellum
cortex and white matter classes, best accuracy values are 64.09% and 69.23%; best specificity values are 83.91%
and 92.90% and best sensitivity values are 64.09% and 69.23%.

When compared to the gray level histograms alone, the multi–scale visual words obtain much better results
for the cerebellum white matter, which is often confused with the not cerebellum class with using only grey level
information. For the cerebellum cortex and not cerebellum classes, results are somewhat similar or slightly better
to the ones obtained by the gray level histograms. Still, also for the cerebellum cortex there are fewer errors
when using texture information, although there are also more false positives. In our case the cost for errors would
be higher than for false positives, so also here the texture information leads to better results. This indicates
that the texture patterns in the cerebellum white matter are not rich enough to be distinguished by gray level
histograms alone. The multi–scale visual words profit from the fact that the vocabulary is defined based on
the patterns that actually occur in the data set and thus are able to distinguish subtle textures patterns. No
comparison with a model–based segmentation was attempted in this case but only using simple texture features
for the segmentation. Model–based segmentation might lead to slightly better performance but requires the
manual creation of a model whereas our approach creates the patterns automatically from the training data.
More training data could also potentially increase the performance of our approach. Such an approach could be
important in case where subjects differ strongly from a model or when little information is available for model
creation as in the case of images from newborns.26

5. CONCLUSION

In this article we investigate the use of texture classification using visual words to complement existing techniques
for the segmentation of the cerebellum in MR images of the brain. Brain textures are characterized in terms of
multi–scale visual words using the wavelet transform as basic visual feature.

Results in Section 3 show that the multi–scale visual words can learn texture patterns of various structures
in the brain from the brain MRI images of the cerebellar region. This can complement classical brain structure
segmentation methods that use brain models for difficult cases where the shape strongly differs from normal
template or atlas (e.g. newborn or pathological brains). Block sizes need to be relatively large to allow for
a good characterization of local information to classify the different tissue types. This means that a larger
neighborhood of the pixels is required to determine their type.

This article includes several contributions. The possibility of using texture information for segmentation where
atlas–based algorithms may fail was investigated. By testing the classifier without any prior spatial knowledge,
it was proven that texture features can be valuable for complementing existing segmentation techniques. The
introduction of multi–scale visual words by combining the multi–scale coefficients from the wavelet transforms
with the bag–of–visual–words approach shows to be adapted to the given problem of cerebellum classification.
This contribution can be used as a first step to identify structure in other clinical applications such as similarity–
based image search for clinical decision support (i.e., using content–based image retrieval (CBIR)). Once the
broad structures are identified, local similarity can help to find similar cases.

The work described also has still several shortcomings that we are currently working on. The optimal block
size still needs to be determined and possible the fusion of several scales could lead to optimal results, as border
regions of the three tissue classes are expected to be most difficult to characterize, particularly with a growing
block size. Thus for border regions small blocks might be better compared to central regions of the three
structures. Information of local neighborhoods of pixels could also help in the classification and potentially a
simple closing operation could increase the performance. More sophisticated methods for local voting approaches
could lead to even better results as could an increased size of the training data. For standard brain segmentation
our approach might not be able to increase the performance compared to approaches using cerebellum models
but in specific domains such as newborn brain images, such an improvement seems possible as template–based



methods do not work well. We are thus currently working on using our techniques on a database of newborn
images.
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