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Résumé

Au cours de la dernière décennie, le nombre d’images produites par jour dans les hôpitaux a
augmenté de manière exponentielle. Les développements considérables de la physique de l’imagerie
ont apporté aux cliniciens toute une variété d’outils de diagnostic indispensables. L’explosion de
la quantité et de la diversité de l’information visuelle médicale a eu pour conséquence fâcheuse
de submerger les radiologues avec les tâches d’interprétation de ces images. Récemment, la forme
digitale et le stockage standardisé des images médicales ont donné naissance à une nouvelle disci-
pline, au point de rencontre entre la vision par ordinateur et la médecine: le diagnostic assisté par
ordinateur (DAO) basé sur l’image. En réponse à l’avancée de la physique de l’imagerie, les DAOs
basés sur l’image représentent un important potentiel d’amélioration, tant de la quantité que de
la qualité de la productivité des radiologues.

Il y a deux types de DAOs basés sur l’image: les DAOs basés sur la détection et les DAOs
basés sur la recherche d’images par le contenu (RIC). Le premier analyse les séries d’images de
manière exhaustive afin de détecter et caractériser les anomalies alors que le second a pour but
de comparer et récupérer des images à partir de similarités visuelles. Les DAOs basés sur la
détection permettent d’obtenir un rapide aperçu des régions pathologiques, réduisant ainsi le risque
d’omission et assurant la reproductibilité du diagnostic en attirant l’attention du radiologue sur
les lésions importantes dans les séries d’images médicales. Les DAOs basés sur la RIC fournissent
quant à eux de précieuses informations pour le diagnostic et la planification du traitement grâce
à des exemples de cas dont le diagnostic a été préalablement confirmé. Conceptuellement, les
configurations de DAO reposent toutes deux sur des caractéristiques visuelles décrivant le contenu
visuel des images. À partir de l’espace des caractéristiques visuelles, le DAO basé sur la détection
décide à quelle classe (par exemple “normal” ou “malade”) l’image d’entrée (ou une région de
l’image) appartient, alors que les DAOs basés sur la RIC calculent une mesure de similarité entre
deux images à partir de laquelle une liste d’instances ordonnée peut être créée.

La présente thèse envisage différentes méthodes de création d’un système DAO hybride basé
tant sur la détection que la RIC, avec un accent sur l’analyse des textures dans des images de
tomodensitométrie à haute résolution (TDHR) chez des patients atteints de maladies interstitielles
pulmonaires (MIP). Plusieurs analogies entre la vision humaine et la vision par ordinateur sont
proposées et l’importance des représentations invariantes aux transformations affines pour une
description adéquate et robuste des tissus et organes est mise en évidence. En conséquence, un
ensemble de caractéristiques visuelles invariantes aux transformations affines est développé à partir
d’une transformée en ondelettes spécifique. Afin de choisir parmi une grande variété d’algorithmes
de classification existants responsables de la prise de décision pour les DAOs basés sur la détection,
une méthodologie de comparaison de modèles de classification basée sur le test statistique de Mc-
Nemar est exposée. À ce stade, le DAO basé sur la détection repose sur de solides caractéristiques
visuelles et algorithmes de classification. Le contexte clinique des images médicales est ensuite
intégré dans le système de classification et permet d’améliorer significativement la performance de
détection, ce qui est en adéquation avec l’approche naturelle des radiologues pour l’interprétation
des images. La stratégie optimale de combinaison de l’information visuelle avec les paramètres
cliniques est étudiée. À partir des résultats de l’interprétation des images du DAO basé sur la
détection, une mesure de similarité multimodale est introduite, permettant la récupération de cas
similaires, ce qui donne lieu à un système DAO hybride basé sur la détection ainsi que la RIC. En
parallèle, une base de données multimédia de cas de MIP a été créée aux Hôpitaux Universitaires
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vi RESUME

de Genève (HUG). Elle contient une sélection de paramètres cliniques associés aux MIP et des
séries d’images TDHR avec des régions annotées qui servent de référence pour l’évaluation des al-
gorithmes du DAO et constitue une collection de cas de MIP de référence pour l’enseignement. Des
hypothèses d’utilisation pour la navigation dans la base de données, la catégorisation automatique
tridimensionnelle des tissus pulmonaires dans les images TDHR et la récupération de cas similaires
sont définies et implémentées dans une application Internet riche contentant des interfaces util-
isateur graphiques. Afin de mesurer la performance du système DAO proposé, une méthodologie
d’évaluation visant à reproduire les conditions cliniques est introduite et discutée.

Les expériences et résultats des recherches présentées dans cette thèse suggèrent que, bien
qu’elle soit encore loin des formidables capacités de la vision humaine, la vision par ordinateur a
dépassé le stade expérimental; des contributions de recherche multidisciplinaire sont maintenant
nécessaires afin d’exploiter le plein potentiel des nouvelles technologies de vision par ordinateur
et de les rendre disponibles aux cliniciens. Dans cette perspective, les cliniciens et les ordinateurs
seront amenés à former équipe dans un avenir proche.



Abstract

The number of images produced per day in modern hospitals followed an exponential growth
during the last decade. The mature field of imaging physics brought a large variety of incontrovert-
ible diagnosis tools to the clinicians. As a consequence, the explosion of the quantity and variety
of medical visual information has the undesirable effect to overwhelm the radiologists with image
interpretation tasks. Recently, the digital form of medical images along with their standardized
storage gave birth to a new domain at the crossing of computer vision and medicine: image–based
computer–aided diagnosis (CAD). As a response to the imaging physics breakaway, image–based
CAD systems have the potential to improve both the quantity and the quality of the productivity
of the radiologists.

Image–based CAD comes into two declensions: detection–based CAD and content–based im-
age retrieval (CBIR)–based CAD. The former exhaustively analyzes image series to detect and
characterize anomalies whereas the latter aims at retrieving images based on the visual similarity.
Detection–based CAD can quickly provide an overview of the diseased regions, which reduces the
risk of omission and ensures the reproducibility of the diagnosis by drawing the radiologists’ atten-
tion to diagnostically interesting events in medical image series. CBIR–based CAD delivers quick
and precious information for diagnosis aid and treatment planning through examples of cases with
beforehand confirmed diagnosis. Conceptually, both CAD configurations relies on visual features
describing the visual contents of the images. Based on a visual feature space, the detection–based
CAD decides to which predefined class (e.g. “normal” or “diseased”) the input instance (i.e. im-
age or image region) belongs, whereas CBIR–based CADs output a similarity score between two
instances from which a ranked list of images can be built.

In this thesis, methods for building a hybrid detection–CBIR–based CAD system are proposed,
evaluated and discussed with a focus on texture analysis of high–resolution computed tomogra-
phy (HRCT) images of patients affected with interstitial lung diseases (ILDs). Several analogies
between human and computer vision are proposed and highlight the importance of using affine–
invariant visual descriptors to obtain robust representations of tissue or organs. Consequently,
an affine–invariant set of texture features is developed based on tailored wavelet transforms. In
order to choose among the large variety of existing classification algorithms that are responsible
for the decision–making of the detection–based CAD, a methodology for comparing classification
models based on McNemar’s statistical test is proposed. At this step, the detection–based CAD
system relies on robust visual features and classification algorithms. Then, the clinical context of
medical images is introduced in the classification framework and allowed to significantly improve
the detection performance, which is in accordance with the natural approach of the radiologists to
image interpretation. The optimal strategy for combining the visual information with the clinical
parameters is studied. Based on the output of the detection–based CAD, a multimodal similar-
ity measure is introduced to enable case–based retrieval, yielding a hybrid detection–CBIR–based
CAD system. In parallel, a multimedia library of ILD cases was built at the University Hospi-
tals of Geneva. It contains a selection of clinical parameters associated with ILDs and HRCT
image series with annotated regions and aims at providing ground truth for the evaluation of the
CAD algorithms and constitutes a reference library for teaching. Use cases for database browsing,
three–dimensional automated categorization of the lung tissue in HRCT and case–based retrieval
are defined and implemented in a rich Internet application (RIA) with graphical user interfaces
(GUIs). To assess the performance and robustness of the proposed CAD system, an evaluation
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methodology aiming at reproducing clinical conditions is proposed and discussed.
The experiences and outcomes of the research presented in this thesis suggest that although

computer vision is still far behind the tremendous skills of human vision, the end of its early days
has been reached and multidisciplinary research efforts are required to bring the full potential
of emerging computer vision technologies to the clinicians. In that perspective, clinicians and
computers are expected to team up in a very close future.
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Chapter 1

Introduction to computer vision of
medical images

The role of medical images increases in importance for establishing diagnoses, decision making
and treatment planning. The standardized imaging protocols allow to faithfully confirm the pres-
ence of abnormalities and quantitatively evaluate their extent. They are thereby perfectly aligned
with evidence–based medicine aiming to draw decisions based on proven facts [221]. The imaging
techniques evolved in order to be able to assess the visual appearance of almost every organ with
both high spatial and temporal resolution. Functional imaging was also more recently proposed to
study the behavior of certain organs. All the specific requirements for imaging each organ bred a
wide range of imaging techniques producing multidimensional data in the forms of signals, images
(2D), images series (3D volumes, videos or 4D volumetric videos) and combination of modalities
(N–D). Examples of the most common signals and imaging techniques in medicine are listed in
Table 1.1.

As a consequence, the amount of visual information created in modern hospitals exploded in
the last decade. For instance, the mean number of images stored in the PACS (Picture Archiving
and Communication System) at the University Hospitals of Geneva (HUG) per day follows an
exponential increase with 114’000 images produced per day in 2009 (see Figure 1.1). Following
this trend, the predicted number of images produced per day in the year 2020 would be around 3
million. Such a tremendous amount of visual information calls upon computerized aid both at a
large–scale management level of the whole content of the PACS [170] and at the diagnosis level for
the interpretation of single image series [67]. Furthermore, recent advances in medical informatics
enabled access to most of the radiological exams to all clinicians through the electronic health
record (EHR) and the PACS. This change of the medical workflow calls upon computer expert
systems able to bring the right information to the right people at the right time.

(a) linear
(b) logarithmic

Figure 1.1: Average number of images produced per day at the HUG during the last decade.

1



2 CHAPTER 1. INTRODUCTION

Table 1.1: Most common signals and imaging techniques in medicine.

signals
electrocardiogram (ECG), electromyogram (EMG),

electroencephalogram (EEG), magnetoencephalogram (MEG), ...

2D images X–ray, microscopic imaging, ...

3D volumes, videos
X–ray computed tomography (CT), magnetic resonance imaging

(MRI), positron emission tomography (PET), single photon
emission CT (SPECT), ultrasound imaging (US), ...

4D imaging temporal CT, temporal MRI, 3D US, ...

N–D combination of modalities functional MRI (fMRI), PET–CT, PET–MRI, SPECT–CT, ...

1.1 Computer tools for managing visual medical informa-

tion

The increasingly important digital form of the medical images along with their storage on
image servers such as PACS in the standardized DICOM1 format enables automatic analysis and
content–based indexing as diagnostic aid. Consequently, computer–aided diagnosis (CAD) has
become one of the major research subject in medical imaging and diagnostic radiology [67, 68]. Goal
of CAD is to use computer vision to assist radiologists in focusing their attention on diagnostically
interesting events. The CAD system can be used as first reader in order to improve the radiologists’
productivity and reduce reading fatigue [170, 176]. Whereas the radiologists’ ability to interpret
visual information is likely to change based on the domain–specific experience, human factors and
time of the day, computerized classification of lung tissue patterns is 100% reproducible. CAD was
also proposed in several fields of medicine with non–visual systems such as QMR (quick medical
reference) or ILIAD [81, 159].

Early studies on computerized analysis of medical images (mostly in X–ray imaging) were re-
ported in the 1960s [126, 158]. These systems aimed at replacing the radiologists as the originators
relied on the assumption that computers are better at performing certain tasks than are human
beings. However, it quickly became clear that physicians and radiologists have to take the fi-
nal decision and outputs of CAD systems must be used as “second opinions” and information
providers [73, 155].

Recently, CAD systems have been used in clinical routine in the rather mature field of can-
cer screening in mammograms and allowed to improve the detection of nonpalpable cancerous
masses [17, 80]. Image–based CAD systems are expected to be introduced in clinical routine for
several other organs such as the chest, colon, brain, liver, skeletal and vascular systems [2, 67, 176].
Table 1.2 lists the number of papers presented at the Annual Meeting of the Radiological Society
of North America (RSNA) related to CAD from year 2000 to 2005 (source [67]).

Mainly two approaches are proposed in the literature for assessing image–based computerized
diagnostic aid [32, 222]:

• event detection and quantification in medical images,

• content–based image retrieval (CBIR).

The two approaches are presented and discussed in Sections 1.1.1 and 1.1.2.

1.1.1 Event detection and quantification in medical images

According to the number of imaging modalities existing, the large variety of organs studied
and the high amount of visual information that modern imaging devices deliver, the radiologists
require expert CAD systems that provide an exhaustive scan and categorization of medical image

1Digital imaging and communications in medicine (DICOM)



1.1. COMPUTER TOOLS FOR MANAGING VISUAL MEDICAL INFORMATION 3

Table 1.2: Number of papers presented at the Annual Meeting of RSNA related to CAD from year
2000 to 2005 (source [67]).

2000 2001 2002 2003 2004 2005 Total

Chest 22 37 53 94 70 48 324
Breast 23 28 32 37 48 49 217
Colon 4 10 21 17 15 30 164
Brain – 4 2 10 9 15 70
Liver 3 – 5 9 9 9 29

Skeletal 2 7 7 9 8 5 38
Vascular 5 – 12 15 2 7 41

Total 59 86 134 191 161 163 883

Figure 1.2: General scheme of CAD for event detection and quantification in medical image series.

series. This is particularly important in stressful environments such as emergency radiology where
the radiologists must provide diagnostics rapidly, usually alone and at any time of the day or
night. The computerized interpretation of the images is complementary to the human’s one which
is not devoid of limitations [202]. Such detection–based CADs can help to reduce the risk of
omission and to ensure the reproducibility of the diagnostic by drawing the radiologists’ attention
to diagnostically interesting events in medical image series.

The classical scheme for event detection and quantification in medical image series is depicted
in Figure 1.2. The instances constitutes the input of the CAD system and can be patients, images
series, videos, regions of interest (ROI),... From the instances, a set of features aiming to compactly
describe the diagnostically relevant visual content is extracted. When required, a feature reduction
is applied to cut down the number of features. The resulting set of attributes constitutes the feature
space in which the classifier draws decision boundaries to predict the class(es) of the instance(s)
that are displayed in the appropriate format to the user via a graphical user interface (GUI).

An introduction to feature extraction is given in Section 1.2.1 and the features used in the
CAD proposed in this work are detailed in Chapter 3. The classifier’s underlying mechanisms of
machine learning are introduced in Section 1.2.2 and the classification algorithms used in this work
are detailed in Chapter 4.

1.1.2 Automated indexation of medical visual information

In the context of medical image analysis, providing quick and precious information to the clin-
ician is not limited to automatic detection and quantification of abnormal tissue and/or structure.
In clinical routine, the approach of the clinician to a diagnosis when he has little experience in a
particular domain is to compare the image under investigation with typical cases with confirmed
diagnosis listed in textbooks or contained in personal collections. This permits to rule out diag-
noses and, in association with clinical parameters, prevents the reader from mixing diagnoses with
similar radiological findings. This process allows the clinician to partly replace a lack of experience
but has two major drawbacks: searching for similar images is time-consuming and the notion of
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Figure 1.3: General scheme of CBIR–based CAD (inspired from [170]).

similarity may be context– or time–dependent [139, 164].

Content-based medical image retrieval (CBIR) aims at finding objectively visually similar im-
ages in large standardized image collections (e.g. PACS) [170]. The main components of CBIR–
based CADs are detailed in Figure 1.3. In CBIR, the notion of similarity is usually established
from a set of visual features describing the content of the instances (i.e. image series, videos,
ROIs,...). Features can be identical to the one used in detection–based CADs (see Section 1.1.1)
and can vary from low–level measures such as the histogram quantification of the colors to high–
level semantically–related features describing the anatomical content of images. A retrieval engine
manages the storage and access methods to the features and computes the distance measures for
similarity assessment between the instances described in terms of feature vectors. The most similar
instances to the query are shown in an appropriate format to the clinician in a GUI.

The automatic indexation of medical visual content with CBIR enables systematic storage
of the ever-increasing production of medical images in todays modern hospitals. Medical data
repositories represent potentially rich knowledge bases. However, the access to medical image
series in the PACS is most often based on the identification of the patient, which is not suitable to
search for similar cases based on a disease or on the visual similarity of the images. Thereby, CBIR
allows to quickly find similar images according to objective criteria in large image collections to
assist the radiologists in their diagnosis workup [172, 213].

Concepts for integration of CBIR in medical practice were often proposed in the literature [170,
179, 269]. However, few CBIR systems have been integrated and evaluated in clinical practice.
A major challenge is to find features and distance measures that are matching the clinicians
requirements according to a particular application. The discrepancy between the user’s intentions
when looking for a particular image and the visual information that the features are able to model
is called the “semantic gap” in the literature [226] and is usually a bottleneck in medical CBIR.
Nevertheless, the few CBIR–based CADs evaluated in clinical practice showed very promising
results as that they can be accepted by the clinicians as a helpful and easy–to–use tool and allows
significant improvement in the diagnosis accuracy, especially for little experienced radiologists [4,
28, 111, 220].

A possible extension to CBIR is to carry out case-based retrieval. Most often, the clinician
actually looks for similar cases as he considers the image within the context of a patient with a
personal history, findings on the physical examination, laboratory tests, etc. At last, CBIR can
complementary to event detection where the features can be used both for the categorization of
the image series and retrieval of similar instances.

In this work, a case–based retrieval system is proposed in Section 4.3. The latter is based on
the output of detection–based CAD.
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Figure 1.4: Visual pathways in the human visual system (source [86]).

1.2 Computer vision: inspirations from human vision and

cognition

Computers have near–unlimited computational power compared to human beings and are in-
comparably more rapid and precise for a wide range of applications from simple arithmetics to
non–linear multivariate simulations. Nonetheless, vision is an exception to this where human be-
ings are by far more accurate and rapid to recognize objects and textures in scenes. This suggests
that computer vision has not yet reached its full potential and further research contributions are
required.

The human vision is a complicated process that results from the interactions of numerous
components of the human eye and brain [86]. The visual pathways start from the eyes, in particular
from the retinas, and ends at the visual cortex. In terms of signal propagation, the nerve impulses
are generated in the two retinas and passed backwards through the optic nerves, cross themselves
at the optic chiasm, and synapse in the corresponding dorsal lateral geniculate nucleus (LGN)
through the optic tracts. Then, both LGN generate nerve impulses that converge to the visual
cortex through the optic radiations (see Figure 1.4). The latter is responsible for the perception
of all aspects of visual forms and colors in humans. It extracts features about the form and
orientation of objects. These features yield a compact representation of the observed scene that is
further processed by complex cognitive schemes involving several lobes of the brain. As an output
of the visual information pathway, objects, textures, motion, and other hi–level visual concepts
are identified to define, along with the context of the observed image, a whole scene from which
decisions can be drawn [16, 62, 153, 267]. In radiology for instance, the identified textures and
objects contained in the images are interpreted according to the clinical context of the patient to
establish the radiological diagnostic.

Computer vision has been widely inspired by the human visual system at many levels [12, 16,
45, 62, 119, 153, 154, 192, 240, 267]. Analogies between natural and artificial worlds are proposed
in Sections 1.2.1 and 1.2.2 where the several components of computer vision are defined. The
proposed analogies are summarized in Table 1.3.
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Table 1.3: Analogies between computer vision and human vision.

Computer vision Human vision analogy Output

Image
capture

digital camera, scanner, ... human eye and retina sampled images

(2D, 3D, ...)

Feature
extraction

thresholding, filtering visual cortex: colors, affine–invariant

zero–crossing, multiscale, ... gradient of contrast, ... visual features

Supervised
machine
learning

support vector machines, trained brain: segmented objects,

naive Bayes, ... cognitive schemes decisions, ...
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Figure 1.5: Organization of cone cells in the foveal region (source [46, 267]).

1.2.1 Eyes and visual cortex: feature extraction

Several analogies between the way our visual system extracts salient features from the observed
scene and image processing techniques can be found. In image processing, feature extraction is a
procedure to uncover salient features from an image. Comparing images pixel by pixel is extremely
impractical, like comparing two objects atom by atom. In contrast, features are more compact and
efficient. For example, to compare two objects, our visual system uses simple features such as the
shape (square, round, etc...) and color. Similarly, a computer can rely on salient features in the
image, such as corners, edges, textures, and colors to derive a compact representation that allows
for efficient comparison with other images.

A first notable similarity between human and computer vision is already in the capture of the
image: the spatial sampling. When cameras and scanners capture and store visual information on
regular 2D or 3D sampling grids through the conception of the sensor or reconstruction algorithms,
the retina sample values of the observed scene at the cone positions which are organized in mosaics
(see Figure 1.5). According to Nyquist’s sampling theorem, an observed continuous signal of
bandwidth B can be reconstructed without loss when the distance between two samples is equal
to B/2, corresponding to a sampling frequency fs = 2B. Yellott showed that when the observed
signal contains frequencies higher than than fs/2 aliasing effects are perceived by humans [282]. As
a consequence, we can consider that both human and computers are processing visual information
starting from a sampled image [45].

Affine invariance

From a fixed point of view, the projections of three–dimensional objects and textures can be
obtained by affine transformations of the original version as illustrated in Figure 1.6 [12]. An
affine transformation between two vectorial spaces consists of a linear transformation followed by
a translation:

x �→ Ax + b. (1.1)

The vector x is linearly transformed by the matrix A and translated by b. The elementary linear
transformations are: rotation by an angle θ, scaling by factor a, reflexion and shearing (vertical
and by a factor m in the example). Their corresponding transformation matrices in R

2 are:

Arotation =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, Ascaling =

(
a 0
0 a

)
,

AxReflexion =
(

1 0
0 −1

)
, Ashear =

(
1 m
0 1

)
.

A projection of any object composed of a set of vectors x can be obtained by a combination
of several affine transformations, which remains an affine transformation itself. Our assumption
is that the description of the observed object (or texture) has to be affine–invariant in order to
optimize the recognition accuracy of any projection of the original object [184]. In other words,
affine–invariant visual features will allow best discrimination among projected versions of distinct
objects or textures.

The human visual system itself is affine–invariant. Indeed, as we can experience ourselves by
glancing at Figure 1.6, our visual system is able to recognize most of the affine transformations of
the leopard. Insights of the mechanisms allowing affine invariance in human vision are proposed
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(a) original projection (b) translation

(c) scaling (d) rotation

(e) reflexion against the y axis (f) random projection

Figure 1.6: Affine transformations of 3D objects and textures. Our visual system is able to
recognize most of the affine transformations of the leopard. (f) shows a combination of linear
transformations of (a).
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Figure 1.7: Shift invariance of the human visual system: retinal images of two parallel lines
displayed on a monitor are shifted versions of the same image (source [267]).

(a) ψDG(x) (b) ψΔG(x)

Figure 1.8: ψfovea is best modeled by the 2D Laplacian of Gaussian ψΔG(x).

in the next paragraph with a focus on the foveal region, which is the main source of pattern
information.

Shift invariance is a special property of the optics of the eye. By looking at the image projected
on the retina (retinal image) near the fovea, it was shown that two parallel lines l and l′ observed
on a monitor will create identical (but shifted) retinal images r and r′ (see Figure 1.7) [27, 267].

Let then consider the array of neurons in the foveal region as a shift–invariant linear receptive
field which is equivalent to the convolution kernel of the shift–invariant mapping to a so–called neu-
ral image. This convolution kernel is also called the psychophysical linespread function ψfovea [267].
That is, the motion of our eyes screens the observed scene with fovea which is similar to a random
convolution2 of ψfovea with the observed scene or image. In 1956, Schade suggested that the gen-
eral shape of ψfovea can be described using the difference of two Gaussian functions ψDG of the
same mean μ [214] (see Figure 1.8 (a)):

ψDG(x) =
1

σ1

√
2π
e
−x−μ

2σ2
1 − 1

σ2

√
2π
e
− x−μ

2σ2
2 . (1.2)

This suggestion was supported by Rodieck in 1965 [203] and then Enroth–Cugell et al. in 1966 [74].
Later, it was found that ψfovea was best modeled by the two–dimensional Laplacian of the Gaussian

2Under certain conditions, random convolutions allow the perfect reconstruction of a sparse signal [205].
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kernel ψΔG (Eq. 1.3, Figure 1.8 (b)), from which the difference of two Gaussians is actually an
approximation when σ2/σ1

∼= 1.6 [119, 154].

ψΔG(x) = − 1
πσ4

(
1 − x2

2σ2

)
e−

x2

2σ2 (1.3)

In the context of their theory on edge detection describing the early human visual perception
(so–called raw primal sketch), Marr et al. (1980) showed that ψΔG has indeed several desirable
properties for image analysis. Considered as a band–pass filter, it offers an appropriate trade–
off between spatial localization and bandwidth which allows to locally examine a portion of the
spectrum of the image. They suggest that the raw primal sketch is constituted by a collection
of images filtered with ψΔG with different values of σ in which the zero–crossings are detected
(i.e. the locations where the filtered images turn from a negative value to a positive one, and
inversely). This calculation might be implemented in the nervous system by using neurons with a
variety of receptive–field properties in the visual cortex. Because the individual component images
obtained from convolutions with ψΔG using several values of σ are assumed to represent different
spatial frequency resolutions, the neural image is a multiresolution representation which is scale–
invariant [240]. Indeed, we know from the wavelet theory that a continuous signal can be perfectly
reconstructed from the coefficients of several convolutions with an appropriate filter each covering
successive octaves of the spectrum [150]. The analogy to the wavelet theory goes even further: it
can be proved easily that ψΔG fulfills the conditions for being an appropriate filter: a wavelet.

The two Nobel prizes Hubel and Wiesel discovered in 1959 that, unlike receptive fields in the
LGN, most of the neurons of the visual cortex are orientation–selective [101, 267]. By combining
several neurons that are selective to distinct orientations, our visual system is rotation–invariant
and is able to recognize any rotated version of an object. However, we will discover in Section 3.1.2
that when the analyzed patterns do not have an a priori prevailing orientation, an interesting
solution to obtain rotation–invariant descriptions of the patterns is to use isotropic filters [154, 255].

In this section, it was stated that affine–invariant features allow an accurate and compact repre-
sentation for further classification of the objects and textures and correspond to our perception of
visual information. In this thesis, this assumption will be followed to develop affine–invariant tex-
ture features that will be evaluated on high–resolution computed tomography (HRCT) pulmonary
images of patients affected with interstitial lung diseases (ILD) in Chapter 3.

Texture descriptors in computer vision

Texture analysis in digital image processing has been an active research domain over more
than thirty years [87, 199, 288]. In [87], texture in digital images is defined as nonfigurative and
cellularly organized areas of pixels. Such patterns can be described by a given spatial organization
of gray levels (e.g., random, periodic). However, despite many attempts, there are no appropriate
mathematical models for describing homogeneous image textures [150]. Indeed, a texture region
is considered as homogeneous if it is perceived as being homogeneous by a human observer.

Texture analysis is recognized as being particularly relevant to describe the visual content of
medical images that is often not characterized by well–defined objects but has well–defined visual
aspects [30, 244].

Early texture descriptors Early examples of texture features are the autocorrelation function,
textural edginess, measurements derived from mathematical morphology (e.g. top–hat transform),
run–length (RLE) and gray–level co–occurrence matrices (GLCM), the latter being the most pop-
ular of the lot [88, 199]. In a two–dimensional digital image I(x) of dimensions n × m, GLCM
counts the number of occurrences of a sequence of gray–level values of a defined length and along
a defined direction given by offsets in the x and y directions: Δx and Δy. An example is given in
Figure 1.9. Mathematically, GLCMs are defined as follows:

GLCMΔx,Δy(i, j) =
n∑
p=1

m∑
q=1

{
1, if I(p, q) = i and I(p+ Δx, q + Δy) = j,

0, otherwise.
(1.4)
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Figure 1.9: An example of GLCM for Δx = 1 and Δy = 0 of an image with 8 gray–levels.

From GLCM, various metrics are often computed to obtain a more useful set of features, called
Haralick features that will not be detailed here. For more details see [88]. GLCM are not rotation–
invariant. As an approximation, several GLCM matrices can be computed with different Δx/Δy
ratios to span 180 degrees. Typically, four matrices are computed at 0, 45, 90 and 135 degrees.
Another drawback is the size of the matrices, which is Ngray × Ngray, with Ngray the number of
gray–levels of I. For example, to analyze 12–bit images from a CT scanner, the size of each matrix
is equal to 212 × 212 which is impractical because the number of possible co–occurrences is huge
and cause problems to be calculated and stored. A reduction of Ngray is required which results in
an important loss of relevant information. This can be handled by compressing the grayscale or
by considering an alternative representation in terms of sums and differences [247].

Spectral analysis and wavelet transform Julesz introduced in 1981 the texton theory which
was an important step towards understanding the different parameters that influence the percep-
tion of textures [107]. The idea behind is that our pre–attentive visual system uses second–order
measures to discriminate among textures. As the second–order statistics determine the autocorre-
lation function and the Fourier transform of the autocorrelation function is the power spectrum,
the iso–second–order textures have identical autocorrelation functions and identical power spectra.
Based on the property that some image patterns (especially, periodic ones) are well described in
terms of sinusoidal components and the repartition of the energy in the spectrum, the Fourier
transform has been proposed for texture analysis [11, 99]. However, the latter is not appropriate
for segmentation because the Fourier transform is neither shift–invariant nor rotation–invariant
and thus Fourier coefficients must be evaluated over neighborhoods of varying sizes and in various
directions.

An attractive solution for carrying out a more local texture analysis, which also takes into
account scale, is to use the wavelet transform (WT) [6, 150]. It was mentioned above that the
WT is very close to the way the human visual system analyzes image patterns. Wavelets are
mathematical analysis functions that decompose signals into subbands, and then analyze each
component with a resolution matching its scale (the analyzed image is iteratively subsampled by a
factor of 2 in the standard dyadic discrete version). In R

1, the admissibility condition for a wavelet
ψ is to have a zero average: ∫

R

ψ(x)dx = 0. (1.5)

This ensures that the convolution of ψ with a constant signal s(x) = C remains zero. Indeed, ψ
is shaped to detect changes in s(x). When ψ is dilated by a factor a and translated by b, we can
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create a spanning set of functions ψa,b(x) as follows:

ψa,b(x) =
1√
a
ψ

(
x− b

a

)
. (1.6)

It will be seen in Section 3.1.2 that the family of functions ψa,b(x) may be a base or not. To obtain
a wavelet transform of s(x) at the scale a and position b, s is correlated with ψ:

W s
ψ(a, b) =

∫
R

s(x)
1√
a
ψ∗

(
x− b

a

)
dx, (1.7)

with ψ∗ the complex conjugate of ψ. This corresponds to a scalar product of s(x) with the family
of templates

S = {g1(x− b), ..., gJ(x− b), hJ(x − b)}b∈R

where hj stands for a lowpass filter at iteration j and gj a family of highpass filters with j = 1, ..., J .
S is derived from the set of functions ψa,b(x). The associated decomposition algorithm is{

Gj(x) := 〈Gj(x− b), s(x)〉l2
HJ (x) := 〈HJ (x− b), s(x)〉l2 (1.8)

where 〈·, ·〉l2 is the scalar product using the l2 norm. Gj contains coefficients generated by the
convolution of s(x) with the highpass filters at iteration j and HJ the convolution of s(x) with the
lowpass filter at the last iteration J .

Using two–dimensional isotropic wavelets ψiso(x), the wavelet transform is easily extended to
the second dimension as:

W I
ψiso

(a,b) =
∫

R2
I(x)

1√
a
ψ∗
iso

(
x − b
a

)
dx. (1.9)

The WT thus allows local multiscale analyzes and is particularly well suited for the representation
of piecewise–smooth signals, as well as stochastic processes with a fractal–like behavior, which
partly explains their success in biomedical imaging applications [76, 250]. When compared to the
Fourier series, the approximation error based on the number of coefficients Nc decreases faster
following 1/2Nc (wavelet bases) instead of 1/Nc with the Fourier series. However, WT must be
used with precautions and it will be seen in Section 3.1.2 that the sampling of I(x) alters the
affine–invariance of the features derived from WTs in several ways. It will be shown that near
affine–invariant visual features can be obtained with particular WT designs [65, 252, 255, 258].

Color histograms

Complementary to the characterization of spatial dependencies, the distributions of the colors
and intensities within the image carry out relevant information for texture and object recognition.
For example, color information is enough to recognize an orange within a basket of apples. In
our visual system, the recognition of colors is performed already in the retina, where three types
of cones are sensitive to different wavelengths corresponding to the three colors red, green and
blue [266]. In computer vision, colors are often described with statistical measures of color (or
intensities in grayscale images) histograms (see Figure 1.10). Commonly used first–order texture
measures derived from histograms are mean, standard deviation, mode (index of the bin with
highest value), skewness and kurtosis, etc...

1.2.2 Trained brain: supervised machine learning

A feature set that describes the observed scene well is a prerequisite step towards the classi-
fication of the represented objects and, if applicable, a global decision taken from the observed
scene and its context. In the animal world, recognition of complex objects and decision–making
is processed beyond the visual cortex by cognitive schemes implemented by several interactions
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Figure 1.10: Gray–level histogram and statistical measures of an axial slice of HRCT of the lung.

(a) variations of the class “car” (b) unknown instance of “car”

Figure 1.11: Generalization: one can easily categorize the object depicted on image (b) as a “car”
even without having seen it before.

between the lobes of the brain [184]. The ability of recognizing objects is usually not given by
birth but is rather gained through learning and experience. Learning is defined as the aptitude to
modify one’s responses to an event through repeated experiences. It is not restricted to learning
by heart. Indeed, humans are able to recognize an object of a given class without having seen it
before and have the ability to generalize the global shapes of the objects. For example, one will
surely be able to recognize that Figure 1.11 (b) depicts a car even without having seen this specific
model before but by knowing the general characteristics (features) and variations that define the
class of car as illustrated by the set of images in Figure 1.11 (a).

In computer vision, once the feature space is built, algorithms have to be used to detect and
create boundaries among the several classes defined by clusters of instances in the feature space.
Similar to the way we learn, computers can be taught to recognize objects. One such learning
technique is called supervised learning. During this learning process, the underlying parameters of
the machine learning algorithm are optimized in order to draw decision boundaries that minimize
the errors of categorization of instances with known class labels. The goal is to find the functions F
which best model the boundaries among the distinct classes represented in the feature space. The
best functions are those that perform classification of a test set with the lowest error rate. The test
set is composed of labeled instances, which have not been used to train the classifier. It simulates
future unknown instances and thus allows measuring the generalization performance (GP) [262].
The objective is to minimize the error rate on the training set (empirical risk minimization) while
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at the same time avoiding overfitting of the training instances (true risk minimization).
Several approaches are available to implement F . Three general approaches including five

classifier families are studied in this work:

• learning by density estimation with naive Bayes and k–nearest neighbor (k–NN) classifiers,

• recursive partitioning of the feature space or learning by the process of elimination with
decision trees,

• nonlinear numerical approaches with the multi–layer perceptron (MLP) and kernel support
vector machines (SVM).

In practice, the choice of a classifier family is a difficult problem and it is often based on the
classifier happening to be available or best known to the user [19, 104]. A methodology for this is
proposed in Section 4.1.1.

Learning by density estimation

Learning by density estimation relies on the assumption that the instances belonging to the same
class form homogeneous clusters in the feature space. Two approaches are studied: a probabilistic
one with the naive Bayes classifier and a geometric one with k–NN.

Naive Bayes The naive Bayes classifier is based on a probability model and assigns the class,
which has the maximum estimated posterior probability to the feature vector extracted from the
ROI. The posterior probability P (wj |v) of a class wj given a feature vector v is determined using
Bayes’ theorem:

P (wj |v) =
P (v|wj)P (wj)

P (v)
(1.10)

This method is optimal when the attributes are orthogonal. However, in practice it performs
well without this assumption. The simplicity of the method allows good performance with small
training sets [259]. Indeed, by building probabilistic models, it is robust to outliers (i.e. feature
vectors that are not representative of the class to which they belong). Moreover, it creates soft
decision boundaries, which has the effect to avoid overtraining. However, the arbitrary choice of
the distribution model for estimating the probabilities P (x) along with the lack of flexibility of the
decision boundaries results in limited performance for complex multiclass configurations.

k–NN The k–nearest neighbor classifier cuts out hyper spheres in the space of instances by
assigning the majority class of the k nearest instances according to a defined metric (e.g. Euclidean
distance) [44]. It is asymptotically optimal and its straightforward implementation allows rapid
tests for example for evaluating features. However, several shortcomings are inherent to this
method. It is very sensitive to the curse of the dimensionality. Increasing the dimensionality has
the effect to sparse the feature space and local homogeneous regions that represent the prototypes
of the diverse classes are spread out. The classification performance strongly depends upon the
used metric [259]. Moreover, a small value of k results in chaotic boundaries and makes the method
very sensitive to outliers.

Learning by the process of elimination: decision trees

Decision trees carry out recursive partitioning of the feature space by hierarchically testing fea-
tures. A commonly used algorithm is the C4.5 introduced by Quinlan in 1986 [195] and consists of
dividing the feature space successively by choosing primarily features with the highest information
gain IG (similar to Kullback–Leibler divergence [128]). In medicine, it is in correspondence to the
approach used by clinicians to establish a diagnosis by answering successive questions. This is
nevertheless only partially true when radiologists interpret HRCT images, where the information
contained in images does not appear successively but at a glance.
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(a) (b) (c)

Figure 1.12: A bidimensional illustration of non–linear classification problems. (a): the two clusters
of instances are linearly separable. (b) and (c): intricate decision boundaries are required to best
separate the two classes.

Decision trees are robust to noisy features as only attributes with high information gain are
used. However they are sensitive to the variability of data. The structure of the tree is likely
to change completely when a new instance is added to the training set. Another drawback is its
incapability to detect interactions between features as it treats them separately. This results in
decision boundaries that are orthogonal to dimensions, which is not accurate for highly nonlinear
problems. Two main parameters influencing the generalization performance require optimization:

• Ninstances : the minimum number of instances per leaf, which determines the size of the tree.

• Cpruning : the feature confidence factor used for pruning the tree, which consists of removing
branches that are deemed to provide little or no gain in statistical accuracy of the model.

Nonlinear numerical approaches

Nonlinear numerical approaches are able to model any decision boundary F and thus offer
unlimited flexibility. On the one hand, they are well–suited for non–linear problems where the
classes do not form localized clusters but several clusters as illustrated in Figure 1.12 (c). On the
other hand, the large flexibility increases the risk of overtraining where the decision boundary fits
perfectly the training set which is not necessarily representative of the complete population. In
this case, regularization constraints are employed to smooth the decision boundaries.

MLP Multi–layer perceptrons (MLP) are inspired by the human nervous system, where informa-
tion is processed through interconnected neurons [18]. The MLP is a feed–forward neural network,
which means that the information propagates from input to output. The inputs are fed with values
of each feature and the outputs are providing the class value. With one layer of neurons, the output
is a weighted linear combination of the inputs. This network is called the linear perceptron. By
adding an extra layer of neurons with nonlinear activation functions (the hidden layer), a nonlinear
mapping between the input and output is possible [105]. The training phase consists of iterative
optimization of the weights connecting the neurons by minimizing the mean squared error rate of
classification. The learning rate Rlearn, which controls the adjustments of the weights during the
training phase must be chosen as a trade–off between error on the training set and overtraining.
Another critical parameter is the number of units Nhidden of the hidden layer. Indeed the MLP
is subject to overfitting and requires an optimal choice of the parameters for regularization. The
MLP can create models with arbitrary complexity by drawing unlimited decision boundaries. It is
also robust to noisy features as these will obtain a low weight after training.

Kernel support vector machines Kernel support vector machines (SVMs) implicitly map
input feature vectors vi to a higher dimensional space by using the kernel function K(vi,vj) =
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〈φ(vi), φ(vj)〉 which needs to be a positive definite function. For example, the Gaussian kernel is
defined by:

K(vi,vj) = e
−‖vi−vj‖2

2σ2
K (1.11)

with σK being the width of the Gaussian to determine. The Gaussian kernel maps each feature
vector to a Gaussian (which is continuous) and thus spans a space of infinite dimension.

In the transformed space, a maximal separating hyperplane is built considering a two–class
problem. Two parallel hyperplanes are constructed symmetrically on each side of the hyperplane
that separates the data. The goal is to maximize the distance between the two external hyperplanes,
called the margin [25, 262]. An assumption is made that the larger the margin is the better the
generalization error of the classifier will be. Indeed, SVMs were developed based on the Structural
Risk Minimization principle, which seeks to minimize an upper bound of the generalization error
while most of the classifiers aims at minimizing the empirical risk, the error on the training set [42,
43]. The SVM algorithm aims at finding a decision function f(v), which minimizes the functional:

minC
Nv∑
i

max (0, 1 − yif(vi))
2 + ‖f‖K (1.12)

where Nv is the total number of feature vectors, ‖f‖K is a norm in a Reproducing Kernel Hilbert
Space H defined by the positive definite function K, which means that the functionals f are
bounded. yi is the label of vi with yi ∈ {−1; 1} (2–class problem). The parameter C determines
the cost attributed to errors and requires optimization. For the multiclass configuration, several
SVM models are built using either one versus one or one versus all combinations. Finally, the
majority class is attributed.

In summary, SVMs allow training generalizable, nonlinear classifiers in high–dimensional spaces
using a small training set. This is enabled through the selection of a subset of vectors (called the
support vectors), which characterize the true boundaries between the classes well.

1.3 CAD in HRCT imaging of the chest

HRCT imaging of the chest provides a three–dimensional view of the organs with submillimetric
resolution in axial sections. It has become the gold standard for diagnosing interstitial lung diseases
which induce diverse alterations of the lung tissue that have characteristic textural signatures.
HRCT imaging of the chest thus represents an ideal candidate for developing texture–based CAD
systems.

In this section, the challenges of diagnosing interstitial lung diseases are detailed. The impor-
tance of HRCT imaging of the chest in the diagnosis process of ILDs and the efforts that a correct
interpretation represents are presented.

1.3.1 Interstitial lung diseases

Interstitial lung diseases (ILDs) can be characterized by the gradual alteration of the lung
parenchyma leading to breathing dysfunction. They regroup more than 150 histological diagnoses
associated with disorders of the lung parenchyma [114]. The factors and mechanisms of the disease
processes vary from one disease to another and the cause of many ILDs is still unknown [114].
Physical examination of a patient affected by ILD is frequently abnormal but with unspecific
findings. The diagnosis of these pathologies is established based on the complete history of the
patient, a physical examination, laboratory tests, pulmonary function testing (PFT) as well as
visual findings on chest X-ray.

Images play an important role for confirming the diagnosis and patients may not require surgical
lung biopsy when the clinical and radiographic impression is consistent with a safe diagnosis [78].
The first imaging examination used is the chest radiograph because of its low cost and weak
radiation exposure. It also provides a quick overview of the whole chest. However, chest radiographs
are normal in more than 10% of the patients with some forms of ILD and can provide a confident
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Figure 1.13: Most common histological diagnoses of ILDs according to [114] and [268].

diagnosis in only 23% of the cases with lung diseases in general [236]. When the synthesis of this
information arouses suspicions toward an ILD, HRCT imaging of the chest is often required to
acquire a rapid and accurate visual assessment of the lung tissue. Indeed, the three-dimensional
form of HRCT data avoids superposition of organs and provides an accurate assessment of the
pattern and distribution of the lung tissue with a submillimetric resolution. It quickly became the
gold standard imaging protocol for the diagnosis of diffuse pulmonary parenchymal diseases.

The most common histological diagnoses of ILDs according to [114] and [268] are detailed in
Figure 1.13 and the associated lung tissue patterns in HRCT are listed in Table 1.5.

High–resolution computed tomography of the lungs

The first patient scan acquired with X–ray computed tomography (CT) was acquired in 1972 at
the Atkinson Morley Hospital in England. The method utilizes an X–ray tube which rotates axially
around the patient and a diametrically opposed array of detectors detects the residual radiation
traversing the body. Three–dimensional arrays of pixels are reconstructed using the inverse Radon
transform. The numerical value of each pixel is related to the X–ray attenuation and are expressed
in Hounsfield Units (HU). HU values are obtained by computing the difference in X–ray attenuation
between the observed material (e.g. bone, lung tissue, air) and the water providing an absolute
measure of the density of the organs. A correspondence of the density of certain organic material
and the HU value is shown in Figure 1.14.

In 1972, the first commercialized CT scanner was creating image series with relatively low
resolution of an 80 × 80 pixel matrix in each axial slices. Nowadays, scanners with multiple
detectors and using a helical scanning mode can provide a 3D array of isotropic voxels with a
submillimetric resolution. This protocol is called multidetector computed tomography (MDCT).
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Table 1.4: The HRCT scanning protocol.

slice thickness 1–2 mm

spacing between slices 10–15 mm

scan time 1–2 seconds

lung shape inspirium

contrast agent none

axial pixel matrix 512 × 512

x, y spacing 0.4–1 mm

Figure 1.14: Hounsfield Units values of several organic materials.

The main drawback of this protocol is the high amount of radiation dose the patient is exposed to.
To assess the visual appearance of healthy and pathological lung tissue, a submillimetric resolution
is required but some areas can be skipped between the thin sections to limit the radiation exposure.
This protocol is called high–resolution computed tomography (HRCT) and is the gold standard
imaging protocol for diagnosing ILDs [174]. The specifications of the HRCT protocol are listed in
Table 1.4. At last, HRCT is more appropriate than MRI to assess the visual appearance of the
lung tissue. Indeed, MRI is only sensitive to inflammatory changes of the pulmonary parenchyma
as other tissue sorts have a low density of protons [147]. A comparison between HRCT and MRI
is shown in Figure 1.15.

Lung tissue patterns associated with ILDs in HRCT

The appearance and quantification of the sorts of lung tissue patterns in HRCT are very
informative for establishing the differential diagnosis of an ILDs. The Table 1.5 lists 13 common
histological diagnoses of ILDs, the associated HRCT findings as well as the region of the lungs
where the disease is predominant. The visual aspects of the most common lung tissue patterns are
depicted in Figure 1.16. The taxonomy used to describe them often relates to texture properties.
The term fibrosis is used in this work to describe all HRCT findings that are associated with
the histological diagnosis “pulmonary fibrosis” and includes reticulation, traction bronchiectasis,
architecture distortion and honeycombing [235]. As observed in Table 1.5, ground glass patterns
are encountered in most of the ILDs and is thus non–specific. Therefore, the clinical context and
other HRCT findings are required to orient the diagnosis.

Interpretation of HRCT image series Interpreting HRCT images of the chest represents a
challenge even for trained chest radiologists and lung specialists [236, 268]. The three-dimensional
form requires significant reading time, effort, and experience for a correct interpretation [66]. Most
often, the interpretation process is carried out by comparing a case with similar images in textbooks
such as [268] or with similar cases in personal image collections, which are most often organized
by pathology. To do so, the radiologists must have a guess of the suspected disease present in
the image and may miss the true pathology shown. In certain medical services (e.g. emergency
radiology service), radiologists have recourse to a large diversity of imaging modalities such as
conventional projection radiography, CT, MRI, functional imaging (fMRI, PET), and ultrasound
applied to different organs such as the brain, colon, breast, chest, liver, kidney and the vascular
and skeletal systems. They have to provide a first radiological report with ideas on the diagnosis
quickly. This may result in errors by omission or confusion of diverse pathologic lung tissues [108].
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Table 1.5: 13 common histological diagnoses of ILDs and associated HRCT findings.

histological diagnosis
HRCT lung

tissue patterns
predominance

Hypersensitivity
pneumonitis (HP)

ground glass, emphysema, fibrosis diffuse

Pneumocystis
pneumonia (PCP)

ground glass, crazy–paving, cysts,
pneumothorax

central, perihilar

Eosinophilic
pneumonia (EP)

ground glass, consolidation,
crazy–paving

peripheral, apex

Langerhans cell
histiocytosis (LCH)

cysts, ground glass, micronodules,
reticulation

apex

Sarcoidosis

micronodules, consolidation,
macronodules, ground glass,

fibrosis (end–stage)

peribronchovascular,
subpleural, peripheral

Tuberculosis (TB)
micronodules (miliary),

tree–in–bud, consolidation
diffuse

Respiratory
bronchiolitis

associated ILD
(RB–ILD)

ground glass, emphysema
diffuse,

centrilobular

Pulmonary fibrosis
(PF)

fibrosis, bronchiectasis,
ground glass

peripheral,
subpleural,

basal, posterior

Desquamative
interstitial

pneumonia (DIP)

ground glass, , emphysema,
fibrosis (uncommon)

subpleural, basal

Acute interstitial
pneumonia (AIP)

ground glass, consolidation basal, diffuse

Non–specific
interstitial

pneumonia (NSIP)

ground glass, consolidation,
reticulation, fibrosis (uncommon)

peripheral, basal

Cryptogenic
organizing
pneumonia

(COP/BOOPa)

aBronchiolitis
obliterans organizing
pneumonia (BOOP)
was formerly used
and replaced by COP

ground glass,
consolidation (patchy),

macronodules, macronodules,
bronchial wall thickening,

crazy–paving

peribronchovascular,
subpleural

Lymphocytic
interstitial

pneumonia (LIP)
ground glass, micronodules

peribronchovascular,
subpleural
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(a) HRCT (b) 3–Tesla MRI

Figure 1.15: A comparison of HRCT and MRI for the visual assessment of the lung tissue
(source [147]). In the MRI image (b), the signal of the infected lung–area (arrowhead) is 120%
higher than fibrous tissue area (arrow).

Moreover, the context is fundamental for correct interpretation: healthy tissue, for example, may
have different visual aspects depending on the age or the smoking history of the patient and ground
glass findings are non–specific without complementary clinical parameters [177].

1.3.2 Texture–based CADs for lung tissue analysis in thin–section CT

Owing to the intrinsic complexity of the interpretation of HRCT image series, a real-time image-
based computerized assistance appears useful for radiologists. Computerized texture analysis of the
lung parenchyma in thin–section CT has been a lively research topic for more than ten years with
contributions from about 24 research groups around the world. The challenging and tedious work
that represents a meticulous interpretation a thin–section CT image series in a time–constraining
clinical environment calls upon computerized assistance with CAD systems. Mostly four CAD
scenarios were proposed in the literature:

• abnormality detection,

• categorization of the lung tissue,

• quantification of the disorders,

• retrieval of similar images or cases with known diagnosis.

The first three scenarios are related to detection–based CADs (Section 1.1.1) and the last one
refers to CBIR–based CADs (see Section 1.1.2). Most often, the proposed detection–based CAD
systems aim to assess a combination of these scenarios with a purpose of providing a “second
opinion” to the radiologist. Texture analysis is well adapted for analyzing the lung parenchyma
affected with ILDs and chronic obstructive pulmonary disease (COPD), but neither for nodule
detection nor for the segmentation of the bronchial tree. Thereby, the literature review proposed
in this section focuses on texture–based CAD systems and does not include studies on nodule
detection or bronchus characterization in thin–section CT. Recent surveys with a wider scope on
CAD systems in CT imaging of the chest are proposed by Doi et al. [140], Sluimer et al. [224]
and Sonka et al. [231]. The performances of the various CADs are not compared in this review as
strongly depending of the dataset, the number of patterns included and the validation methods.

In order to explore and compare the scopes and methods of the various contributions in the
field, this section is structured as follows. A chronological overview of the techniques used is
proposed in the first subsection. The scopes of the studies are detailed in Tables A.1, A.2, A.3 and
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(a) healthy (b) emphysema

(c) ground glass (d) fibrosis

(e) micronodules (f) consolidation

Figure 1.16: Visual aspects of the most common lung tissue patterns in HRCT of patients with
ILDs.
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A.4 and the methods are summarized in Tables A.5, A.6, A.7 and A.8. Some statistics and trends
of the various research groups are identified and discussed in the second subsection.

Texture–based lung parenchyma analysis in the literature

Although some studies proposed semi–automated quantification of the parenchymal disorders
in the early nineties, the first fully automated texture–based CAD system for ILDs was proposed
by Delorme et al. in 1997 [47]. 2D HRCT slices are sampled with 5 × 5 blocks at three scales.
For each block, GLH, GLCM and RLE features are extracted and mined with linear discriminant
analysis (LDA) to be categorized into 7 classes of lung tissue. It yields an automated detection,
characterization and quantification of the lung tissue. LDA may be not appropriate for the sepa-
ration of the lung tissue classes in the proposed feature space, though. Moreover, the validation
method used does not assess the true generalization performance as it allows to train and test the
system with blocks belonging to a same patient. A few months later, Heitmann et al. [90, 110]
proposed the usage of self–organizing maps (SOM) [122] at the pixel level to detect ground glass
opacities. The reported performance obtained with this method are again not representative of a
clinical setup because the SOM are trained and tested with identical images.

The first lung CBIR system “ASSERT” was introduced by Shyu et al. in 1999 [23, 220]. A
selection of features from GLH, GLCM and Sobel’s edge detection based on sequential forward
selection (SFS) is analyzed with a decision tree to assess the similarity between images. An
evaluation of ASSERT in clinical conditions showed a positive impact of the CAD on the diagnosis
outcomes, especially when used by little experienced radiologists [4]. A limitation of this system
is that the user has to delineate a suspicious ROIs as query for retrieval, which does not enable
automatic analysis of whole HRCT image series but is rather based on a physician–in–the–loop
scheme. Moreover, the images are stored in the JPEG3 format (and not DICOM), which does not
allow to use the whole range of HU values.

An adaptive multiple feature method (AMFM) was developed by Uppaluri et al. in 1999 [85,
95, 253, 254]. The feature set consists of a selection of GLH, GLCM, RLE and fractals using
correlation–based feature selection (CFS) and divergence [5] to find the most discriminative en-
semble of features on a training set. These features are then classified into 6 classes of lung tissue
using a naive Bayes classifier. The correlation of the features and the pulmonary function tests is
studied. This method assumes that no relevant information is contained in the spacial frequencies
directly. The agreement of the CAD output with the radiologists shows reliable performance but
the assessment of the classical performance measures is carried out on a test set that may contain
instance from patients that have been used for training yielding to a biased evaluation of the CAD.
The extension of the AMFM feature set by Xu et al. in 3D MDCT imaging in 2005 [279–281]
shows the superiority of 3D–based approaches. However, MDCT imaging is not widely used in
clinical routine because of high X–ray radiation exposure and accurate CAD systems for HRCT
are required.

Gabor filters showed higher performance compared to GLCM for classifying 5 classes of lung
tissue with a k–NN classifier using Euclidean distance in [160]. Unfortunately, the validation
method is not representative of a clinical usage as the number of each class is equal in the test set.
Moreover, the random draw of ROIs to create training and testing set allow ROIs from the same
patient in both sets of instances.

In 2000, Liu et al. proposed a CBIR–based CAD [144, 145] using Fourier analysis and SOM
networks for computing the distance measure. The evaluation is in accordance with clinical con-
ditions but is limited as based only on two classes which are healthy and pathological. Similarly
to the ASSERT CBIR system, the user has to select blocks in 2D HRCT slices as query for the
retrieval which entails the risk of omitting diagnostically useful events in the whole HRCT stack
of images.

In 2003, Sluimer et al. focused on abnormality detection in HRCT image series from patients
with ILDs [225]. The features are based on a filter bank of Gaussian derivatives; namely the
Gaussian itself, the Laplacian and oriented first and second derivatives of Gaussians (4 scales, 6

3Joint Expert Picture Group (JPEG), http://www.jpeg.org/, as of 5 November 2009
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orientations for the non–axisymmetric filters). A subset of features selected using SFS is mined
using various classification algorithms such as LDA, quadratic discriminant analysis (QDA), k–NN
and SVM to determine if circular blocks are healthy or pathological. The validation method reflects
performance of a clinical usage but is restricted to the anterior part of the lungs.

Still in 2003, Chabat et al. proposed a CAD system for the COPDs [33]. GLH, GLCM and
RLE features are used to classify circular blocks using a supervised Bayes classifier into healthy
and 3 sorts of emphysema. The realistic validation shows that the CAD yields high specificity but
rather low sensitivity for detecting and categorizing the tissues with decreased attenuation.

Mathematical morphology is used for feature extraction by Uchiyama et al. [246] and Doi et
al. [66] in a CAD system for ILDs in 2003. GLH along with the top–hat transform extract features
simultaneously from 32 × 32 and 64 × 64 blocks and classify them into 7 classes with a MLP. A
2–class configuration (healthy versus all) is also evaluated. Unfortunately the CAD performance
in the multiclass configuration are evaluated on the training set and denotes an obvious overfitting
of the data. This is not convenient to assess the generalization performance, especially with MLPs
that are subject to overfitting as they can draw unlimited decision boundaries.

In 2004, Malone et al. used genetic algorithms to select features among GLH, FFT, fractal,
autocorrelation measures from three block sizes [151]. Two experiments are run: the first uses
manually selected blocks for evaluation whereas the second is based on contiguous blocks laid in
the whole slices. The classification performance in the first experiment is much higher than in the
second showing that the validation method has to be as close as possible to the clinical situation
to really assess the performance of the CAD.

Prasad et al.. used several machine learning methods with GLH, GLCM and grey–level differ-
ences features for the quantification of emphysema. Unsupervised and semi–supervised learning is
proposed to cope with the problem of acquiring costly ground truth [187, 188]. Pearson’s correlation
coefficient is used to determine uncorrelated groups of features that are combined using multiple
classifiers consisting of naive Bayes and C4.5. Using the group of features described above, the in-
fluences of state–of–the–art feature reduction techniques such as independent component analysis
(ICA) and Principal Component Analysis (PCA) on CAD performance are investigated in [189–
191]. In the same research group, Shamsheyeva et al. and Vo et al. focused on wavelet–based
features for the characterization of ILDs. Quincunx wavelet frames are used in [217, 218] and are
combined with empirical knowledge rules in [219]. In [264], contourlets [185] are used to carry
out directional analysis of the lung tissue. The combination of the contourlet and discrete wavelet
frames showed increased classification performance with healthy, emphysema, ground glass and
fibrosis patterns. However, the directional analysis increases the computational complexity dra-
matically for little performance improvement. The cross–validation (CV) used allows for training
and testing with blocks from the same patients.

Mendonça et al. used the earth mover’s distance (EMD) [208] to assess the similarity between
two–dimensional GLH and edge distributions to quantify emphysema into five levels (including
healthy) in [157]. EMD yields unsupervised classification and does not require costly manually
segmented ground truth for training. It would be interesting to evaluate this method for local
classification of the lung tissues instead of the entire lung volume at the patient level as in this
study.

In 2007, Zrimec et al. introduced prior knowledge based on the anatomical region for the detec-
tion of honeycombing patterns in [290, 293]. This addresses the problem of integrating anatomical
knowledge for tissue characterization which is widely used by the radiologists for image interpre-
tation and shows significant improvement of the CAD performance. For instance, honeycombing
patterns have a peripheral and basal predominance. However, this method requires an accurate
identification of the peripheral, central, apical and basal regions [291]. Then, features from GLH
and GLCM are selected using CSF and classified using naive Bayes and C4.5. A comparison
between the performance obtained with a 10–fold CV allowing training and testing with blocks be-
longing to the same patient and unseen datasets shows how the performance measures are affected
by the validation method. In [292], the texture features are compared with a structure–based ap-
proach that uses a seeded region growing [274, 275]. The structure–based approach shows superior
specificity whereas the texture–based features allow for better sensitivity.
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Three–dimensional sum and difference histograms (SADH) [247], GLCM, RLE and GLH with
adaptive binning were proposed by Zavaletta et al. for the characterization of lung tissue pat-
terns associated with ILDs in MDCT imaging in [286]. K–means clustering chooses the groups of
histogram bins that best discriminate the lung tissue patterns and yields an histogram signature
for each pattern in [287]. The EMD distance is then used to assess the similarities between the
histogram of an instance and the signatures. As soon as the signatures are computed for each class,
this second method allows a fast classification of 3D volumes of interest (VOI) with high sensitiv-
ity and specificity. However, low sensitivity is obtained with fibrosis patterns which suggests that
features characterizing the spatial frequencies are required to complete the adaptive GLH features.

An innovative three dimensional multi–scale density–based approach is proposed by Fetita et
al. to characterize patterns associated with ILDs in MDCT imaging in 2007 [77]. According to
the dominant scales and the mean density of the patterns, a graph–based hierarchical classification
allows accurate predictions of 4 classes of lung tissue. A validation with a larger number of cases (10
in the study) is required to demonstrate the robustness of the method to inter–patient variations.

Lee et al. compared the performances of state–of–the–art classifiers fed with GLCM, gradient,
GLH and RLE features with patterns associated with COPDs in [136, 137]. The SVM classifier
showed superior sensitivity and specificity for the predictions of 3 classes of lung tissue among a
Bayesian, a naive Bayesian and a MLP classifier. Custom shape features (circularity, aspect ratio,
barycentric position and second central moment) are added to the texture features to describe
healthy and 3 sorts of emphysema in [135] and showed to improve the sensitivity of classification
but with a CV that allows for training and testing with blocks from an identical patient. Using
the same system with slight variations, Park et al. showed a correlation between the pulmonary
function tests (PFT) and amount of emphysema patterns in [180]. Lately (2009) Kim et al. added
top–hat features to the former system and investigated several feature reduction methods in [113],
namely SFS, sequential backward selection (SBS), sequential floating forward selection (SFFS),
sequential floating backward selection (SFBS) and PTA(l,r) (plus l–take away r) [193]. There was
no significant difference in terms of CAD performance among the feature reduction algorithms,
which is not surprising as these methods are all based on the similar iterative process of adding
or removing features one by one. Again, it is important to note that the validation is still not in
accordance with a clinical usage of the CAD as the five–fold stratified CV permits training and
testing with instances from the same patients and the ROIs are manually chosen as being most
representative of their class by the radiologists.

The influence of of 45 degrees rotated wavelet frames for lung tissue classification is studied by on
Tolouee et al. in [242]. Features from the rotated wavelet frames (RWF) and the classical discrete
wavelet frames (DWF) are extracted by measuring the energy in each subband. A classification
with SVMs shows improvements of the CAD performance when DWF and RWF are combined.
However, it is surprising that the single–handed RWF features perform significantly better than
the DWF. The LORO CV with overlapping blocks introduces a large bias to the CAD performance
because lung regions are used both for training and testing.

Boehm et al. used GLH along 3D Minkowski functionals in 3D MDCT imaging to discriminate
among healthy, emphysema and fibrosis tissue in [20]. The performance shows that the Minkowski
functionals have good discriminatory properties. However the selected lung tissue sorts are among
the easiest to distinguish and this method should be tested on a large number of lung tissue patterns
associated with ILDs. The validation method also leads to biased results by training and testing
with VOIs from the same patient.

In 2008, Sorensen et al. compared local binary patterns (LBP [178]) and a filter bank based
on Gaussian derivatives to categorize healthy and 2 sorts of emphysema in [234]. The classifica-
tion based on k–NN with histogram intersection of a selection of features (with SFS) showed no
statistically significant differences between the two groups of features. The validation method is in
accordance with clinical situations. Histogram dissimilarity representations as distance measures
are proposed in [232]. A 3D extension of the Gaussian and Laplacian Filters is presented in [233].
The validation is based on PFT and although high correlation is observed with some of the PFT
measures it is difficult to assess the performance the proposed method for local categorization of
the lung patterns.



1.3. CAD IN HRCT IMAGING OF THE CHEST 25

Trends in lung tissue analysis in thin–section CT

Clear trends in the scopes and techniques utilized in the state–of–the–art can be identified. 57
conference and journal papers from 27 research groups were categorized according to the imaging
modality, studied diseases, methods used and validation in Tables A.1–A.8. Most of the stud-
ies focused on ILDs and used GLH combined with GLCM as visual features (see Figure 1.17).
Detection–based CADs constitute the majority of the proposed systems. Few studies investigated
the influence of integrating multimodal knowledge sources on the CAD performance. A lack of
rigor is observed concerning the evaluations of the proposed systems as the validations strategies
are most often not in accordance with clinical settings.

Diseases, datasets and CAD tasks 18 research groups focused their studies on ILDs, 7 on
COPD, one on cancerous ground glass nodule detection and two groups did not communicate
the studied diseases. Most often, the studied disease is chosen according to the available dataset
which are very often in–house collections with varying quality of ground truth and small in size
which does not allow reproducible results. In the 57 papers studied, a mean of 49.25 patients
with a standard deviation of 37.27 are used for the validation of the CAD systems. This is rather
small to have statistically significant evaluations of the techniques. To overcome the difficulty
of obtaining manually acquired ground truth, some groups used unsupervised or semi–supervised
learning or evaluated the correlation of the features with the PFT measures. There currently
is a lack of publicly available datasets with high–quality ground truth to objectively compare the
performance of the techniques such as proposed in the ImageCLEF4 initiative in CBIR. Some efforts
are currently going in this direction such as the lung tissue research consortium (LTRC5) at the
national institutes of health (NIH). The two groups that did not specify the studied diseases were
implementing CBIR systems and proposed CAD that have a too wide purpose to be really useful
in clinical practice but rather proposed CBIR as a tool for creating personal image collections.
Nevertheless, the ASSERT CBIR system showed to have a positive impact on the diagnosis in
clinical routine, which suggests that CBIR–based CAD systems must be developed while focusing
on the studied diseases. In total, 4 groups proposed a CBIR–based CAD system as diagnostic aid
for the interpretation of thin–section CT whereas 24 groups proposed lung tissue categorization and
detection. In Sections 4.3 and 5.1.2, we will discover that lung tissue categorization and CBIR can
be complementary both on the user’s side and on the algorithmic side. 21 groups used the HRCT
imaging protocol and 6 groups used MDCT. MDCT enables three–dimensional isotropic texture
analysis but is not widely used in clinical routine because of high X–ray radiation exposure when
compared to HRCT. Thereby HRCT–based CAD systems may have a more important impact on
the pulmonary health care community.

Texture analysis A wide range of techniques were proposed for feature extraction, reduction
and classification. The distribution of the various feature extraction techniques is detailed in
Figure 1.17. The heterogeneous feature group composed by GLH, GLCM and RLE was used in
most of the studies starting from 1997 in [47] to nowadays in [113, 137]. Although being able to well
describe the lung tissue patterns, the performance of the features derived from GLCM and RLE
strongly depends of the underlying parameters (i.e. scales, directions). Often, heterogeneous sets
of features that are modeling common information are used. Filtering techniques and wavelets offer
an overcomplete feature set able to fit most of the texture functions in condition to efficiently derive
features from the coefficients. Wavelet–based texture features are covering the whole spectrum,
which truly allows to detect the important spectrum signatures of the patterns, being perfectly
complementary to the measures of density using GLH.

Various classification algorithms are used. In general, the comparisons between state–of–the–art
classifiers showed that the SVM classifier performs significantly better in most of the cases [53, 137].
Classifiers with linear decision boundaries (e.g. LDA) may not be optimal as clusters of instances
from distinct classes are most often not linearly separable.

4http://imageclef.org/, as of 5 November 2009
5http://www.nhlbi.nih.gov/resources/ltrc.htm, as of 5 November 2009



26 CHAPTER 1. INTRODUCTION

 0

 10

 20

 30

 40

 50

 60

 70

 80

GLH mathematical GLCM RLE filter banks other

%
 o

f p
ap

er
s

morphology
and shape

and wavelets

Figure 1.17: Popularity in % of the various feature extraction techniques used by 27 research
groups for texture analysis of the lung tissues (57 papers).

Multimodal approaches Although no radiologist would interpret medical images without know-
ing the clinical context of the images, very few studies integrated external knowledge to enhance the
performance of the CAD systems. Zrimec et al. showed that the knowledge of disease appearance
is essential to accurately detect fibrosis patterns. We will discover in Section 4.2 that combin-
ing visual and clinical features allows to gain up to 10% (absolute gain) of global accuracy with
a 5–class lung tissue categorization. The current state of the literature calls upon contributions
towards a next generation of CAD systems based on multiple modalities.

Validations and limitations Validation methods to assess the CAD performance are crucial
for identifying the techniques that will perform well in clinical routine. However the validation
techniques used are most often not in accordance with clinical situations. First, 53% of the studies
use validations methods that allow for training and testing with instances that belong to the same
patient, which leads to overfitting of the learning algorithms. Indeed, the tissue patterns look
very similar because of belonging to the same patient and this introduces a positive bias to the
performance of CAD system as the probability of belonging to the same class is high for instances
coming from the same patient (see Section 5.2.1). Second, the CAD performance are sometimes
evaluated on datasets with balanced distributions of the classes, which is not representative of
a clinical usage as the prevalences of each lung tissue pattern are not equal. Several CAD are
evaluated on manually chosen ROIs. This creates also a positive bias as the selected ROIs are
most often chosen as being the most representative of their class and does not take into account
the problems encountered at the border of the lungs or near the mediastinium. At last, some studies
included only a small number of lung tissue sorts which does not make sense for an automated
categorization of entire image series as the radiologist will still have to search for the other disorders
of the lung parenchyma. It is fine for the quantification of a certain pattern (e.g. emphysema,
fibrosis), though.

These observations call upon future contributions with realistic validation methods as well as
shared datasets to allow for a clear identification of the techniques that would perform well in a
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clinical environment.

1.4 Organization and scientific contributions of this thesis

This section provides a global view of the organization of the chapters of this thesis in Sec-
tion 1.4.1 and summarizes the research parts that constitutes scientific contributions in the respec-
tive domains and the associated publications in Section 1.4.2.

1.4.1 Thesis overview

This thesis deals with various aspects of image–based CAD systems, which are studied with a
focus on texture analysis of lung tissue patterns in HRCT images of patients affected with ILDs.

This first chapter introduces the main motivations calling upon scientific contributions on
image–based CAD systems. The first part explains the challenges and trends of medical imaging
and provides an overview of computer–based tools based on computer vision techniques that have
the potential to help the clinicians to cope with growing amounts of visual medical information.
Analogies between the human visual and cognitive systems and computer vision are proposed
and highlight the advantages of affine–invariant descriptions of the visual information for robust
computerized interpretations. The foundations of texture analysis and supervised machine learning
methods are described. In the second part, the problematic of diagnosing ILDs and interpreting
the associated HRCT images is detailed. The state–of–the–art of texture–based CADs for lung
tissue analysis in thin–section CT is studied to identify the trends and weaknesses of the proposed
solutions. An overview of the thesis and the principal scientific contributions are listed at the end
of the chapter.

Chapter 2 describes the steps of the construction of a multimedia database of ILD cases at
the HUG used for the evaluation of the pattern recognition algorithms. The scope of the library
of cases and the methodology elaborated for the selection, annotation and capture of the cases is
detailed. The current contents of the database is described.

In Chapter 3, a multimodal feature set based on visual and clinical attributes is built in order to
characterize lung tissue patterns associated with ILDs in HRCT. Research outcomes concerning the
development of affine–invariant texture features based on a tailored WT are presented. The ability
of the visual features to discriminate among five lung tissue patterns is evaluated on the dataset
described in Chapter 2. Measures for ranking clinical attributes are proposed and compared in
the second part of the chapter. The consistency of the multimodal feature space combining visual
features with a selection of clinical parameters is studied in the last part of the chapter.

Chapter 4 deals with machine learning and information retrieval aspects of CAD systems and
is divided into three main parts. First, five state–of–the–art classifier families are compared with
a methodology based on McNemar’s statistical test. Then, the influence of the integration of the
clinical context of HRCT images on the classification of the lung tissue patterns is studied. The
optimal scheme for fusing the visual and the clinical features is studied. In the last part of the
chapter, methods enabling case–based retrieval using a similarity measure based on the volumes
of segmented lung tissue as well as clinical parameters are developed.

Chapter 5 is divided in two parts. The first one details practical aspects of a hybrid detection–
CBIR–based CAD system for ILDs starting from use cases to user interfaces. The second part
contains the evaluation formalism used to assess the performance of the pattern recognition al-
gorithms proposed in this thesis. Discussions concerning the potential pitfalls of commonly used
CAD evaluation methods and the challenging demands of clinical environments are given at the
end of the chapter.

The conclusions of the conducted research and the associated limitations are given in Chapter 6.
Short, medium and long term perspectives of the work presented in this thesis are proposed in the
second part of this chapter.

Additional parts were created to ease the reading of the manuscript:

• the table of contents can be found at Page iii,
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• the abstract of the contents of this thesis is given at Page vii and a corresponding version in
French starts at Page v,

• acknowledgements to all persons without whom this thesis could not have been achieved can
be found at Page ix,

• the various mathematical notations are summarized starting at Page 119,

• a glossary of the abbreviations used in this thesis are listed at Page 123,

• the list of figures is given at Page 126,

• the list of tables is can be found at Page 128,

• the index lists selected keywords and their respective locations in the text starting at Page 150.

1.4.2 Scientific contributions

The main scientific contributions of this thesis are in the fields of image processing, machine
learning and information retrieval.

The contribution in image processing concerns the development and evaluation of affine–
invariant texture feature based on tailored WTs. The latter were built by combining several
properties of WTs such as:

• shift–invariance obtained with a discrete wavelet frame transform [58],

• near–rotation–invariance and tunable scale–progression enabled by isotropic polyharmonic
B–spline wavelets [59],

• near–scale–invariance achieved by using a fine scale–progression with the quincunx lattice.

The parameters of mixtures of Gaussians characterizing the distribution of the wavelet coefficients
in each subband are combined with grey–level histogram bins in HU to create an affine–invariant
description of lung tissue patterns associated with ILDs in HRCT.

A first contribution in machine learning (ML) address the problem of classification model
selection with the elaboration of a methodology for comparing classifiers based on McNemar’s
statistical test [52, 53].

A second contribution in ML concerns contextual medical image analysis, which is enabled
by the development of several methods for the fusion of visual and clinical information [51, 57].
The consistency of multimodal feature spaces is studied using correlation analysis and two fusion
schemes are compared for the combination of the visual and the clinical features.

A contribution in information retrieval is constituted by the development of case–based retrieval
where a multimodal inter–case similarity measure is built [60].

Some smaller contributions in the domains of human–computer interactions, evaluation of
image–based CAD systems and multimedia medical reference libraries are achieved in this the-
sis.

A multimedia reference library of ILD cases was built for teaching and for the evaluation of the
pattern recognition algorithms [55, 56, 263]. The methods for the selection, annotation and capture
of ILD cases as well as quality assessment are the fruits of several refinement and are applicable
for other disease groups.

A hybrid detection– and CBIR–based CAD system for ILDs implementing the pattern recogni-
tion techniques described above is enabled by the definition of use cases (i.e. database browsing, 3D
lung tissue categorization and case–based retrieval) and the development of associated graphical
user interfaces [49, 54].

At last, the pitfalls and common mistakes of the evaluation of image–based CAD systems are
identified and a subsequent evaluation methodology was proposed to reproduce actual clinical
conditions of the target usage of the CAD system.



Chapter 2

Multimedia database of interstitial
lung diseases

In order to understand the underlying mechanisms of a certain group of diseases, a first require-
ment is to collect a sufficient number of cases that are representative of the various realizations
of the studied diseases. Moreover, the quality of the acquired data is a key issue to carry out
non–biased evaluations of CAD systems. With an aim to enhance the disease therapy in clinical
routine, the library of cases must be as representative as possible of the hospital’s population,
meaning that the cases have to be chosen randomly among the whole population.

These requirement are of high importance when building image–based computerized diagnostic
aid based on medical image processing [93, 98]. A high–quality multimedia collection of cases
containing annotated image series and associated clinical parameters is required to ensure the
success of a CAD system at the time it will be integrated in clinical routine [146].

On the one hand, the database constitutes a basis for developing computerized tools such as
automatic detection of abnormal pulmonary tissues in HRCT images and retrieval of similar cases.
The ground truth and a large number of cases allow to reliably evaluate and compare medical
image processing algorithms with defined tasks (i.e. benchmarks). Popular datasets such as Lena,
Brodatz [22] or Iris1 allow to qualitatively and quantitatively evaluate a huge number of basic
methods in image processing and machine learning and thereby established a de facto reference
dataset (see Figure 2.1). The popularity of these datasets is partly due to the fact that they reflect
real–life challenges thus offering more credibility of the obtained results when compared to artificial
datasets. On the other hand, the database also creates opportunities for specialized studies and
teaching. The cases with confirmed diagnoses constitute a knowledge database that can be used
as diagnostic aid. Advanced browsing is enabled by CBIR or multimodal case–based retrieval. In
summary, a high–quality multimedia library of cases is valuable for:

• teaching purposes,

• specialized descriptive studies,

• training and testing pattern recognition techniques,

• retrieving similar cases as diagnostic aid,

• comparative performance analysis of medical image processing methods (i.e. benchmarks [173]).

However, the construction of a high–quality multimedia collection of cases is extremely time–
consuming and expensive and is often a bottleneck in studies on image–based CAD systems. The
identification of the relevant cases, the consultation of the EHR and PACS to gather the clini-
cal parameters and the image series, the data entry as well as the database infrastructure and
maintenance involves a large number of person months with a wide range of skills from medical

1http://archive.ics.uci.edu/ml/datasets/Iris/, as of 5 November 2009
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(a) Lena

(b) Iris

Figure 2.1: Datasets that became references for comparing image processing algorithms (Lena)
and machine learning algorithms (Iris).
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knowledge to information technology (IT) expertise. To assess high–quality of the data, several
researchers have to be involved in the case selection process and the delineation of ROIs to cope
with the inter– and intra– observer variability, the latter being particularly important in radiol-
ogy [8, 9]. The consent of the ethics board has to be obtained before starting any investigations.
The latter constitutes the required justification to access the content of the EHR. Depending on
the studied diseases, cases are very rare and are encountered casually even in large university hos-
pitals. Incidentally, these disease are the ones requiring reference databases to palliate the lack of
experience due to their sparsity. Efforts from the European Union (EU) research programme came
up with IT infrastructures to cope with the difficulty of collecting rare cases with aneurysms in
the AneurIST project2 [197]. Multimedia data from six clinical center within Europe is gathered.
Anonymization of the patient data as well as images [204] is required as soon as the data leaves
the medical institution [72].

A major observation when studying the state–of–the–art of texture–based CADs for lung tissue
analysis in thin–section CT is the lack of statistical significance of the measured performance as
the CAD systems are evaluated on a small number of cases (see Section 1.3.2). In this Chapter,
the steps for building a multimedia database of cases with ILDs and the current content of the
created database is detailed. This database was built in the context of the Talisman3 project [50].

2.1 Existing databases of CT imaging of the lung

Efforts for building a resource for the lung imaging research community are detailed in [7, 156].
In order to test and develop lung CADs from reliable datasets for the detection of lung nodules on
CT scans, the lung imaging database consortium (LIDC) is constituted of five academic institutions
from across the United States. The database includes healthy and pathologic CT images with
annotated nodules and primary clinical data of the patient. Expert radiologists from the five
institutions agreed on the definition of nodules and the criteria for inclusion in the database.
The nodules are categorized into three classes based on their diameters: “nodule ≥ 3 mm”,
“nodule < 3 mm” and “non–nodule ≥ 3 mm”. The annotations of up to five radiologists are
available. After a blinded session of annotations, the radiologists had access to the annotations of
their colleagues and had the possibility to retrospectively modify their own. The number of nodules
on which all four radiologists agreed was 33.8% for the blinded session and 45.8% after review [8].
The database is publicly available and can be downloaded online from the national biomedical
image archive4 (NBIA). Unfortunately, the LIDC database does not contain ILD cases as it only
focused on nodules in CT imaging. A small database of annotated nodules in CT imaging of the
lung is also publicly available with a purpose of comparing CAD performance described in [200]
and can be downloaded online5.

Similar efforts are found at the National Heart, Lung, and Blood Institute (NHLBI) but focusing
on lung tissue with the creation of the lung tissue research consortium (LTRC6) [96]. The goal
of LTRC is to improve the management of diffuse lung diseases through a better understanding
of the biology of COPDs and fibrotic ILDs including idiopathic pulmonary fibrosis (IPF). Control
cases are also enrolled. It aims at creating an open database containing histological, clinical and
radiological data. The LTRC began recruitment in February 2005 and are ahead of their goal
of collecting 1600 subjects with a total of 1844 enrolled as of September 30, 2008. The lung
tissue patterns are described in a structured report. However, based on [96] no regions of interests
were delineated in the image series to serve as ground truth for the evaluation of computerized
categorization of the lung tissue or as teaching examples. Free access to the HRCT image series and
associated metadata is possible after obtaining the approval of the LTRC data coordinating center
based on the submission of a concept sheet describing the aim of the study using a standardized

2http://www.aneurIST.org/, as of 5 November 2009
3TALISMAN: Texture Analysis of Lung ImageS for Medical diagnostic AssistaNce,

http://www.sim.hcuge.ch/medgift/01 Talisman EN.htm, as of 5 November 2009
4http://imaging.cancer.gov/programsandresources/InformationSystems/LIDC/, as of 5 November 2009
5http://www.via.cornell.edu/databases/lungdb.html, as of 5 November 2009
6http://www.ltrcpublic.com/index.htm, as of 8 November 2009
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format. Based on the LTRC data, computerized quantification of the disease patterns was proposed
as measures of the extent of pulmonary disease in [109].

A web–based teleradiology framework for acquiring cases of diffuse lung diseases with anno-
tated regions is proposed in [209]. The Learning Medical Image Knowledge (LMIK) collaborative
platform provides tools to the clinicians to delineate ROIs in HRCT imaging of the chest. The
cases are then anonymized and stored in a central database that can be queried by authorized
researchers for CAD evaluation purposes and by radiologists for teaching purposes. Unfortunately,
no public access to the case repository is mentioned and no recent report on the LMIK activities
has been found since 2003.

To our knowledge, beside these efforts, no large dataset with annotated image regions is available
to be used as ground truth for the evaluation and comparison of computerized categorization of
lung tissue in HRCT.

2.2 Scope of the database

Before any collection of cases, the scope of the database was defined in order to obtain a
consistent set of cases with the aim of building computerized diagnosis aid for ILDs. In this section,
the selection of the histological diagnoses to be included in the database and the associated clinical
parameters are detailed.

2.2.1 Selection of the histological diagnoses

In collaboration with the Service of Emergency Radiology and the Service of Pneumology of
the HUG, 15 histological diagnoses that are known as the most frequent causes of lung parenchy-
mal disorders were selected [94]. The objective was to retrospectively analyze at least 150 cases
representative of the 15 most frequent ILDs from the EHR at the HUG during the four years of
the Talisman project. For two diagnoses, no pure case was found during the project resulting in
the 13 diagnoses listed in Figure 1.13. Although healthy cases that underwent an HRCT exam are
rare, the latter were included as often as possible to serve as control cases.

2.2.2 Selection of the clinical parameters

Based on each pathology, the most discriminative clinical parameters for the establishment of
the differential diagnostic were kept. This selection process was carried out based on domain-
specific literature [114, 268] along with knowledge bases of computer-based diagnostic decision
support systems [81]. Discussions and remarks from lung specialists, radiologists and the medical
informatics research group (Service of Medical Informatics, HUG) allowed an iterative review of
the selected parameters as well as standardized units and data formats to be used. The parameters
that were not available from the EHR were removed. After several modifications of the list based
on the availability of the parameters in the EHR, 159 fields were used to characterize the subgroup
of ILDs. The HTML (hypertext markup language) form used to capture the clinical parameters is
depicted in Figures B.1–B.4. Terminology used in the HTML form is in accordance with MeSH7

and SNOMED–CT8 medical terminology references. As often as possible, pull-down menus were
used for textual data to favor homogeneity of the data required for further computerized analysis.
Units for laboratory tests and other numerical data were chosen depending on the formats used in
the electronic patient record.

2.3 Data collection

The process of the selection of the cases, annotation of the images and data entry is the result
of regular discussions involving the radiologists, the research physician and the computer scientists

7MeSH: Medical Subject Headings, http://www.nlm.nih.gov/mesh/, as of 7 November 2009
8SNOMED–CT: Systematized Nomenclature of Medicine — Clinical Terms,

http://www.nlm.nih.gov/research/umls/Snomed/snomed main.html, as of 7 November 2009
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during the four years of the project. The several steps of the construction of the multimedia dataset
starting from the selection of the cases to the data entry are detailed in this section.

2.3.1 Selection of the cases at the University Hospitals of Geneva

A raw list of 1266 patients that underwent a thorax CT within a stay in the pneumology
service between 2003 and 2008 was extracted from the data repository of the EHR by the helpdesk
at the medical informatics service. Only cases with HRCT (without contrast agent, 1 mm slice
thickness) were retrospectively analyzed. Cases from paediatrics were left aside. The diagnosis of
each of the remaining cases were retraced in the EHR based on clinical history, reports and clinical
examinations.

At first, the discharge summary and the pneumological consultation report9 were revised to
decide whether the cases can potentially contain an ILD. When the reports of the CT scans were
consistent with the clinical reports, the clinical history, and the laboratory studies (pathology,
pulmonary function testing, hematologic tests) the cases were nominated as candidates. Cases of
which the histological diagnosis is confirmed to be one of the 13 listed in Figure 1.13 by at least
one of the pathological exams (biopsy, bronchoalveolar lavage (BAL)) were selected for inclusion.
When the radiographic impression was consistent with the verified diagnosis, the case was retained
for the annotation sessions with the radiologists. These cases are subsequently studied from the
radiological point of view during regular meetings with two attending radiologists. A very selec-
tive process retaining only cases with high confidence was required in order to gain time at the
annotation sessions and concentrate on the radiological aspects only.

The time necessary to decide whether the case must be kept and annotated varied from 15
minutes to two hours, with an approximate average time of one hour per case. The selection process
at the early months of the project was longer as the methodology was still not well established.
It was usually quicker to reject a case than to decide to keep it as ruling out an ILD diagnosis or
discovering a large number of comorbidities can be quick.

Up to now, more than 700 cases were revised and 128 were stored in the databases (approxi-
mately 18% of the cases had an ILD). Occasionally, patients that had a confirmed diagnosis of ILD
but from which the HRCT examination was not corresponding to the disease episode were kept.
108 cases have an annotated HRCT image series and 20 have no images associated.

2.3.2 Annotations

The purpose of HRCT annotation is to establish the ground truth for lung tissue classification
as well as to show examples of HRCT findings related to a studied disease for teaching purposes.
The need for high-quality annotations was highlighted in [168]. Indeed, since the annotations are
intended for computerized pattern recognition, the ROIs have to delineate pathologic patterns very
precisely to avoid the introduction of noise in the training data (see Figure 2.2).

The possibility to visualize and delineate three–dimensional ROIs in the entire HRCT volume
and to set the window level used for displaying the 16-bit DICOM image series on a computer
screen was required for annotation. These specifications were fulfilled by adapting an existing
graphical software originally developed for delineating hepatic tumors in CT scans at the HUG
(see Figure 2.3). The radiologist opens an entire DICOM series and then draws precise ROIs in
any layer of the CT volume in the axial view. 3D ROIs can be drawn by linearly interpolating
the regions between 2D ROIs delineated in non–contiguous axial slices. Sagittal and coronal
views are only available for visualization purposes. Depending on the spacing between slices used,
anisotropy in the vertical direction prevents from delineating ROIs in sagittal and coronal views.
No exhaustive annotation of every patterns contained in an entire HRCT scan is performed, only
patterns that are related to the disease of the patient are delineated. A very simple text file format
was developed to save or load ROIs. The coordinates of the points belonging to the contour of
polygons demarcating the ROIs in 2D slices are stored. An example is depicted in Figure 2.4. The

9based on their availability
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Figure 2.2: A typical example of a non–accurately delineated ROIs. The ROI contains as much
healthy tissue as pathological, introducing noise in the training data (source [168]).

Table 2.1: Terminology used to describe the locations of HRCT findings.

name description

apical upper region

basal lower region

diffuse uniformly distributed

perihilar middle region, around the mediastinium

peripheral/subpleural
lung periphery/under the pleural
membrane surrounding the lobes

non–relevant
used when the pattern has

no prevailing location

ROI files were also translated to the binary file format *.seg used in YaDiV10 to facilitate the
handling of 3D ROIs. These files are based on “BitCubes”, where a 1 represents a voxel that does
belong to this segment and 0 otherwise. The bits are stored in an integer array where width of the
slice xSize modulo 32 forms a row and the total number of integers is Nrows× ySize× zSize. It is
a trade–off between memory efficiency and operation optimization. Patterns used to describe lung
parenchymal disorders are not standardized among radiology communities. A detailed description
of common patterns is given in [236]. The terminology used in this work was mainly derived
from [114, 268] and a list of the annotated patterns can be found in Table 2.3. A first set of lung
tissue sorts associated with the 15 initially selected diagnoses was defined with the radiologists
and was adapted to the annotation need through the annotation sessions. Localization of the
parenchymal disorders is relevant for several diseases. Thereby, the localizations of the ROIs are
stored along with pattern labels in the ROI files. Table 2.1 lists the localizations used. Series with
several co-morbidities, or with blur caused by breathing or movements of the patient or containing
artifacts were not selected for annotations. Some images taken with contrast agent were annotated
but were left aside for further analysis. When possible, healthy tissue was delineated in the studied
series to provide a wide range of the aspects of normal lung parenchyma.

The average time for annotating one case was approximately of 45 minutes. 30 minutes were
necessary to the two radiologists to interpret the HRCT image series and to draw coarse annotations
highlighting the important events in the series. Another 10–15 minutes were required to refine and
obtain accurate delineations of the lung tissue patterns as well as to capture them in the database
using Java routines.

10YaDiV: Yet Another DIcom Viewer, http://www.welfenlab.de/en/research/fields of research/yadiv/, as
of 5 November 2009
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Figure 2.3: A screen shot of the graphical tool for the annotation of image regions.

Figure 2.4: An example of the text–based file format to store the ROIs in the database.
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2.3.3 Data entry

The content of the EHR is systematically analyzed to fill the content of the HTML form depicted
in Figures B.1–B.4 consistently. When multiple instances of clinical parameters (e.g. laboratory
data) were available in the EHR within an interval of two weeks around the date of the HRCT
image series, the instance as close as possible to HRCT examinations was retained. For each HRCT
image series stored in the database, the whole set of clinical parameters was filled and cases that
have several relevant image series have several instances in the database as soon as the HRCT
examinations were not corresponding to the same episode of disease or if they were separated by
more than two weeks.

The discharge summary and any free–text documents that contained evidence of the diagnosis
were anonymized and stored in the database. The EHR at the HUG contains computer tools for the
anonymization of the documents. No confidential data is stored in the database, except the patient
and stay numbers, which both require authorized access to the EHR to retrieve the identity of the
corresponding patient. All data is contained inside the hospital on a desktop computer dedicated
to research.

Three medical doctors (MD) were successively responsible for the selection of the cases and the
data entry. The final protocol described in Section 2.3.1 was developed and refined over time by
the three MDs. The time necessary to capture a case was on average of 75 minutes, varying from 40
minutes to more than two hours mostly depending on the diseases. Patients with Sarcoidosis were
quickly completed whereas IPF, HP and AIP were requiring more efforts to retrace the history
of the patients and to gather all associated parameters. An adaptation period was necessary to
the MDs to get used to the EHR at the HUG, as well as to gain experience with the various ILD
diagnoses.

2.4 Contents

In this section, the content of the database resulting from 38 months of data entry is quanti-
tatively described and analyzed. The first case was captured on the 21st of July 2006 and the last
on the 6th of November 2009.

2.4.1 Numbers and statistics

128 cases are currently captured in the database. Among them, 108 have an annotated HRCT
image series. 68.8% (88 cases) underwent a biopsy, 64.8% (83 cases) present a BAL. Of the 128
cases, 21.1% (27 cases) have neither a biopsy nor a BAL but had a specific test confirming the
diagnosis (e.g. tuberculin skin test for TB, Kveim test for Sarcoidosis, ...). The distribution of the
diagnoses is detailed in Table 2.2 and Figure 2.5. 1946 ROIs were delineated in 108 HRCT image
series resulting in a total of 41.65 liters of annotated tissues. The distributions of the number
of ROIs and the corresponding volumes of the lung tissue sorts are detailed in Table 2.3 and
Figures 2.6 and 2.7.

2.4.2 Control of Quality

A retrospective control of the diagnosis of each case was carried out to ensure the consistency of
the database. Since the global methodology for the selection, the annotation and the capture of the
patients was refined during the 38 months of the collection of the cases, inconsistencies occurred,
especially with the cases that were captured at the beginning of the project. The diagnosis of
each case was retraced in the EHR with a methodology similar to the selection process. Cases
with several comorbidities were removed as the visual aspect can be altered strongly (e.g. cardiac
insufficiency). 21 cases were removed as their diagnosis was not reliably demonstrable or was
mixed with comorbidities. The value of several clinical parameters were corrected for 13 patients.
When required, a whole set of clinical parameters was re–entered. Special care was taken for
clinical parameters that are subject to change rapidly over time to use the parameters that are
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Table 2.2: Distribution, mean age and gender statistics of the diagnoses.

histological diagnosis patients
image
series

age
(mean ± std)

female
(%)

Healthy 2 2 63.5 ± 9.5 100

Pulmonary fibrosis (PF) 40 39 71.4 ± 13.4 50

Hypersensitivity pneumonitis (HP) 24 19 65.3 ± 17.1 80.3

Tuberculosis (TB) 15 12 41.1 ± 17.6 40

Pneumocystis pneumonia (PCP) 8 4 59.6 ± 20.4 12.5

Cryptogenic organizing pneumonia (COP/BOOP) 8 3 45 ± 24.6 50

Eosinophilic pneumonia (EP) 1 1 33 100

Sarcoidosis 20 18 48.5 ± 17.3 30

Acute interstitial pneumonia (AIP) 4 4 65.3 ± 5.5 50

Desquamative interstitial pneumonia (DIP) 1 1 46 100

Respiratory bronchiolitis associated ILD (RB–ILD) 1 1 54 100

Non–specific interstitial pneumonia (NSIP) 2 2 61.5 ± 12.5 50

Langerhans cell histiocytosis (LCH) 1 1 24 0

Lymphocytic interstitial pneumonia (LIP) 1 1 32 0

total 128 108 59 ± 20.2 36.7

Figure 2.5: Distribution of the histological diagnoses. The database contains 128 cases of which
84.37% (108) have an annotated image series.
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Table 2.3: Distribution of the lung tissue patterns. Note that the total number of image series is
not equal to the sum of the number of series per pattern as each image series may contain several
lung tissue sorts.

label
volume
(liters)

image series ROIs
mean volume per ROI

(10−2 liters)

healthy 5.12 7 100 5.12

fibrosis 8.45 38 473 1.79

ground glass 4.91 37 427 1.15

micronodules 16.06 16 297 5.41

consolidation 0.69 14 196 0.35

reticulation 1.88 10 131 1.43

emphysema 1.15 5 66 1.75

bronchiectasis 0.08 8 44 0.18

macronodules 0.18 7 37 0.49

bronchial wall thickening 0.01 1 15 0.08

cysts 0.15 3 11 1.40

others 2.95 14 149 –

total 41.65 108 1946 –

Figure 2.6: Distribution of the various lung tissue patterns in terms of hand–drawn ROIs. The
total number of ROIs is 1946.
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Figure 2.7: Distribution of the various lung tissue patterns in terms of volumes of annotated tissue.
The total volume is 41.65 liters.

corresponding to the most acute manifestation of the disease and also as closest as possible to the
HRCT examination.

2.5 Discussions

In this chapter, a multimedia database built at the HUG is described. The structured multime-
dia information allows using the stored data to carry out research on an image–based diagnosis aid
tool for ILDs. So far, no similar datasets are publicly available for comparing pattern recognition
techniques on ILDs, which did not allowed to identify the best algorithms proposed in the litera-
ture to be further integrated into a CAD system used in a clinical environment. The database is
also designed for online consultation for teaching using a web–based interfaces that is detailed in
Section 5.1.1.

The distribution of the encountered diagnoses described in Table 2.2 and Figure 2.5 is in
accordance with the expected frequency in Europe [241]. A male predominance is observed as
only 36.7% of the cases are female, which was also observed in [40, 114, 241]. The mean age of the
patients with the respective diseases is shown in Table 2.2, and is in accordance with the expected
values in the literature [114]. For instance, the distribution of the ages of patients with LCH,
Sarcoidosis and PF shown in Figure 2.8 are similar to the mean age of the corresponding diagnoses
in Table 2.2. For instance, PF is found at patients over the age 50 [265] and the mean age of
cases of PF is 71.4 years in Table 2.2. The distribution of the diagnoses is very unbalanced where
the most represented disease PF contains 40 patients and five diseases have only one case. The
number of healthy control cases is also very low and are constituted by former ILD cases that have
a histological proof of having recovered. These cases cannot truly be considered as control cases
as the former ILD episode is related to abnormal values of some of the clinical parameters.

The total time for completing the whole process of selecting, annotating the image series and
capturing a case was on average of three hours. The 7 most represented types of lung tissue11 in
terms of number of ROIs allow describing a wide range of visual findings in HRCT image series
associated with ILDs [268]. The distributions of annotated volumes of the various classes of lung

11i.e. healthy, emphysema, ground glass, fibrosis, micronodules, consolidation and reticulation.
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Figure 2.8: Age at onset presentation in LCH, sarcoidosis and PF (source [114]).

tissue in Figure 2.7 are not directly related to the distributions of the ROIs. This can be explained
by observing the ratios of mean volume per ROI in Table 2.3. Based on the type of lung tissue,
the size of the ROIs varies significantly. For instance, micronodules patterns found in cases of
Miliary tuberculosis are diffusely distributed in the whole lung, which allowed to delineate very
large regions. This is not the case for classes such as macronodules or consolidation for which
the alterations of the lung parenchyma are narrowly localized. The annotation of the latter is
comparatively more time–consuming to acquire identical volumes of annotated tissue.

The annotations of the lung image regions are successively carried out by two radiologists
with 15 to 20 years of experience. However, no assessment of the quality of the annotations by
measuring inter–agreement measurement is carried out, which showed to be an important source
of errors in the interpretation process of HRCT image series showing diffuse parenchymal lung
diseases in [9]. Nevertheless, the two radiologists have to agree on the delineated region and,
thanks to the retrospective analysis, the annotations of the cases were based on the description of
the image regions in the radiological report written by several radiologists from 2003 to 2008 at
the HUG and enabled cross–control of the interpretation of the image series.

Limitations occur in the representation of the variability of the class healthy as normal tis-
sue was annotated in patients that have had an ILD in their medical history. Thereby, beyond
continuing the collection of cases, future work is needed to add healthy cases in order to have a
rich representation of healthy lung tissue and associated clinical parameters. This is challenging
because healthy subjects that undergo an HRCT examination are very rare due to high cost and
radiation dose delivery.



Chapter 3

Features

Features in the context of pattern recognition and computer vision are defined as “individual
measurable heuristic properties of the phenomena being observed” in Wikipedia 1. The very wide
concept of feature ranges from continuous measures of an observed signal (low–level) to concepts
with high semantics such as evoked feelings (high–level). The purpose of features is to provide a
compact representation of an observed phenomenon or scene that is further processed by cognitive
processes such as a classification algorithm in machine learning (see Section 1.2). Features can
be associated with the concept of a variable in statistics which can be continuous, categorical or
binary.

To efficiently describe the content of medical images, we followed the concepts used by radiolo-
gists to interpret images. The latter can be classified into two groups: visual features and clinical
parameters. The visual features comprise all the information contained in the image and can be
color descriptors, edge detectors, power spectrums, object detectors, etc... The clinical parameters
denote the context of the image and regroup the clinical parameters related to a certain disease
(e.g. age, gender, laboratory results, etc...). It is certain that the design of an image–based system
must rely on visual features to integrate the content of the images. Nevertheless, the clinical con-
text of medical images is also essential for a correct interpretation and a radiologist would never
interpret an image without knowing at least the age and the gender of the patient (see Section 4.2).
Yet, few image–based CAD systems integrate the clinical context of the images and computerized
classification of lung tissue patterns associated with ILDs in HRCT imaging is no exception to this
as shown in Section 1.3.2, which calls upon a next generation of CAD systems integrating multiple
sources of information. In this chapter, we introduce the visual and clinical features used in the
proposed CAD system for ILDs.

This chapter is organized as follows. In Section 3.1, the theoretical basis of the visual features
is introduced in Sections 3.1.1 and 3.1.2. Evaluations of the visual features are proposed in Sec-
tion 3.1.3 and are discussed in Section 3.1.4. In Section 3.2, methods are proposed to create a
consistent multimodal feature space from clinical features stored in the EHR combined with the
visual features described in Section 3.1.

3.1 Visual features

In Sections 1.1 and 1.2, we have seen that the performance of image–based CAD strongly
depends on the visual features used. The latter constitute the feature space modeling visual
information contained in medical images. We found in Section 1.2 that affine–invariant features
were desirable to recognize objects that exists in three–dimensions and are projected to two–
dimensional slices because they correspond to our visual perception of textures. In this section,
we aim at developing an affine–invariant set of features able to discriminate among several texture
patterns found in HRCT of the lung from patients affected with ILDs.

1http://en.wikipedia.org/wiki/Features (pattern recognition), as of 5 November 2009

41



42 CHAPTER 3. FEATURES

Most of the texture features used in the state–of–the–art are modeling the same information:
the spatial periodicity and scales contained in the images (GLCM, Gabor filters, wavelets, LBP,
etc...). The question is then: which one characterizes best the lung tissue patterns and is the most
adaptable to the various needs of lung tissue analysis in HRCT imaging?

Although not being the most popular in the state–of–the–art of CAD in HRCT imaging of
the chest, filtering techniques have several advantages because they provide continuous responses
to the image in contrast to GLCM, which have binary responses to a given sequence of pixels
and thus are less adaptive to the heterogeneous data that medical images are. Secondly, filtering
allows to seek for special events in the images (such as edge or ridge detection) by modeling the
shape of the filters either in the spatial or in the frequency domain. Wavelet transforms (WT)
yield filter banks that have the desirable property of being multiscale and thus allow to cover the
frequency domain (scale–invariance). It will be shown in the next sections that affine invariance
can be approximate using particular designs of WTs. Therefore, our choice is to investigate the
ability of wavelet–based texture features to discriminate among the several classes of healthy and
pathological lung tissue. The grey–level histograms are modeling a complementary information
corresponding to the density of the structures in CT imaging and are thus utilized along with
wavelet transforms to characterize the lung tissue.

3.1.1 Gray–level histograms

In Section 1.2.1, we have seen that grayscale values can contain relevant information for the
characterization of objects and textures and is complementary to texture features. In HRCT imag-
ing, scanners deliver 12–bit DICOM images with voxel values in HU in the interval [-1024;3071].
These values correspond univoquely to densities of the anatomic organs and thus allow the identi-
fication of lung tissue components [89]. To extract this information, gray–level histograms (GLH)
with a number Nbins of bins are built. The value of each bin is directly used as a visual feature.
The air component value given by the number of pixels with value less than -1000 HU is computed
as an additional feature [55]. Preliminary results showed that using the values of the bins directly
allows better categorization of the lung tissue patterns compared to statistical measures of the
distributions (i.e. mean, variance, etc...). Features from histograms showed to be significantly
different for 6 lung tissue patterns from 38 patients using a Mann–Whitney U test in [237]. An
evaluation of the histogram features for lung tissue classification is carried out in Section 3.1.3,
and the results are discussed in Section 3.1.4.

3.1.2 Wavelet transforms for lung tissue analysis

In Section 1.2.1, we have seen that the WT was a good candidate to obtain affine–invariant
texture features. Wavelet transforms constitute a vast domain and have been applied to various
domains such as signal compression, denoising, pattern recognition and many more. They have
received a particular attention in biomedical applications [76, 250, 260]. Although being able to
detect events in signals, each WT contains all the information to perfectly reconstruct the signal
and a reduction of the information is needed to obtain compact feature representations. In this
section we show how we can create efficient texture features from tailored wavelet transforms.

Affine invariance

The WT has several shortcomings for texture analysis in the standard classical form that are
partly due to the sampling of digital images. It will be further shown how the standard WT can
be modified slightly to obtain near–affine–invariant texture features.

Translation invariance: wavelet bases versus redundant wavelet frames The WT exists
in two flavors: bases or frames. Wavelet bases provide a one–to–one decomposition (that may be
orthogonal or not), which makes them ideally suited for image compression. They have a fast im-
plementation, but their main drawback is their lack of translation invariance. For example, in the
standard dyadic discrete wavelet transform (basis), multiple scales are obtained by downsampling
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Figure 3.1: On the right, two iterations of a standard separable dyadic wavelet decomposition of
the original image on the left. At each iteration j, the original image is downsampled by a factor
of two to obtain a multiscale representation.

Figure 3.2: The WT is not shift–invariant any more when sampled on an uniform sampling
grid because the grid step ajb0 may differ from any continuous translation τ of the signal s(x)
(source [150]).

the image I by a factor of 2 at each iteration j, which implements the pyramidal image decom-
position (see example in Figure 3.1). Unfortunately, although bases provide translation–invariant
representations in the continuous domain, sampling the translation factor b over the uniform grid
of digital images removes this property. The image I may be translated by a continuous factor τ
which is not a priori equal to the grid interval ajb0 at scale aj (see Figure 3.2 for an example in
1D). The obtained wavelet coefficients W Iτ

ψj,n
(aj , b) are very different from W I

ψj,n
(aj , b). To obtain

translation–invariant features, a solution is to keep the original resolution of I and to oversample ψ
so that the minimum shift τmin is equal to ajb0, and all values of τ are multiples of ajb0. Figure 3.3
illustrates two iterations of the discrete wavelet frame (DWF) decomposition. The DWF decompo-
sition yields highly redundant image representations which offer more flexibility for image analysis
and performs quite well for texture analysis. It was first proposed by Unser in 1995 [248] and
has been widely used thereafter [131, 141, 142, 198, 261]; also with biomedical images [37]. When
compared to the WT, the translation invariance of DWF tends to decrease the variability of the
estimated texture features thereby improving classification performance. The ability of DWF in
describing lung tissue patterns is evaluated in Section 3.1.3.

Rotation and scale invariance: isotropic polyharmonic B–spline wavelets and the
quincunx lattice The combination of isotropic polyharmonic B–Spline wavelets along with
the quincunx lattice offers several desirable properties both for scale–invariance and rotation–
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Figure 3.3: On the right, two iterations of the DWF of the original image on the left. At each
iteration j, the filter is upsampled by a factor of two to obtain a multiscale representation.

invariance [255].
When the analyzed patterns do not have a priori orientation (e.g. lung tissue patterns in axial

slices of HRCT), Marr et al. suggested that the Laplacian of Gaussian ψΔG was optimal for the
detection of zero–crossings according to the mammalian early visual system [154, 258]. This was
supported by the following hypotheses:

• the orientation of the detector should be aligned with the local dominant orientation, which
is the orientation of the underlying segment of zero–crossings,

• this orientation is also the one at which the zero–crossing has the maximum slope,

• these lines of zero–crossing are corresponding to the orientation–independent differential
operator: the Laplacian Δ = ∂2

∂x2
1

+ ∂2

∂x2
2
.

Indeed, ψΔG is able to “face” image edges in any direction as being isotropic. Moreover, we
have seen in Section 1.2.1 that it offers an appropriate trade–off between spatial localization and
bandwidth which allows to locally examine a portion of the spectrum of the image. Now that we
are convinced that ψΔG will be our ideal filter for texture analysis, the question is: how to best
implement a multiscale version of ψΔG on the cartesian grid imposed by digital images?

In 2005, while looking for an isotropic localization operator that makes polyharmonic B–spline
converge to a Gaussian, Van De Ville et al. introduced a new family of wavelets: the isotropic
polyharmonic B–spline wavelets. The latter are derived from elementary m–harmonic cardinal
B–splines, where the second moment is well–defined. For N = 2, 3 dimensions, the isotropic
polyharmonic B–spline is defined in the Fourier domain as:

β̂γ(ω) =
Vγ(ejω)
||ω||γ (3.1)

where Vγ(ejω) = V2(ejω)γ/2 and

V2(ejω) = 4
N∑
k=1

sin2
(ωk

2

)
− 8

3

N−1∑
k=1

N∑
l=k+1

sin2
(ωk

2

)
sin2

(ωl
2

)
. (3.2)

Explicitly, the two–dimensional case is:

β̂γ(ω) =
(

4 sin2(ω1/2) + 4 sin2(ω2/2)
ω2

1 + ω2
2

− 8
3

sin2(ω1/2) sin2(ω2/2)
ω2

1 + ω2
2

) γ
2

. (3.3)
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(a) γ = 1 (b) γ = 2

(c) γ = 3 (d) γ = 4

(e) γ = 5 (f) γ = 6

Figure 3.4: Shapes of the 2D isotropic polyharmonicB–spline β̂γ(ω) of various orders in the Fourier
domain.
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Figure 3.5: Dyadic and quincunx lattices.

Their shapes in the Fourier domain are depicted in Figure 3.4 for γ = 1, .., 6. The three–dimensional
extension is given by:

β̂γ(ω) =
(

4 sin2(ω1/2) + 4 sin2(ω2/2) + 4 sin2(ω3/2)
ω2

1 + ω2
2 + ω2

3

− 8
3

sin2(ω1/2) sin2(ω2/2) + sin2(ω1/2) sin2(ω3/2) + sin2(ω2/2) sin2(ω3/2)
ω2

1 + ω2
2 + ω2

3

) γ
2

.

(3.4)

Van de Ville et al. demonstrated that these wavelets behave as a γth–order Laplacian Δ for
low–frequencies. Indeed, the isotropic polyharmonic B–spline βγ is an interesting candidate to
approximate Gaussian–like basis functions as it converges to the following Gaussian when the
order increases:

βγ(x) ≈ 6
πγ

exp
(
−6 ‖ x ‖2

γ

)
(3.5)

with x ∈ R
2, and a standard deviation σ =

√
γ/12. The convergence is fast: the normalized

squared differences between βγ and its corresponding Gaussian function is inferior to 5% for γ ≥ 3.
Thus, isotropic polyharmonic B–spline wavelets implement a multiscale smoothed version of the
Laplacian from which the initial scale can be tuned through γ. This wavelet ψγ , at the first
decomposition level, can be characterized as

ψγ(M−1x) = Δ
γ
2 {φ} (x), (3.6)

where φ is an appropriate smoothing (low–pass) function (e.g. Gaussian–like) and M is the sub-
sampling matrix2. γ tunes the iterate of the Laplacian operator (comparable to the traditional
vanishing moments). Large values of γ reduce the energy of the wavelet coefficients but increase
the ringing effect [75]. At last, ψγ yield symmetric filters that have a linear phase response, where
the delay (shift) is predictable and no phase distortion is introduced. Thus ψγ allow to preserve
the shift–invariance provided by the redundant frame transform.

The choice of the subsampling scheme defined by M has itself an important influence both
on scale and rotation invariance. Mainly two subsampling schemes are found in the literature for
the two–dimensional case: dyadic and quincunx, the former being by far most widely used. The
quincunx subsampling removes one sample over two while the dyadic one removes three samples
over four as depicted in Figure 3.5 and corresponds to a similarity transform in 2D3. With particular
wavelets, dyadic subsampling enable separability of the WT which allows computational efficiency

2In the wavelet frame decomposition, M corresponds to the upsampling of the wavelet.
3It is important to note that the extension of the quincunx subsampling in more than two dimensions does not

corresponds to a similarity transform for two–channel filter banks (i.e. wavelets) [256].
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Table 3.1: Desirable properties of the combination of isotropic polyharmonic B–spline wavelets
and the quincunx lattice along with a redundant frame transform.

translation
invariance

scale
invariance

rotation
invariance

isotropic
polyharmonic

B–spline wavelets

symmetric filters:
no phase distortion

initialization of the
scale progression
tunable with γ

near isotropic:
implement a

multiscale smoothed
version of Δ

quincunx
lattice

–
finer scale progression
compared to dyadic:√

2 instead of 2
preserves isotropy

redundant
frame transform

no image
downsampling

multiscale –

because wavelet coefficients within each subband can be obtained by successive one-dimensional
convolutions along the columns and the rows of the image. However, the dyadic lattice has two
major drawbacks to perform texture analysis. On the one hand, the scale progression is coarse as
images are downsampled by a factor of 2 (in each dimension) between two decomposition levels.
Relevant information might be padded out when having major energy contained in a narrow
subband located between two successive levels of the dyadic transform. For example, subtle changes
in the scale of lung tissue patterns (e.g. micronodules versus bronchovascular structures) might
be neglected by the dyadic scale progression [58]. On the other hand, although separability allows
fast WTs, this process tends to favor the vertical and the horizontal directions, and produces a
so-called “diagonal” wavelet component [36], which does not have a straightforward directional
interpretation.

The scale–progression of the quincunx subsampling scheme defined by Mquincunx = [1 1; 1 −1]
is slower compared to dyadic decomposition, with an equivalent one–dimensional downsampling
factor of

√
2 instead of 2 for dyadic [243]. Compared to the dyadic separable case, Mquincunx

preserves isotropy and the wavelet space is spanned by only one wavelet subband per decomposition
level (versus three for separable dyadic) [162]. This leads to a direct and easy interpretation of the
subbands; the small number of subbands also breeds small features spaces, which are preferable
for classification.

The desirable properties of the isotropic polyharmonic B–spline wavelets combined with the
quincunx lattice along with a redundant frame transform are summarized in Table 3.1. This com-
bination yields isotropic quincunx wavelet frames (QWF) that are near–affine–invariant. QWF are
evaluated and compared to DWF for the classification of the lung tissue patterns in Section 3.1.3.

Features from the wavelet coefficients

For the classification of the lung tissue patterns, a subset of features able to characterize the
coefficients of the wavelet filterbanks is required. The wavelet frame transforms yield a number
of wavelet coefficients Nc that is directly proportional to the number of pixels Npix of the input
image, the number of iterations J and the number of subbands per iteration Nsubband:

Nc = Npix × J ×Nsubband.
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Figure 3.6: Mixture of two Gaussians (μ1,2 = μ, σ1,2) to model the distribution of wavelet coeffi-
cients within one subband.

For example, 4 iterations of DWF (3 subbands per iteration) of an HRCT slice of 512× 512 would
lead to more than 3 million coefficients. No classification algorithm can learn from such high–
dimensional feature spaces and compact feature representations are required. In the literature,
localized energy measurements were often used to characterize the coefficients in the subbands [131,
248, 257]. As an alternative, Portilla et al. showed that Gaussian mixture models (GMM) are
modeling well the distributions of the wavelet coefficients through the successive subbands as
well as in a spatial neighborhood within the same subband [186]. Based on this assumption, the
distributions of the wavelet coefficients in each subband were characterized through the parameters
of GMMs. Under the hypothesis that the global mean of the coefficient values is close to zero
according to (1.5), the parameters of a mixture of two Gaussians with same means μ1,2 = μ and two
standard-deviations σ1,2 are estimated using the expectation–maximization (EM) algorithm [48].
In Figure 3.6, an example showing the coefficients in the eighth subband of QWF from healthy
patterns suggests that the mixture of two Gaussians with fixed means allows a reasonable fit of
the distributions of the wavelet coefficients.

3.1.3 Evaluation of the visual features

The visual features are evaluated and compared through several experiments in order to identify
groups of visual features (GLH and texture) that allows the best discrimination among the lung
tissue patterns associated with ILDs for further integration in the CAD. Please note that the
validation method, the dataset used and the classification algorithm varied over time and are
detailed for each experiment.

GLH

The normalized histograms of the most frequent lung tissue patterns and their respective mean,
standard deviation along with third and fourth moments, respectively skewness and kurtosis are
depicted in Figure 3.7. The optimal number of GLH bins Nbins is investigated in Figure 3.8.
With a leave–one–ROI–out (LORO) cross–validation (see Section 5.2.1), 40 bins allow the best
classification accuracy ALORO using a k–NN classifier with optimized number of neighbors k and
the dataset described in Table 3.2.
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(a) healthy (7 cases, 3043 blocks)
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(b) emphysema (5 cases, 422 blocks)
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(c) ground glass (26 cases, 1953 blocks)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-1000 -800 -600 -400 -200 0 200 400 600

value in HU

mean = -805.92
std = 168.01
skew = 0.7
kurt = 3.1

(d) fibrosis (36 cases, 2822 blocks)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-1000 -800 -600 -400 -200 0 200 400 600

value in HU

mean = -811.93
std = 216.53
skew = 0.93
kurt = 3.33

(e) micronodules (14 cases, 6018 blocks)
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Figure 3.7: Gray–level histograms of the most frequent lung tissue patterns. Each histogram is
obtained from the average of histograms computed over 32 × 32 blocks.

Figure 3.8: Classification accuracies for varying number of GLH bins, using the best number of
nearest neighbors k for each.
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Table 3.2: Dataset used to determine the optimal Nbins and to evaluate DWF features.

class healthy emphysema ground glass fibrosis micronodules

ROIs 77 72 113 64 155

patients 10 5 13 11 5

DWF

The ability of the DWF combined with GLH to discriminate among five lung tissue patterns
is evaluated [58]. A family of B–splines of third degree is used as wavelet basis in a separable
transform based on the dyadic lattice for upsampling the filters. B–spline wavelets are compactly–
supported smooth piecewise polynomials from which the degree α modulates their scale–space
properties [249]. This is convenient for analyzing medical images where the varying scales of the
objects require adjustable wavelets. The symmetric B–spline is expressed in the Fourier domain
as:

β̂α(ω) =
(

sin(ω/2)
(ω/2)

)α+1

(3.7)

The influence of the degree α on classification accuracy is studied in the next subsection.
The coefficients Hj(x) resulting from the convolutions with lowpass filters hj are kept for each

iteration j in order to investigate continuous components of the lung tissue patterns at different
scales. Moreover the l2–norm of composite diagonal coefficients Cj(x) are computed for each
iteration as follows:

Cj(x) =
√

(GxHy)2j (x) + (GyHx)2j (x) (3.8)

where (GxHy)j(x) and (GyHx)j(x) are the coefficients resulting from the convolution with the
highpass filter on x and with the lowpass filter on y, and vice versa. The norm of both is computed
because we believe that no directionality is contained in lung tissue textures. To extract higher–
frequency features at smaller scales, the input images are upsampled by a factor of 2Nupsample . The
mean μ and the variance σ of the coefficients Gj(x), Cj(x) and Hj(x) are computed on the whole
ROI for each iteration j (scale) to create the feature vector

( μ, σ(G1(xR)) μ, σ(C1(xR)) μ, σ(H1(xR)) . . .

. . . μ, σ(GJ (xR)) μ, σ(CJ (xR)) μ, σ(HJ (xR) ) (3.9)

where xR denotes the points belonging to the ROI.
The relevant scales of the DWF are investigated by performing a multi–class classification of

the five patterns detailed in Table 3.2 with a 1-nearest neighbor using the Euclidean distance
computed between normalized feature vectors. Global accuracies ALORO obtained with a LORO
cross–validation using only coefficients from the first iteration of the DWF are shown in Figure 3.9.
Since the original images are resampled by a factor 2Nupsample , the sampling factor is inversely
proportional to the scales contained in the patterns.

In order to quantify the global discriminative properties of the DWF feature combined with
GLH, additional features from GLH consisting of 40 bins in [−1050; 1500] HU and a feature that
counts the number of air pixels with value below −1000 HU are concatenated into the feature
vector described in (3.9). A k-NN classifier predicts the class of each global ROI. Each feature
is normalized using a linear mapping between 0 and 1 from each realization to give an equal
weight to each of them. No weighting is used for the combination of heterogeneous features. The
confusion matrix shows the classification results using a LORO cross–validation in Table 3.3 where
the original images are upsampled by 4 (Nupsample = 2 allowed best ALORO in Figure 3.9). The
associated performance measures are listed in Table 3.4. The comparison of accuracies (ALORO)
of DWF, GLH plus percentage of air pixels, and the combination is illustrated in Figure 3.10.
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Figure 3.9: Overall accuracies at iterative scales. The sampling factor 2Nupsample is inversely
proportional to the studied scale.

Table 3.3: Confusion matrix of the lung tissue pattern represented by full hand–drawn ROIs using
DWF combined with GLH in %. NROI denotes the number of ROIs used for evaluation.

healthy emphysema ground glass fibrosis micronodules NROI

healthy 92.2 0 1.3 0 6.5 77

emphysema 0 100 0 0 0 72

ground glass 0.9 4.4 86.7 0 8 113

fibrosis 0 0 6.2 93.8 0 64

micronodules 3.9 0 0.6 2.6 92.9 155

Table 3.4: Performance measures associated with the confusion matrix in Table 3.3. See Sec-
tion 5.2.2 for details about the performance measures.

recall precision F–measure accuracy

healthy 91 92.2 91.6 97.3

emphysema 93.5 100 96.6 98.9

ground glass 94.2 86.7 90.3 95.6

fibrosis 93.8 93.8 93.8 98.3

micronodules 91.1 92.9 92 94.8

Figure 3.10: Comparison of accuracies (ALORO) using GLH plus air percentage, DWF and the
combination of all features applied to each pattern versus all and to the multiclass configuration.
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Table 3.5: Dataset used for the comparison between DWF and QWF features.

class healthy emphysema ground glass fibrosis micronodules macronodules

ROIs 113 93 148 312 155 22

patients 11 6 14 28 5 5

The algorithm for the extraction of the texture features and GLH from DICOM files was
implemented as an ImageJ 4 plugin in Java, and the k–NN classification was carried out using the
function knn.cv of the package class of the free data mining software R5.

DWF versus QWF

In this section, the abilities of DWF and QWF for classifying the lung tissue patterns are
compared [59]. In order to build the feature space for further classification of the ROIs, several
measures are computed from the original image as well as from the DWF/QWF wavelet coefficients
of each subband. On the original images, values of pixels belonging to the ROIs are categorized
using GLH with 22 bins in [-1050; 600] HU. The distributions of the wavelet coefficients in each
subband are characterized through the parameters of mixtures of two Gaussians with fixed means
μ1,2 = μ and the standard-deviations σ1,2 as described in Section 3.1.2. The feature vector thus
consists of 24 features for 8 iterations of QWF. Various orders of the isotropic polyharmonic B–
spline wavelets βγ are compared with γ = 2, 3, 4. To compare performances, 4 levels of DWFs
were performed using B-spline wavelets of degree α = 1, 2, 3. The equivalent order of derivatives
γ corresponds to α + 1 (see equations (3.3) and (3.7)). Using parameters of a mixture of two
Gaussians for each subband, the feature vector contains 36 measures of the DWF coefficients. In
both cases, the low-pass filtered images are left aside.

The validation is organized as follows: feature vectors from 843 ROIs containing healthy and
five pathological lung tissue sorts are extracted. The dataset used in this experiment is detailed in
Table 3.5. Then, 674 instances (80%) are randomly drawn from the full dataset and used to train
and optimize the parameters of SVMs, which have shown to be effective to categorize texture in
wavelet feature spaces in [141] and in particular lung tissue as shown in Section 4.1. The remaining
169 instances are used for testing. The global experimentation is repeated 30 times and means
of the global classification accuracies on the testing set Atestmean along with means of class-specific
accuracies Ageommean (geometric mean) are computed. The optimization of the parameters of SVMs
follows the methodology detailed in Section 4.1.1. Pairwise comparisons of classification accuracies
using DWF versus QWF for several degrees and orders (α+ 1, γ) are shown in Table 3.6.

Blockwise classification with QWF

This section describes the various steps of the blockwise classification with QWF and GLH
features. In a first step, a semi-automatic segmentation of the lung volumes is used to locate the
lung parenchyma to be further analyzed. Then, the segmented regions are entirely categorized
using QWF and GLH in overlapping blocks classified using SVMs to create a three–dimensional
map of five lung tissue patterns.

Semi-automatic segmentation of the lung volumes Segmentation of the lung volumes is a
required preliminary step to lung tissue categorization [123]. The result of this step is a binary
mask Mlung that indicates the regions to be analyzed by the texture analysis routines. Since the
geometries and shapes of the lungs are subject to large variations among the cases, semi-automatic
segmentation based on region growing and mathematical morphology is used. The region growing
routine contained in YaDiV is used. Starting from a seed point p(x, y, z) defined by the user, each

4http://rsb.info.nih.gov/ij/, as of 5 November 2009
5http://www.r-project.org/, as of 5 November 2009
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Table 3.6: Mean accuracies in % with experiments repeated 30 times. Isotropic polyharmonic
B–spline wavelets (QWF) with order γ = 3 allowed a mean of 94.3% of correct predictions among
the six lung tissue classes with high precision (geometric mean = 89%). Best accuracies are marked
in bold.

class α = 1, γ = 2 α = 2, γ = 3 α = 3, γ = 4

DWF 91.1 93.6 92.5
healthy

QWF 95.9 98.1 92.4

DWF 97.2 98.7 97.7
emphysema

QWF 100 100 99.7

DWF 84.2 88.3 86.3
ground glass

QWF 85.7 89 87.7

DWF 95.8 95.2 96.5
fibrosis

QWF 96.5 96.3 94.5

DWF 89.8 93.3 88.8
micronodules

QWF 94.1 95.2 91.7

DWF 40.3 48 46.9
macronodules

QWF 54.2 55.5 48.5

DWF 83.1 86.2 84.8
Ageom

mean
QWF 87.8 89 85.7

DWF 90.6 ± 2.6 92.5 ± 1.4 91.4 ± 2.2
Atest

mean
QWF 93.3 ± 1.6 94.3± 1.6 92 ± 1.9

26–connected neighbor is added to the regionMlung if the summed value of its own neighbors differs
of less than a given variance defined by the user. The resulting binary mask Mlung describes the
global lung regions well but contains many holes where the region growing algorithm was stopped
by denser regions such as vessels or consolidations of the lung parenchyma. To fill these holes,
a closing operation is applied to Mlung using a spherical structuring element. Two parameters
require attention from the user: the radius r of the structuring element in millimeters and Nop
which defines the number of closing operations. To assess satisfying segmentation results, the user
can tune the parameters r and Nop and, if required, add manual corrections using the YaDiV
interface where a tab was created for the closing operation (see Figure 5.12). An example of the
segmentation is depicted in Figure 3.11.

3D lung tissue categorization In order to automatically categorize every pixel of Mlung, each
2D slice is divided into overlapping blocks. Preliminary results using block sizes of {8 × 8; 16 ×
16; 24×24; 32×32; 40×40; 48×48; 56×56; 64×64} showed that blocks of size 32×32 have the best
trade–off between classification performance and localization. For each block, 22 histogram bins
binj of GLH in [-1050; 600] and the number of air pixels pixair are concatenated into one hybrid
feature vector v along with GMM parameters of 8 iterations of QWF using βγ of order γ = 3 as
follows (see also Figure 3.12):

v = (bin0 . . . bin21 pixair μ0 σ0
1 σ0

2 . . . μ7 σ7
1 σ7

2) (3.10)

The low-pass filtered images of the QWF transform are left aside. A SVM classifier learns from
the space spanned by v to find the decision boundaries among five classes of lung tissue using a
one versus one approach. The optimal cost of the errors C and the width of the Gaussian kernel
σK are found using a grid search with C ∈ [0; 100] and σK ∈ [10−2; 102]. For each case, the whole
lung volume is segmented using a distance between the centers of the blocks equal to 4 pixels,
leading to an overlap of 87.5% (see Figure 3.13). The confusion matrix resulting from a leave–
one–patient–out (LOPO) cross–validation with 69 patients is shown in Table 3.7. The associated
performance measures are listed in Table 3.8. Note that patients may contain several sorts of lung
tissue.
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Figure 3.11: An example of the segmentation of the lung volumes using a modified version of
YaDiV.

Figure 3.12: Construction of the feature vector v for each block.

Table 3.7: Confusion matrix of the blockwise classification of lung tissue patterns using QWF and
GLH features and a LOPO cross–validation in %. Global arithmetic and geometric means of 75.1%
and 74.7% are obtained respectively. Nvox denotes the number of manually segmented voxels used
for evaluation and Ncases the number of patients.

healthy emphysema ground glass fibrosis micronodules Nvox Ncases

healthy 78.1 2.8 0.7 0.2 18.1 63’914 7

emphysema 0.9 70.1 0 4.7 24.2 61’578 5

ground glass 4.6 1.6 76 14.7 3.1 644’814 21

fibrosis 2.3 1.9 17 73.5 5.3 860’474 28

micronodules 13.7 1.8 2.2 6.7 75.7 1’436’055 10
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Figure 3.13: Automated segmentation of the lung tissue patterns of a patient affected with pul-
monary fibrosis. The 3D segmented regions are displayed to the clinician using YaDiV. Green:
healthy (0.1 liters), blue: emphysema (0.39 l), yellow: ground glass (0.53 l), red: fibrosis (1.91 l),
pink: micronodules (1.77 l).

Table 3.8: Performance measures of the blockwise classification of the lung tissue patterns using
QWF and GLH features.

recall precision F–measure accuracy

healthy 78.4 78.2 78.3 91.3

emphysema 89.6 70.2 78.7 92.4

ground glass 79.2 76 77.6 91.2

fibrosis 73.6 73.5 73.6 89.4

micronodules 59.9 75.6 66.8 85
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3.1.4 Discussions on the visual features

In this section, the results presented in Section 3.1.3 are discussed. Global remarks and limi-
tations of the studies are given at the end of this section.

GLH of the lung tissue patterns

Gray-level histograms in Figure 3.7 show high variability of distributions among the six patterns.
Healthy patterns are constituted of soft tissue with HU values in the range [-1050;-300] and have the
lowest mean value of -950 HU. Surprisingly, even emphysema patterns have a higher mean value of
-888. This can be explained by looking at Figure 3.7 (b) where a relatively high number of voxels
have values in [-700;400] which corresponds to increased attenuations surrounding large regions of
air. Distribution of the ground glass voxels is close to those of fibrosis voxels which highlights the
need of texture features that characterize the spatial organization of the voxels to separate the two
patterns. The shape of the histogram characterizing micronodule voxels in Figure 3.7 (e) is the
result of the combination of healthy tissue with small nodules of density similar to consolidation
voxels. consolidation voxels are corresponding to a very high mean (around -600 HU) as well as a
weak air component.

According to the notable variation among the gray–level distributions, features such as his-
togram bins, mean, variance, skewness and kurtosis of the distribution along with air components
may have strong discriminative potential for the classification of the patterns. The investiga-
tions on the best number of histogram bins Nbins in Figure 3.8 shows that 40 bins allow the
best classification accuracy ALORO. However, in order to be further combined with texture fea-
tures for classification, a reduced number is desirable to face the curse of dimensionality of feature
spaces [102]. An accurate description of the gray–levels can be obtained in reducing the number of
bins to 22 corresponding to pixel values in [-1050;600] because the bins outside this interval are very
sparsely populated. [-1050;600] corresponds to an extended interval of the lung HU values that
includes pathological tissues of high density (e.g. calcified nodules [152]). Because the majority
of the information is contained in low HU values, a non–linear binning with bins of exponential
width was tested but did not lead to better results. A reason for this is that the information that
allows to differentiate among the patterns is mostly contained by HU values in [-700;-200] (see
Figure 3.7).

It is important to note that although the shapes of the grey–level distributions are very dis-
tinctive in Figure 3.7, they are averaged over a large number of cases and thus corresponds to the
center of mass of each class in the GLH feature space. However, large intra–class variations are
observed as depicted in Figure 3.14, which makes the classification task not trivial. Additional
features along with machine learning algorithms able to draw intricate decision boundaries are
required for an accurate recognition of the lung tissue patterns. This is especially true with healthy
tissue [3]. The blockwise analysis also tends to increase the intra–class variability.

DWF

The results in Figure 3.9 show that smaller scales allow better discrimination of patterns. De-
spite the fact that upsampling images without carrying out interpolation introduces high-frequency
artifacts, the best overall accuracy is reached using upsampled original images with Nupsample = 2.
However, we believe that each pattern contains specific scales and the effect of the scale has to
be studied for each of them. QWF are expected to partly solve this problem by providing a finer
scale progression with a factor of

√
2 instead of 2 at each iteration (see next subsection). Indeed,

relevant information can be hidden between two consecutive scales.
The confusion matrix in Table 3.3 shows how the combined features can separate each pattern.

All 72 ROIs showing emphysema, which is characterized by the destruction of lung tissue (air), are
98.8% correctly classified with a precision of 100%. In this case, features such as percentage of air
pixels are much more relevant compared to frequential analysis. ground glass has the lowest preci-
sion and is confused 9 times with micronodules. This can be explained by the lack of intermediate
scales with the DWF, where the size of small nodules in micronodules is not correctly matched
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Figure 3.14: Intra–class variations for class healthy. The histograms of the two blocks shows two
outliers that both mark the boundaries of the class. The block in (b) contains several bronchovas-
cular structures which increase the global density.

by the scaled templates. These observations seem to be validated by the respective accuracies
in Figure 3.10 where DWF is not accurate to classify micronodules. For patterns ground glass
and fibrosis, the DWF shows superior discrimination performance compared to GLH. This can be
explained by the fact that fibrosis is characterized by sharp transitions between high density tissue
and small air bubbles that yield a specific spectrum signature. The combination of GLH and DWF
features shows improvement in classification accuracy for most of the patterns except healthy and
emphysema, and is particularly effective when carrying out multiclass classification.

DWF versus QWF

Pairwise comparisons shown in Table 3.6 indicate that QWF outperform DWF in 88.9% of the
comparisons (16 among 18) for all degrees/orders. This global increase in performance is primarily
due to the better isotropy properties of the non–separable wavelet transform, thanks to to their
close connection to the Laplacian. The favored directions of the separable transform lead to noisy
features creating non-homogeneous clusters of instances belonging to the same class in the feature
space, which decreases global classification performance due to a lack of regularization.

Although having influence on global accuracy as well, the finer scale progression allowed by
the quincunx subsampling scheme increases the precision of the classification; e.g., by reducing
confusions between patterns with well-defined object sizes, such as micro- and macro- nodules.
Indeed, the highest improvements using QWF are achieved for classes healthy, micronodules and
macronodules in which the size of objects is important.

The reduced number of subbands with QWF (one for QWF and three for DWF) is also a very
important clue to avoid the curse of dimensionality. QWF features allow to characterize twice
more scales with even a reduced number of features when compared to DWF. In this study the
DWF requires 36 features (4× 3× 3) for characterizing 4 scales when the QWF use no more than
24 features (8 × 3) to characterize 8 scales. This highlights that albeit separable transforms being
faster because the convolutions are carried out in one dimension, they yield several subbands per
scale, which is less adapted for multidimensional signal analysis where the amount of information
increases exponentially.

Degree/order α = 2 and γ = 3 allow best classification for all patterns except for fibrosis
although being very close to the best accuracy as well. A first reason for this is that the scale–
progression is well initialized and fits best the characteristic structures of each patterns leading
to increased classification accuracy. These degrees/orders are best trade–offs between spatial and
spectral localization. Secondly, a sufficiently high order is required to obtain isotropy with QWF.
When looking at the shapes of the templates β̂γ(ω), in the Fourier domain in Figure 3.4, one can
easily remark that βγ begins to have acceptable isotropic properties starting from γ = 3 and lower
values favor the x and y directions.
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Blockwise classification with QWF

The results obtained with the two components of the blockwise classification of the lung tissue
patterns are discussed in this section.

Segmentation of the lung volumes Our experience with the segmentation of 69 lung volumes
shows that the 3D region growing associated with closing allows an almost fully-automatic seg-
mentation. However, the trachea is included as lung tissue in most cases (see Figure 3.11). Manual
corrections are required when the closing operation cannot fill large regions of consolidated tissue.

Automatic 3D lung tissue categorization with QWF The automatic segmentation of the
lung tissue is a crucial step for the success of the CAD. The accuracies obtained in Table 3.8 show
that the SVM classifier can learn efficiently from the hybrid feature space. However, the recurrent
confusion between healthy and micronodules patterns in Table 3.7 and Figure 3.13 suggests that
the decision boundaries are not trivial in some cases. Indeed, the small nodules in micronodules are
mixed with the bronchovascular structures contained in healthy tissue. This is a major limitation of
the two–dimensional QWF used in this work. The use of three–dimensional isotropic polyharmonic
B–spline wavelets as explicitly formulated in (3.4) in near–isotropic MDCT image series may be able
to overcome the confusions between healthy and micronodules as the bronchovascular structures
are cylindric whereas small nodules are roughly round. Unfortunately, the HRCT protocol used
at the HUG does not allow for a true three–dimensional analysis as the spacing between the slices
is 10 millimeters and yielding extremely anisotropic volumetric images but limiting the radiation
dose delivered to the patients when compared to MDCT protocol. Using the clinical context of
the images such as the age of the patient shows to allow clarifications between visually similar
patterns in Section 4.2. Indeed, micronodules in a 20–year–old subject are very visually similar to
healthy tissue surrounded by vessels of a 80–year–old man. The clinical context allows significant
improvements particularly for the characterization of micronodules in Section 4.2.

Table 3.7 also shows recurrent confusions between fibrosis and ground glass. This may be
partially explained by the fact that fibrosis patterns are most often accompanied with small regions
of ground glass because of the re–distribution of the perfusion to the functional tissue remaining.
This has the effect to overload the healthy tissue which thus has the visual appearance of ground
glass because of increased attenuation. However, during the annotations sessions, the label fibrosis
was assigned to the whole ROI leading to classification errors when the system correctly detects
the small ground glass regions.

The distribution of the classes given by Nvox in Table 3.7 is very unbalanced, which renders
the classification task more difficult [127]. This is mostly due to the way the radiologists delineate
regions during the annotation session (see Section 2.4, Figure 2.7). In case of unbalanced classes,
SVM classifiers with asymmetric margins can be used to favor minority classes as suggested in [42].
The most represented pattern micronodules is the most difficult to classify and obtains the worst
performance in Table 3.8 which has the effect to decrease the global performance of the CAD system
and requires further improvements. At the border of the lungs, missclassifications occur due to the
response of the wavelets to the sharp change of intensity. A solution to this is to use a symmetry
of the lung tissue using the tangent to the lung border as axis. To remove noise in the blockwise
classification, a 3D averaging of the outputs of the classifier may avoid small isolated regions. The
anatomical regions of the lung have not the same prior probabilities of having abnormal tissue.
For instance, fibrosis is prevailing at the periphery of the lung bases. Integrating the anatomical
regions for improving the classification performance requires to be able to automatically segment
the lung regions [291] and showed to significantly improve classification accuracy in [290, 293].

Global remarks on the visual features

Wavelets and filter banks are not the most popular feature extraction techniques for the charac-
terization of parenchymal textures in the literature (see Figure 1.17). Although a direct comparison
of the performance reported does not make sense as the sorts of tissue included, the validation
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(a) 2D map of the lung tissue

(b) 2D/3D tissue map displayed in YaDiV.

Figure 3.15: 2D and 3D maps of the lung tissue as diagnostic aid tools for the radiologists.

methods and the dataset used vary a lot among the studies, we believe that wavelet–based tex-
ture features are more adapted to analyze texture patterns in medical images. Indeed, filtering
techniques and wavelets offer an overcomplete feature set able to fit most of the texture functions
in condition to efficiently derive features from the coefficients. Wavelet–based texture features are
covering the whole spectrum, which truly allows to detect the important spectrum signatures of
the patterns, being perfectly complementary to the measures of density using GLH.

Among all the experiments run in this chapter, the combination of QWF with GLH showed
to best discriminate the lung tissue patterns. However, no comparison with directional analysis is
carried out. Preliminary tests partially using the methods described in [257] did not led to better
results which suggests that isotropic analysis is adapted to lung tissue analysis that may not contain
prevailing orientation. Nevertheless, this is contradictory to the results obtained in [242] and [264],
and further investigations are required to learn about the orientations in the lung tissue patterns.

As already highlighted in the literature, we observed that the dataset, the selected classes of
lung tissue and the validation methods have all a strong influence on the measured performance
of the CAD. In Table 3.6 for instance, the class macronodules decreases the global performance
significantly. In addition, it is important to note that the performance shown in Table 3.4 is biased
by the LORO cross–validation which allows training and testing with ROIs that belong to a same
patient. The evaluation used to compare QWF and DWF in Table 3.6 is subject to the same
bias as ROIs from the same patient can be used in the training and the testing sets. However,
the hand–drawn ROIs used as instances do not overlap in these two studies, which limits the
bias as the classification algorithms are never trained and tested with the same data. Another
limitation of these two validations is that classification of entire ROIs does not allow automatic
detection of pathological lung tissue in a whole HRCT image series as it requires a prior selection
of a region to be analyzed. This biases again the performance measures because it corresponds to
the way the radiologists annotate ROIs and not to the true repartition of the pathological tissues.
The performance shown in Tables 3.7 and 3.8 has to be considered as the baseline performance
in accordance with actual clinical situations as the LOPO cross–validation simulates true clinical
routine usage of the CAD (see Section 5.2.1). Moreover, the blockwise classification allows to
detect abnormalities in HRCT images series and provides a three–dimensional map of the lung
tissue (see Figure 3.15) that indicates the suspicious regions to the unexperienced radiologist.
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Figure 3.16: Binary features increase the risk of XOR configurations leading to highly non–linear
decision boundaries.

3.2 Clinical and multimodal features

In this section, the construction of the clinical feature space is described. The choice of the
clinical parameters based on their relevance for diagnosing ILDs is described in Section 2.2. The
purpose of the clinical parameters are multiple. In Section 4.2, a multimodal feature space consist-
ing of the clinical features combined with the visual features is used to investigate the influence of
the clinical context in lung tissue classification. Then, in Section 4.3, the clinical parameters are
combined with visual features to build a similarity measure for case–based retrieval.

This section is structured as follows. In Section 3.2.1 the methods for extracting features ready
to be used in a classification algorithm from the clinical parameters collected from the EHR and
stored in a MySQL database are described. A feature selection based on two ranking measures
is proposed. Section 3.2.2 investigates the consistency of the multimodal feature space and shows
the results of the feature ranking. The results are discussed in Section 3.2.3.

3.2.1 Extraction: from MySQL variables to a consistent feature space

The clinical parameters entered in the MySQL database as described in Section 2.3.3 are not
directly usable for data-mining. Pre-processing steps are required to build a consistent feature
space. Clinical features cn have to be selected according to their relevance for the classification of
the lung tissue.

Preprocessing

Nominal variables are divided into several binary features. Textual variables and binary vari-
ables that contained one single modality are left aside. Since leaving aside cases with missing values
is not conceivable, variables with less than 50% of the values filled were removed and average values
were substituted. unknown was used when the clinical parameter was not detailed in the EHR.
The continuous features were not discretized as it is preferable not to group their values together
into categories with a further purpose of separating clusters of instances in the feature space.

Feature ranking

Integrating the clinical context in lung tissue classification implicitly assumes that clinical
parameters contain relevant information to predict the types of lung tissue contained in HRCT
image series of a patient affected with an ILD. Although parameters such as age are clearly related
to the visual aspect of the lung tissue (see Section 4.2.2), dependencies between clinical attributes
and classes of lung tissue must be investigated before any fusion with the visual features. Due to
missing values, binarization or irrelevance according to the studied diseases, some features may
introduce noise by scattering homogeneous clusters of instances in the feature space. High presence
of binary attributes increases the risk of obtaining XOR configurations of instances, which leads
to highly non–linear decision boundaries (see Figure 3.16). Moreover, it is preferable to keep as
few features as possible to limit the curse of dimensionality. A feature ranking is thus required to
build an effective set of attributes.



3.2. CLINICAL AND MULTIMODAL FEATURES 61

Table 3.9: Dataset used to rank the clinical parameters and to evaluate the influence of the
clinical context on lung tissue categorization. Each patient may contain several kinds of lung
tissue patterns.

class healthy emphysema ground glass fibrosis micronodules

ROIs 63 58 148 312 155

patients 5 4 14 28 5

Two measures are compared for their ability to rank the clinical attributes for lung tissue
classification: the information gain ratio IGratio and the single testing accuracy Asingle. IGratio

is derived from the information gain measure IG originally used by Quinlan in decision trees
in [195]. The information gain IG(Y |X) of a given attribute X with respect to the class attribute
Y quantifies the change in information entropy when the value of X is revealed:

IG(Y |X) = H(Y ) −H(Y |X) (3.11)

The information entropy H(Y ) measures the uncertainty about the value of Y and the conditional
information entropy H(Y |X) measures the uncertainty about the value of Y when the value of X
is known:

H(Y ) = −
∑
y∈Y

p(y) log p(y) (3.12)

H(Y |X) = −
∑

x∈X ,y∈Y
p(x, y) log p(y|x) (3.13)

The information gain ratio IGratio is derived from IG using

IGratio (Y |X) =
IG(Y |X)

−∑l
i=1

|Ti|
|T | log( |Ti|

|T | )
(3.14)

with T the training set and l the number of possible values of X . Compared to IG the gain ratio
will not give advantage to attributes with a high range of possible values [183, 196]. As the clinical
feature space is populated with binary as well as continuous attributes, it is highly preferable to
use the IGratio for ranking. Another measure proposed for ranking the clinical attributes is the
single testing accuracy Asingle. Asingle is defined as the classification accuracy with SVMs based
on a feature vector concatenating all visual features tm with the studied clinical feature cn:

v = (t1 . . . tM cn) (3.15)

3.2.2 Evaluation

In this section, the feature extraction methods and the ranking measures introduced in Sec-
tion 3.2.1 are applied to a dataset consisting of 48 patients described in Table 3.9.

Clinical feature space cn

After having gathered binary and continuous variables, the created clinical feature space con-
tains 72 attributes (63 binary and 9 continuous). There are a majority of binary parameters as
all categorical parameters were divided into a number of binary parameters equal to the number
of categories. The unknown values were substituted by the mean of the binary attribute over all
the patients. For example, over the 48 selected patients, the parameter host HIV has 3 yes, 43 no
and 2 unknown values. yes values are coded with 1, no with 0 and thus the missing values are
substituted by the mean: 0.065. The mean filling rate of the retained attributes is 88.7%.
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Figure 3.17: Correlation of IGratio and Asingle.

Ranking and consistency of the multimodal feature space

The correlation of IGratio and Asingle is evaluated in Figure 3.17. Asingle is first obtained using
visual features tm and a LOPO cross–validation using the full two–dimensional ROIs to train an
SVM classifier. Secondly, Asingle is evaluated for each single–handed clinical parameter cn. In both
cases, the training set is used both for grid search for optimal SVM parameters and adjustment
of the maximum-margin hyperplane of the SVMs. Optimized parameters of the SVM are the cost
of the errors C and the width σK of the Gaussian kernel. A grid search is carried out within
the intervals C ∈ [1; 100] and σK ∈ [10−2; 102]. For every coordinate of the grid, another 10-fold
crossvalidation is carried out on the training set. Optimal parameters (Copt, σoptK ) that allowed
best mean accuracy Acv are used to train the final model on the entire training set. A preliminary
coarse grid search was performed to locate regions of the space with high Acv values.

Table 3.10 lists the first 20 clinical attributes with highest Asingle value. The multimodal
feature vector v is obtained by concatenating the visual features tm consisting of QWF and GLH
as described in Section 3.1.3 and the 20 first clinical features cn with the highest Asingle value:

v = ( t1 . . . tM c1 . . . cN ) (3.16)

with m ∈ [1;M ] and n ∈ [1;N ]. The consistency of the multimodal feature space spanned by v is
studied using a correlation matrix in Figure 3.18.

3.2.3 Interpretation

The first part of this section discusses the limitations of the ranking measures IGratio and
Asingle. The second part verifies the relevance of the 20 clinical attributes with highest Asingle

value to the medical domain. The third part studies the consistency and the complementarity of
the multimodal feature space through the correlation matrix presented in Figure 3.18.

Measures for ranking

Figure 3.17 shows that IGratio is little correlated to both Asingle and testing accuracy obtained
with each single–handed clinical parameter. Pearson’s coefficient of regression R2 is below 0.25 for



3.2. CLINICAL AND MULTIMODAL FEATURES 63

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

grey-level
histograms

airpix     

μi

QWF  σi
1

σi
2

5

10

15

[ grey-level histograms ]

airpix

[ μi ] [ σi
1

QWF

] [ σi
2 ] [ 5 10

clinical parameters

15 ]

[
]

[
]

[
][

][
]

clinical
param.

Figure 3.18: Correlation matrix of the multimodal feature space. Indexes of the clinical parameters
corresponds to their rank described in Table 3.10.



64 CHAPTER 3. FEATURES

Table 3.10: List of the first 20 clinical attributes with highest Asingle when combined with visual
features. Abbreviations: HTA: arterial hypertension, subOAP: acute pulmonary edema, LDH:
serum lactate dehydrogenase.

rank Asingle IGratio name type
1 0.813 0.403 laboratory hematocrit continuous
2 0.809 0.421 age continuous
3 0.796 0.438 laboratory hemoglobin continuous
4 0.794 0.193 past medical allergy binary
5 0.793 0.549 findings physical generals lymph binary
6 0.784 0.519 past medical lymphom binary
7 0.779 0.469 findings physical generals fever binary
8 0.779 0.225 medication cordarone binary
9 0.778 0.218 host diabetes binary
10 0.763 0.227 biopsy bronchoscopy transbronchial eosinophil binary
11 0.759 0.239 past medical HTA binary
12 0.758 0.261 past medical dyspnea attack binary
13 0.754 0.237 past medical subOAP binary
14 0.752 0.124 findings physical respiratory tachypnea binary
15 0.751 0.506 host chemotherapy binary
16 0.746 0.182 past medical wheezing binary
17 0.745 0.192 findings physical abdominals liver binary
18 0.745 0.227 biopsy bronchoscopy transbronchial interstitial fibrosis binary
19 0.745 0.361 laboratory LDH continuous
20 0.743 0.52 host hemopathy binary

both comparisons. Even if Asingle is averaged over 30 experiments, the values obtained still have
high variance according to the draws of the training and testing sets. This is a first explication for
having low values of R2. A second explication comes with the definition of IGratio , which measures
the relevance of each separated single attribute. One feature generally distinguishes classes in
combination with other features [97], which suggests that IGratio is not convenient to rank the
clinical attributes with a purpose of fusing them with visual features. IGratio is also known to
be unstable as it is very sensitive to small changes in the training set [64] which is not desirable
for ranking attributes from a high–dimensional set of heterogeneous features. Due to the several
drawbacks of IGratio , Asingle is used for ranking the clinical attributes.

Relevance of clinical attributes

The relevance of the clinical attributes for classifying lung tissue patterns in HRCT data is sub-
ject to many external factors such as the availability of the parameters in the EHR, its binarization
required to be added to v and relevance according to the studied diseases. Indeed a parameter
such as the result of a lung biopsy is obviously highly informative for characterizing the lung tissue
but is rarely carried out and available in the EHR. The categorization and binarization has also
an important influence on the quality of clinical data. At last, the relevance of the parameters
according to the studied diseases is of course primordial.

As observed in Section 4.2.2, the age has an important influence on the visual aspect of lung
tissue (see Figure 4.8) and this is confirmed by finding it at the 2nd rank in Table 3.10. The
presence of the parameter laboratory hematocrit at the top of the list is a bit more subtle. An
explication for this is that large homogeneous regions of air, characterizing emphysema patterns,
will cause hypoxia and may elicit an increased production of red blood cells by the kidney, and thus
increase the hematocrit level. This phenomenon is indeed commonly observed in cases affected with
COPD [34], characterized by HRCT images showing emphysema patterns. The latter observation
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is firmly confirmed by looking at the correlation matrix in Figure 3.18, where the first clinical
parameter (laboratory hematocrit) is strongly anticorrelated with the means μi of the QWF and
highly correlated to airpix. The means μi of the QWF have high values for inhomogeneous patterns,
where emphysema patterns are very homogeneous due to absence of lung tissue. Coherently, the
3rd rank is occupied by the parameter laboratory hemoglobin, which is also involved in the transport
of oxygen. Hemoglobin is the protein contained in red blood cells that is responsible for delivery
of oxygen to the tissue. To ensure adequate tissue oxygenation, a sufficient hemoglobin level must
be maintained.

The presences of parameters findings physical general lymph (enlargement of lymph node(s))
and findings physical general fever at the 5th and 7th ranks are not surprising as they usually
highlight the presence of a host illness. Finding the parameter medication cordarone at the 8th

rank is in accordance with the well–known side effect of the cordarone drug creating pulmonary
fibrosis when used over long periods.

Consistency of the multimodal feature space

The study of the correlation of the multimodal feature space is carried out in Figure 3.18. A
first look at the correlation matrix shows that clinical features have little correlation with the visual
features. This is confirmed as the mean correlation ρmean of the two groups is equal to 0.0143.
Several homogeneous groups can be identified within the visual features. The first histogram bin
representing pixel values within [−1050;−975[ HU is of course highly correlated with airpix and
is anticorrelated with bins in range [−900;−450[. This is partly due to patterns with low–density
tissue (mostly emphysema) are mainly composed by air and thus do contain few pulmonary tissue
in range [−900;−450[. Globally, histograms are logically correlated in contiguous pairs. Bins 14–
20 form a strongly correlated group (ρmean = 0.95), which shows that high–density tissue with
HU values in [−75; 375[ only occur together, most probably in fibrosis and ground glass patterns.
Bins 21 and 22 are very sparse and thus not correlated to any other attribute. Within the QWF
features, two groups can be identified: the means μi and the standard–deviations σi1,2. ρmean is
equal to -0.04 between the two groups. Within the groups, it is not surprising to observe that
means and standard–deviations of two consecutive wavelet subbands are correlated.

Within the clinical parameters, 3 are highly correlated: past medical lymphom, host chemotherapy
and host hemopathy (ρmean = 0.84). This is not surprising as past medical lymphom, which stands
for having had a lymphoma or leukemia, which is a type of hemopathy (blood cancer), is treated
with chemotherapy. Those three parameters are all involved in ILDs as chemotherapy can induce
diverse injuries of the lung tissue [143].
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Chapter 4

Classification and retrieval

In Chapter 3, a multimodal feature set was presented. Features modeling visual and text–
based clinical features proved to create a consistent feature space adapted to describe lung tissue
patterns associated with ILDs in HRCT imaging. Although feature extraction is a crucial step for
the success of the CAD system, particular care must also be employed to draw adequate decisions
or to assess similarity between instances according to the values of the features [19]. In the case
of a detection–based CAD system, classification algorithms are required to predict the class of an
unseen instance (see Section 1.1.1). With CBIR–based CAD, the retrieval engine needs a distance
measure in order to evaluate the similarity between the two instances represented by feature vectors
(see Section 1.1.2).

In the first part of this chapter, a classification framework is proposed to adequately mine the
multimodal feature set described in Chapter 3. The goal is to categorize full HRCT image series
from patients affected with ILDs and to provide a three–dimensional map of the lung tissue. In a
first step, the choice of the appropriate model for mining the visual features is carried out using a
novel methodology based on McNemar’s statistical test in Section 4.1. Based on the chosen model,
the strategy required to fuse visual and clinical attributes is investigated in Section 4.2. In the
second part of the chapter, methods based on the three–dimensional map of lung tissue as well as
on clinical attributes are proposed to carry out case–based retrieval in Section 4.3.

4.1 Choice of the model based on visual features

A large variety of classification algorithms exists in the literature [79, 104, 273]. Each of them
was developed in the context of a particular application, which led to machine learning algorithms
with various skills and limitations. Most often, it is difficult to predict which one will perform
best with a given classification problem and a given dataset. In this section, a comparison of
five state–of–the–art classification algorithms applied to lung tissue categorization is carried out.
The theoretical basis of each classifier family is detailed in Section 1.2.2. The supervised learning
approach is used as it corresponds best to the radiologists’ approach consisting of learning and
gaining experience through training sessions and clinical routine. The methodology utilized to
compare the performance of each classifier family and the results are described in Section 4.1.1.
The comparison of the classifier performances are discussed in Section 4.1.2.

4.1.1 Methodology for comparing classifier families

The full dataset is divided into two equal parts: 50% for training and 50% for testing. Training
means both search for optimal parameters and creation of the model (i.e. adjustments of the
decision boundary). The methodology is explained in Figure 4.1.

The dataset used for the comparison is detailed in Table 4.1. 843 ROIs from healthy and
five pathological lung tissue patterns are selected for training and testing the classifiers. The
selected patterns are healthy, emphysema, ground glass, fibrosis, micronodules and macronodules.

67
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Table 4.1: Distribution of the ROIs per class of lung tissue pattern used to compare the classifier
performances.

class healthy emphysema ground glass fibrosis micronodules macronodules

ROIs 113 93 148 312 155 22

patients 11 6 14 28 5 5

Figure 4.1: Methodology for comparing the classifier performance.

Distributions of the classes are highly imbalanced as the largest class fibrosis contains 312 ROIs and
the smallest class macronodules only 22 ROIs. There is a mean of 140.5 ROIs per class. The entire
ROI constitute the instance to be classified (the ROIs are not cut into blocks for classification).

Classifier implementations were taken from the open source Java library Weka [79, 273]. The
LIBSVM library is used for the SVMs’ C–support vector machine classification [35].

Grid search for optimal parameters

In order to determine the optimal parameters pi, a grid search is performed for each classifier
family. When required, exponential grid steps were used for coarse search. For every coordinate
of the grid, a 10–fold CV is carried out on the training set. Optimal parameters popti that allowed
best mean CV accuracy Acv are used to train the final model on the entire training set. Optimized
parameters are detailed in Table 4.2. An example of grid search for best Acv is shown in Figure 4.2
where the cost C and the σK value of the Gaussian kernel of the SVMs are optimized. A preliminary
coarse grid search is performed to locate regions of the space with high Acv values.
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Table 4.2: Grid search for optimal parameters popti . The values for the number of hidden layer
units Nhidden of the MLP are chosen as {none, number of classes, (number of attributes + number
of classes)/2, number of attributes + number of classes}.

classifier family parameters ranges step

Naive Bayes – – –

k–NN k [0; 100] linear

C4.5 Ninstances, Cpruning [0; 5], [0.02; 0.24] lin, lin

MLP Rlearn, Nhidden [10−10; 105], {0, 6, 22, 45} log, –

SVMs C, σK [1; 100], [10−2; 102] lin, log

CV Accuracy

Max. CV Accuracy: 0.876
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Figure 4.2: Grid search for optimal SVMs parameters C and σK .



70 CHAPTER 4. CLASSIFICATION AND RETRIEVAL

Table 4.3: Class–specific accuracies for each classifier family. Best performances are highlighted
in bold. SVMs reached three times the best accuracy and is no more than 2% behind the best
performance over all classes.

healthy emphysema ground glass fibrosis micronodules macronodules

Naive Bayes 0.9161 0.8753 0.7873 0.7454 0.3778 0.3076

k–NN 0.9104 0.9978 0.7369 0.8926 0.91 0.3605

C4.5 0.7568 0.9419 0.6803 0.8821 0.7555 0.3054

MLP 0.7290 0.9707 0.6756 0.8751 0.8035 0.2461

SVMs 0.9242 0.9874 0.7731 0.9218 0.8907 0.4250

Table 4.4: Class–specific accuracies for each classifier family with a 2–class configuration. Naive
Bayes performs well for classifying healthy tissue.

healthy pathological

Naive Bayes 0.922 0.8087

k–NN 0.8923 0.9764

C4.5 0.6985 0.9675

MLP 0.711 0.958

SVMs 0.8535 0.9818

Ranking of the classifier families

Instances of the test set are classified by each classifier family and McNemar’s test is applied
to the classifiers in pairs with the hypotheses:

H0 : Atest1 = Atest2

H1 : Atest1 �= Atest2

with Atest1,2 the testing accuracy of the classifiers 1,2 computed as the number of correctly classified
instances divided by the total number of instances in the test set. Compared to other statistical
tests for comparing supervised classification learning algorithms, McNemar’s test showed to be the
only test with acceptable type I error rate in [63]. Type I errors correspond to a false detection of
difference in performance between two algorithms. Bonferroni’s correction for multiple comparisons
is used to adjust the threshold of the test. When H0 is rejected and Atest1 is greater than Atest2 , the
score of the classifier 1 is incremented. When H0 is accepted, 0.5 is added to the scores of both
classifiers. The global experimentation is repeated 50 times and a final ranking based on the total
of the scores is performed. As the distribution of the classes is highly imbalanced, the geometric
mean1 Ageom of each class–specific accuracy Al on the test set is computed for every classifier.
Two classification configurations are investigated. First, classifiers are evaluated on a multiclass
configuration using all 6 classes of lung tissue. Secondly, a 2–class configuration opposing healthy
versus pathological tissues is investigated. In this configuration, the classes emphysema, ground
glass, fibrosis, micronodules and macronodules are grouped together to form the class pathological
containing 730 ROIs versus 113 for the class healthy (86% pathological). Final rankings, mean
testing accuracies Atestmean and mean geometric accuracies Ageommean are shown in Figures 4.3, 4.4, 4.5
and 4.6. The class–specific accuracies achieved by each classifier family are presented in Tables 4.3
and 4.4.

1see Section 5.2.2 for details on the performance measures
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Figure 4.7: Bivariate histograms of the optimal parameters (popt1 , popt2 ) for SVMs and C4.5.

Stability of the classifier parameters

Optimal parameters of each classifier family were stored for every 50 : 50 division. In order to
study the stability, histograms of the values of (popt1 , popt2 ) are built for SVMs and C4.5 as shown
in Figure 4.7.

4.1.2 Discussion on classifier performances

All scores shown in Figures 4.3 and 4.5 show strong variations among the performances of the
classifiers. Moreover, the variations can be decreased by the use of Bonferroni’s correction, which
makes the tests more permissive (i.e. McNemar’s test rejects H0 more easily). Two classifier fam-
ilies reach highest scores: k–NN and SVMs. These performances are confirmed by their respective
accuracies in Figures 4.4 and 4.6. Overall scores and mean testing accuracies Atestmean show to be
complementary metrics. For example, with the 6–class configuration the MLP reaches high global
accuracy of 79.9% with a low score of 97.5. Those discordances can be understood by looking
at the mean geometric accuracies Ageommean. The latter is very low for MLP with a value of 47.7%,
which indicates that the MLP has a very low class–specific accuracy, and thus a low precision for
each class, which is not suitable for the characterization of lung tissue where the prevalence of
each tissue sort is unbalanced. Therefore, the SVMs that reached best score and global accuracy is
able to classify tissue of each class accurately, even from those that are little represented. Beyond
the fact that the k–NN classifier reached a slightly lower score and global accuracy compared to
SVMs with 6 classes, one problem occurs with this classifier. The optimal number k of nearest
neighbors for each of the 50 training/testing splits was 1. This can be explained by the fact that
for some classes, the number of patients is low and thus many ROIs are extracted from the same
image series. Training and testing with images from the same image series can result in a biased
classification as images are similar as they belong to the same patient. Two such instances are
artificially close in the feature space and will facilitate the classification task while attributing the
class of the closest neighbor, which probably belongs to the same image series. In that sense, the
k–NN classifier carries out overfitting of the training instances, which is not suitable for classifying
ROIs from new ILD cases.

The complementarity of the classifiers is studied in Tables 4.3 and 4.4. Naive Bayes performs
surprisingly well for classifying healthy tissue in the the 2–class configuration. However, the low
accuracy achieved on the majority class pathological suggests that naive Bayes tends to favor the
class healthy. Again, the competition between k–NN and SVMs is tight with an advantage for
SVMs. For the 6–class configuration, SVMs reached three times the best accuracy and is no more
than 2% behind the best performance over all classes. On the difficult class macronodules, SVMs
outperforms all other classifier families by more than 6% of accuracy.

Distributions of the optimal parameters (popt1 , popt2 ) represented in Figure 4.7 show distinct be-
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havior for SVMs and C4.5. Coupled parameters are more uniformly distributed for C4.5 compared
to SVMs: σK of the Gaussian kernel of SVMs is characterized by a bimodal distribution. This
means that two values of σK allow a convenient mapping of the feature space to higher dimensions
for accurate separation of the classes. These values affect the optimal cost value C. Indeed, the
organization of the classes in the transformed space is fixed by the value of σK , which requires a
corresponding readjustment of the cost C that allows best trade–off between regularization and
accuracy with the training examples. The most frequent pair of values of C4.5 occurs 9 times over
50, while the second most frequent pair occurs 5 times. For the SVMs, the most frequent pair
occurs 12 times over 50 while the second most frequent pair occurs 9 times. In that sense, the
SVMs classifier offers more stability. The stability has an important influence on the generalization
performance: a classifier that frequently obtained identical pairs of optimal parameters has a high
probability to be optimal for classifying new data.

The outcomes of the comparison are validated by other studies where the SVMs classifier
outperformed other classification algorithms. In [141], a SVMs classifier allowed best classification
results using DWF–based texture features on the Brodatz database [22]. Another study showed
that the SVMs classifier was better adapted than MLP or naive Bayes for categorizing lung tissue
in HRCT images of patient affected with COPD in [137].

4.2 Clinical context integration for medical image analysis

When analyzing an image, one interprets its content according to a given context. This is par-
ticularly true when analyzing medical images. Although fundamental in almost every medical field,
the context is rarely used in computer vision applications. In CBIR for example, it became quickly
clear that visual data alone can only achieve a limited retrieval quality when used for diagnosis
aid [166] and that visual and other clinical data contain complementary information. However,
the integration of the clinical context for classification or CBIR implicates several challenges. On
the one hand, collecting contextual information beside images is usually time-consuming, requiring
the help of a specialist for finding the relevant information and converting it from text to struc-
tured data to be used as a feature. For the majority of the common parameters, the value can be
extracted automatically from the EHR [239]. On the other hand, a high-level of knowledge of the
application domain is required to find relevant contextual parameters [245]. The selection of pa-
rameters for contextual medical image analysis has to be carried out based on the domain-specific
literature along with knowledge bases of computer-based diagnostic decision support systems.

Contextual image analysis implies the fusion of multimodal information sources. When carrying
out contextual image analysis of lung tissue in HRCT data, the visual information extracted from
HRCT image series is combined with the clinical parameters of the same patient. Integrating
information from multiple modalities consists of two major steps [277]. First, the best modalities
have to be identified. The best modalities have to be informative according to the considered
classes along with being complementary among each other. Each modality mi is represented by a
set of features vi. Secondly, the information from the best modalities must be combined with an
optimal scheme in order to allow for synergy. The so-called “fusion” can be carried out according
to two main strategies [84, 230]:

• early fusion, where features vi from each modality are concatenated into one vector v =
(v1 . . .vNmod

) to create one unique feature space,

• late fusion, where several classifiers {q1, . . . , qNmod
} are built on each modality {v1, . . . ,vNmod

}
and the fusion is carried out at the decision level.

Early fusion allows for a true multimedia (images and clinical data) representation. One single
classifier can learn from all information sources. However this method is confronted with the curse
of dimensionality because the dimension of the resulting feature space v is equal to the sum of
the dimensions of the subspaces {v1, . . . ,vNmod

}. Even associated with feature weighting, high-
dimensional spaces tend to scatter the homogeneous clusters of instances belonging to the same
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class. This is particularly true when negative synergies occur among features and multivariate
feature selection methods are required [14, 116].

Combining classifiers has been a very active domain over the past ten years [115, 132]. Wide in-
terest for the latter mainly relies on the assumption that the heterogeneity of classifiers {q1, . . . , qNmod

}
allows self–correction of the the errors leading to better results [64]. Late fusion is a special case of
classifier combination where heterogeneity occurs in the input spaces. It allows to face the curse of
dimensionality by dividing the feature space without neglecting information contained in features
that would be discarded by classical feature selection methods [223].

This section is structured as follows. Section 4.2.1 reviews the literature in contextual image
analysis. Section 4.2.2 points out the importance of the clinical context for a correct interpretation
of HRCT images. In Section 4.2.3, two fusion techniques are proposed to carry out multimodal
classification of the lung tissue patterns. Visual and clinical features are combined using early and
late fusion. The two approaches are compared and discussed.

4.2.1 Related work in contextual image analysis

Studies in contextual image analysis are discussed in this section. The idea of integrating
the context to improve image analysis was used both in the CBIR and general medical pattern
recognition communities. Both early and late fusion schemes are found in the literature.

Context in CBIR

Context has been used in CBIR where information from textual annotations of images was
fused with image features (color histogram and Gabor filters) using early fusion to compare the
performances of image retrieval using pure content, pure context and the combination of both in a
collection of images from a Dutch newspaper in [270]. It is shown that the combination of content
and context outperforms each method separately.

In [29], a CBIR system combined visual with textual statistics again directly in the feature
vector space representation (early fusion) to retrieve images from the Internet. Textual statistics
are extracted from the content of the HTML document and the visual content of the images is
extracted with color histograms and histograms of the dominant orientations. The weighting of
the modalities is carried out using relevance feedback. The maximum improvement was achieved
when both visual and textual were used in the relevance feedback framework.

Inter–media medical image retrieval was carried out in [130] using textual, color and texture
features semantically parsed and described with the Unified Medical Language System (UMLS).
The visual and textual information was combined in the calculation of the similarity measure. Best
mean average precision (MAP) is obtained with the mixed retrieval. The results show that the use
of explicit knowledge with UMLS allows to improve the retrieval performance for text only and
this approach showed to be less effective on visual features.

Investigation of the effectiveness of combining text and images for retrieval including medical
image retrieval is one of the main goals of the CBIR benchmarking campaign ImageCLEF2 [92, 170].

Context in medical pattern recognition

Combined decisions of classifiers constructed on sequentially selected sets of features were tested
on four datasets including medical data in [223]. Best results were obtained when the combination
approach was applied on top of feature selection. Unfortunately, experiments were carried out
with homogeneous datasets, which did not contain heterogeneous features such as visual, textual,
audio, etc.

Early fusion of clinical parameters and genetic factors was used to predict the risk of coronary
artery disease in [38]. Interaction among features were studied using Bayesian network representa-
tions. Although visually identified feature groups were in accordance with medical knowledge, no
quantitative analysis of the interactions and the associated prediction performance was performed.

2http://imageclef.org/, as of 5 November 2009
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Figure 4.8: Influence of the age on the visual aspect of the lung tissue. Healthy tissue from a 25–
year–old man on the left, and from an 88–year–old man on the right. Both images have identical
window level settings.

A combination of radiologic findings on chest radiographs and clinical parameters to provide
probability output of 11 possible ILDs using an artificial neural network is carried out in [1]. By
using these probabilities, radiologists were able to significantly improve their diagnosing accuracies.
However, automatic detection of relevant patterns in the chest radiographs was not investigated.

Utilization of knowledge of disease location to improve detection of fibrosis patterns in HRCT
data was carried out in [293]. The locations of the patterns showed to significantly improve
detection performance but require an accurate segmentation of the anatomy of the lung.

As observed in Section 1.3.2, many image–based diagnostic aid systems for ILDs were developed
for the categorization of lung tissue patterns in HRCT data [220, 246, 253] and some of them showed
to be effective in clinical routine [4]. Yet, most of these systems are based on visual data only.
To our knowledge no system attempted to integrate clinical parameters for automatic detection of
lung tissue patterns associated with ILDs in HRCT data. Texture analysis of lung images using
QWF and GLH was investigated in Chapter 3 and support vector machines (SVMs) showed to
be optimal for the categorization of lung tissue in Section 4.1. In Section 4.2.3, we study the
influence of the integration of the clinical context of HRCT images on classification performance
of 2D hand–drawn ROIs in axial slices from patients affected with an ILD. Early and late fusion
strategies are studied.

4.2.2 The clinical context of HRCT images from patients with ILDs

Radiologists do never interpret HRCT images without taking into account the clinical context.
Several clinical parameters — in particular the age of the patient (see Fig. 4.8) — have a major
influence on the visual aspects (densities) of HRCT images of the chest [51, 57, 161, 210]. For
example, discovering fibrotic findings in a lung belonging to an 80–year–old patient is not as
surprising as finding them in a lung of a 25–years–old young person. In Figure 4.8, one can
see that healthy tissue from the 88–year–old man has lower mean density with more pre–fibrotic
lesions compared to the homogeneous healthy tissue of the 25–year–old man. A comprehensive
description of the clinical parameters involved in the diagnostic process of the ILDs can be found
in Section 2.2.2. To accurately analyze HRCT images an image–based computerized diagnostic aid
system for ILDs must integrate the clinical context of the images.
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4.2.3 Modality fusion

Integrating information from multiple sources for pattern recognition is not straightforward and
require precautions to achieve best performance. The trivial way of fusing information from various
modalities is to create one large feature space by concatenating the features from every modality
(early fusion). The redundancy and synergies among groups of features must be studied and the
increased number of features associated with multiple sources of information requires special atten-
tion to avoid the curse of dimensionality. A solution to manage this is to split the feature spaces
into subgroups that are mined by multiple classifier systems (late fusion). The latter has been an
active research domain during the last decade. In particular, the International Workshops on Mul-
tiple Classifier Systems3 (MCS) endorsed by the International Association for Pattern Recognition
(IAPR) brought several contributions on the problematic of combining classifiers. Several other
fusion scheme were proposed in the literature. For instance, non–homogeneous transformations of
the feature space were proposed in [289] using separated kernels for each modality.

In this section, two fusion strategies are proposed, evaluated and compared: early and late
fusion.

Early fusion

In order to create a multimodal feature space, clinical and visual attributes are normalized and
concatenated into one single feature vector v as follows:

v = ( t1 . . . tM c1 . . . cN ) (4.1)

with tm, m ∈ [1;M ] the visual features (GLH and QWF) and cn, n ∈ [1;N ] the clinical attributes
(see Section 3.2). Using all 72 clinical attributes, the maximum dimensionality of the multimodal
feature space reaches 119 with 56 continuous and 63 binary features. v is used as input of SVMs
which directly output the predicted class using one versus one multiclass approach.

Late fusion: multiple classifier systems

Two SVMs classifiers qt and qc are trained using visual features t and clinical attributes c
respectively. Attributes in t and c are normalized (within each group) in order to give equal im-
portance to each of them. Both SVMs deliver probabilities pt and pc using pairwise coupling [276].
For each class wj , probabilities are multiplied to compute final probability p(wj)

p(wj) = pt(wj) · pc(wj). (4.2)

The final predicted class wj is given by argmax
j

p(wj). Using the product of probabilities for

predicting the final class assumes that the modalities t and c are conditionally statistically inde-
pendent [15, 115].

Other combination strategies of the classifier’s outputs are found in the literature. The mean of
the probabilities has been used although it does not makes sense in theory of statistics. A majority
vote was also proposed several times, but it is not applicable to a combination of two classifiers and
special cases need to be treated when the number of modalities Nmod is even. Using the product of
probabilities has the advantage of attributing more importance to the classifiers that have higher
probability, which favors classifiers that actually have more confidence. The late fusion scheme is
summarized in Figure 4.9.

4.2.4 Evaluation: early versus late fusion

In order to study the effect of the integration of the clinical context of HRCT images on the
classification accuracy of the lung tissue patterns, optimized SVMs with a Gaussian kernel are
used to categorize ROIs from the multimodal feature space. SVMs with a Gaussian kernel have

3http://www.diee.unica.it/mcs/, as of 5 November 2009
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Figure 4.9: Classification scheme for late fusion. Two expert SVMs classifiers qt and qc output
probabilities pmod(wj) which are multiplied to obtain the final probability of each class wj .

shown to be effective to categorize lung tissue patterns from visual features in Section 4.1 and
are adapted to mine clinical parameters as shown in [42]. Two methods for combining visual
and clinical attributes are compared: early versus late fusion. Comparisons can be found in the
literature for emotion recognition from face and body gestural in [84] and for video retrieval where
visual and textual information are fused in [230].

Principal component analysis

The effect of reducing the dimensionality of feature spaces using principal component analysis
(PCA) is investigated in this section. First, PCA is applied only on the clinical feature set cn to be
used with combined SVMs. Second, PCA is applied on the whole concatenated feature set. The
number of principal components NPCA kept is chosen according to [182]:

NPCA > 1 + 2
√
Nfeatures − 1
Ninstances − 1

(4.3)

with Nfeatures the number of features and Ninstances the number of instances. In both cases,
NPCA = 2 is chosen based on (4.3).

Material and methods

736 ROIs from healthy and four pathological lung tissue patterns belonging to 48 patients with
filled clinical parameters were selected for this study. The dataset used for the comparison is
identical to the one used in Section 3.2 to build the multimodal feature space and is detailed in
Table 3.9. Distributions of the classes are highly imbalanced as the largest class fibrosis contains
312 ROIs and the smallest class only 58 ROIs. There is a mean of 147.2 ROIs per class.

Implementation of the SVMs’ C–support vector classification and PCA transform is taken from
the open source Java library Weka4 using a wrapper for LIBSVM 5. The image feature extraction
and the optimization of SVMs is implemented in Java. Quincunx Wavelet frames are implemented
in Java [255].

Validation

In order to test the influence of clinical parameters on classification accuracy of the 2D ROIs, a
LOPO cross–validation was used. The training set is used both for grid search for optimal param-

4http://www.cs.waikato.ac.nz/ml/weka/, as of 5 November 2009
5http://www.csie.ntu.edu.tw/∼cjlin/libsvm/, as of 5 November 2009
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Table 4.5: Averaged accuracies obtained with the various techniques. Best performances are
highlighted in bold.

visual
features

clinical
features

concatenated
features

(early fusion)

combined
SVMs

(late fusion)

combined SVMs,
PCA on clinical

features

PCA on
concatenated

features

healthy 0.46 0.01 0.19 0.43 0.48 0.22

emphysema 0.64 0.08 0.26 0.43 0.47 0.78
ground glass 0.57 0.56 0.6 0.71 0.62 0.5

fibrosis 0.91 0.77 0.95 0.95 0.95 0.87

micronodules 0.68 0.8 0.86 0.83 0.45 0.21

global 0.74 0.61 0.74 0.79 0.72 0.58

eters and adjustment of the maximum–margin hyperplane of the SVMs. Optimized parameters of
the SVMs are the cost of the errors C and the width σK of the Gaussian kernel. A grid search
is carried out within the intervals C ∈ [1; 100] and σK ∈ [10−2; 102]. For every coordinate of the
grid, a 10–fold CV is carried out on the training set. Optimal parameters (Copt, σoptK ) that allowed
best mean CV accuracy Acv are used to train the final model on the entire training set.

In order to study the optimal number Nclin of clinical attributes to be used, mean classification
accuracies over the 48 patients are computed for each Nclin ∈ [1; 72], with clinical attributes
ordered by Asingle values (see Section 3.2.3). Mean classification accuracies Atestmean according to
Nclin obtained with the test set using visual features only, clinical features only and combined
features with early and late fusion are shown in Figures 4.10, 4.11, 4.12, 4.13, 4.14 for each class.
Global accuracies of each method are summarized in Figure 4.15. Mean accuracies over Nclin
values as well as classification based on PCA are contained in Table 4.5.

4.2.5 Discussion on the fusion schemes

Influence of the clinical context of HRCT images on lung tissue classification accuracy is studied
in Figures 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15. As baseline performance, the accuracy achieved
by using visual features only is considered, which has a mean global value of 74%. The last line
of Table 4.5 shows that integrating the clinical context of the images allows for significant global
improvements of the classification accuracies. On average, 5% is gained (absolute gain) in global
accuracy using combined SVMs compared to using visual features only. Classification accuracies
of combined modalities (all combination strategies taken together) are always superior to single
modalities as observed in Table 4.5.

However, the clinical features can harm the classification accuracy if they are not integrated
using an appropriate fusing technique. With early fusion, positive interactions between clinical
and visual features are allowed as shown in Fig. 4.14 for the class micronodules and for low Nclin
values in Fig. 4.10 for class healthy. However, concatenating all features in a single vector has the
drawback that less informative attributes of one modality scatter homogeneous clusters of instances
in the feature space of the other modality. Figures 4.10, 4.11 and 4.15 confirm this phenomenon,
where the curve of the concatenated features drops when adding more noisy clinical attributes with
low discriminatory power. Some clinical features have negative interactions among them as well as
with the visual ones, which partly explains the irregular shape of the curves. Separating visual and
clinical features for mining using late fusion avoid interactions between the feature groups which
show more stable performance compared to early fusion. This is particularly true when clinical
attributes carry little information as it is the case for classes healthy. The conditional statistical
independence required for using the product of probabilities in Eq. (4.2) is admissible as the mean
correlation value ρmean of each feature pair (tm, cn) is equal to 0.0143 (see Figure 3.18). The late
fusion scheme divides the multimodal feature space into smaller feature subspaces that have the
advantage to reduce the computational complexity for solving the quadratic problem of finding
the maximum margin hyperplane of SVMs in Eq. 1.12. Moreover the subspaces can be processed
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Figure 4.10: healthy
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Figure 4.11: emphysema
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Figure 4.12: ground glass
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Figure 4.13: fibrosis
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Figure 4.14: micronodules
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Figure 4.15: multiclass

Figure 4.16: Testing accuracies Atestmean with a varying number of clinical parameters Nclin for the
diverse techniques.
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in parallel to reduce the training time of the SVMs. The combined SVMs (late fusion) show high
robustness towards the number Nclin of clinical parameters used and allowed the best accuracy
of 84% correct predictions of testing instances (ROIs) among the five classes of lung tissue with
an optimal number of clinical attributes Nclin = 35. Although the PCA transform allows best
results for classes where clinical attributes have low discriminatory power (see Table 4.5), it does
not improve the global accuracy.

A limitation of this study occurs as some of the ROIs in the class healthy were delineated in
patients that have had an ILD in their medical history, leading to abnormal clinical parameters.
This partly explains the very low accuracies obtained for healthy patterns when the classification
is based on clinical parameters. Further validation with true healthy control subjects has to be
carried out to assess the benefits of using the clinical parameters for the classification of healthy
lung tissue.

The substitution with the average value for the clinical parameters that had an unknown value
in Section 3.2.1 is questionable. Indeed, the ideal solution would be to teach the SVMs classifier
that the value is unknown and that the feature should not be used for the classification. This is
implemented by placing the feature value right on the decision boundary. By substituting unknown
by the mean, the instance is positioned somewhere in between the classes, which may not be on
the decision boundary, thus having an influence on the classification outcome.

At last, we believe that negative synergies still occur among features in the subspaces using a
late fusion scheme. Groups of features with positive synergy [14], which allow for homogeneous
clusters of instances belonging to the same class have to be identified and mined into separated
subspaces. Indeed, part of the fluctuations of the performance according to Nclin are the results of
interactions among the various groups of features. An approach for identifying feature groups with
positive synergy based on mutual information is described in [116, 117]. Alternatively, a visual
approach based on Bayesian networks is proposed in [38]. GLH and texture features from GLCM,
RLE and grey–level differences are divided into uncorrelated groups using Pearson’s coefficient of
correlation R2 for the categorization of COPD in [191]. In this study, the visual and the clinical
features have very low mean correlation ρmean = 0.0143 (see Section 3.2.3). The correlation
among the features can be visualized in the correlation matrix of the multimodal feature space in
Figure 3.18. At last, identifying feature groups with high consistency should also include medical
knowledge.

4.3 Case–based retrieval

Searching for external information to fill in the lack of knowledge and experience towards a
problem to solve corresponds to the daily routine of the majority of the physicians. The most
common external sources of information used are:

• the Internet,

• literature databases accessed through web portals such as PubMed6, BioMed Central7 or
UpToDate8,

• textbooks owned by the departement,

• personal collections of cases.

The Internet is a very vast knowledge base, but the quality of the information is questionable.
Standardized quality control was proposed by the health on the net foundation (HON) by intro-
ducing certification codes that are visible on the web pages (HONcode9). However, searching for
information on the Internet, scientific literature or textbooks can be time–consuming and often

6http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed, as of 5 November 2009
7http://www.biomedcentral.com/, as of 6 November 2009
8http://www.utdol.com/home/index.html, as of 5 November 2009
9Health On the Net, http://www.hon.ch/, as of 5 November 2009



4.3. CASE–BASED RETRIEVAL 81

yields theoretical solutions that are not directly applicable to a given medical problem. Problem–
based learning is complementary to the theoretical knowledge and provides practical guidelines.
The latter was successfully applied to the medical domain [120, 228]. In order to store and organize
the practical experience gained with solved problems, physicians and radiologists often create their
own collections of cases [165]. The latter can be digital and several initiatives such as Casimage10,
MedTing11, MyPACS12 or MIRC13 offer disk storage and software tools to organize, anonymize
and share collection of cases. These multimedia collection of cases can be used for teaching en-
abling the possibility to gain practical experience and to compare the patient under investigations
to cases with verified diagnoses and follow–up [206].

Most often, the access to these collections of cases is text–based where the user can search
by diagnosis, organ, modality, age, etc... This is often of limited use to the radiologists who
are actually looking for similar images and may want to retrieve cases with various diagnoses to
discover a potential match with the patient under investigation. Assessing visual similarity is thus
required and CBIR was proposed several times [145, 170, 213, 220, 272]. However, radiologists are
most often looking for similar cases as they are considering the image within the context of a
patient with a personal history, findings on the physical examination, laboratory tests, etc.

Thereby, a possible extension to CBIR is to carry out case-based retrieval based on visual and
clinical similarity. Moreover, in terms of retrieval performance, CBIR based on the visual data
alone can only achieve a limited retrieval quality when used for diagnosis aid [166]. The case has
to be taken as a whole with visual information from images and other clinical data that contain
complementary information required in the process.

In this section, three–dimensional case–based retrieval is proposed to retrieve similar cases from
the database described in Chapter 2.

4.3.1 3D multimodal retrieval

Case–based retrieval is enabled by the automated categorization of the lung tissue described
in Section 3.1.3. The three–dimensional map of the lung tissue obtained with the blockwise clas-
sification of the lung regions yields a semantically–related basis for the comparison of the cases.
As a first approach, the percentages of the respective volumes vi of the five classes of lung tissue
are used to assess the visual similarity between HRCT image series from two patients. The re-
spective volumes of lung tissue are semantically related to the ILDs as each histological diagnosis
is associated to a given combination of HRCT findings. This allows to reduce the semantic gap
between the user’s intentions and the visual features, which is often a bottleneck in CBIR [226].
The Euclidean distance is computed from the percentages of the five volumes of tissue as follows:

dvol =
√
v2
h + v2

e + v2
g + v2

f + v2
m (4.4)

with vh corresponding to healthy tissue, ve to emphysema, vg to ground glass, vf to fibrosis to vm
for micronodules.

44 clinical parameters with two levels of importance are used to assess the “meta–similarity”
between the cases. The levels of importance are defined by a physician according to the relevance for
establishing the diagnosis of eight common ILDs. 3 clinical parameters of first importance include
age, gender and smoking history. Another 41 parameters of second importance included physical
findings, medical history, and laboratory results. The parameters associated with biopsy outcomes
were not included as the goal of the CAD is to provide quick information to the radiologists before
any biopsy.

The multimodal distance measure dM between two cases is computed as a linear combination
of three modalities:

dM = a1dvol + a2dparam1 + a3dparam2, (4.5)

10http://pubimage.hcuge.ch/, as of 5 November 2009
11http://medting.com/, as of 5 November 2009
12http://www.mypacs.net/, as of 5 November 2009
13Medical Imaging Resource Center, http://mirc.rsna.org/, as of 5 November 2009
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Table 4.6: Mean precisions based on the diagnosis of the retrieved cases. The values of the weight
ai that allowed best global precisions show the respective importances of the modalities.

P@1 P@5 P@10 P@Nr Nr

PF 79.2 58.3 51.7 42.7 24

COP/BOOP 60 20 18 20 5

TB 71.4 48.6 34.3 42.9 7

PCP 25 20 10 25 4

HP 54.5 40 39.1 38 11

AIP 66.7 33.3 25.5 27.2 9

Sarcoidosis 100 66.6 52.2 56.8 9

average/total 59.4 39.7 34.2 32.4 69

weights a1,2,3 in (4.5) 8;1;39 6;9;38 8;5;48 10;4;41

with aj being the weights of each modality. dvol is the Euclidean distance in terms of percentages
of the volumes of segmented tissue according to (4.4) and dparam1,2 the euclidean distance in terms
of clinical parameters of importance 1 and 2, respectively. dvol and dparam1,2 are normalized before
being combined in (4.5).

4.3.2 Evaluation

To assess case–based retrieval performance, mean precisions at rank 1, 5, 10 and at rank equal
to the number of instances of the diagnosis Nr are computed using a LOPO cross–validation with
69 cases (see Table 4.6). A grid search for optimal weights of the modalities in (4.5) is carried out
with aj ∈ [0 : 50[.

4.3.3 Discussions on the retrieval performance

Visual information retrieval in 3D data sets has rarely been reported in the medical domain, and
even less when based on textures whereas it does exist for non-medical shape–based retrieval [238].
The retrieval precisions presented in Table 4.6 are currently fairly low to be used in clinical routine
but show the feasibility of indexing ILD cases using the volumes of automatically segmented lung
tissue as well as clinical parameters. It is important to note that the link between visual similarity of
two HRCT scans and their associated diagnoses is not straightforward. The values of the weights
a1,2,3 that allowed best performance reflect the importance of the each modality. High values
obtained for a3 shows the unexpectedly high importance of the clinical parameters of secondary
priority. High variations of the precision can be explained by the fact that the number of cases
is still fairly small, particularly for COP/BOOP and PCP. Further developments are required
to improve the assessment of the visual similarity: local values of the low–level feature vector v
containing the QWF and GLH features can be used directly as a modality in (4.5), under the
condition to overcome the difficulty in setting up a standardized localization system for the lung
anatomy. This was proposed by Zrimec et al. in [291] where a 3D model of the human lung with
lung region characterization is robustly built. A simple model was also proposed in [144] for CBIR.
Learning to rank was also proposed in the literature where the distance measure is learned using
a set of training examples. It allowed to improve the retrieval performance of text–based queries
on the Internet in [24]. To improve the retrieval performance of the ILD cases, SVMs regression
can be used to learn the similarity measure. A higher number of cases is required, though.



Chapter 5

Applications and evaluation

In the previous chapters, methods for feature extraction, classification and retrieval were pro-
posed and evaluated on a multimedia dataset built from clinical routine at the HUG. Although
constituting the foundations of the CAD system for ILDs, these techniques are not directly usable
in clinical routine and efforts are required to successfully bring them to the end users. Ergonomic
interfaces and realistic evaluation settings must be put in place in order to take benefit of the full
potential of the proposed methods.

In the first part of this chapter, use cases are defined to serve as a basis to develop a rich Internet
application (RIA) that implements the methods previously proposed for lung tissue categorization
and case–based retrieval. In the second part, the evaluation strategies are detailed and revisited
to ensure their accordance to real clinical settings.

5.1 Use cases, visualization and software

Up until recently, film–based radiological images allowed to visualize organs only via 2D pro-
jections of three–dimensional organs. Nowadays, the digital form of medical visual information
enables advanced visualization techniques. Three–dimensional colored objects with motion corre-
spond to our visual perception of the world. Thereby, several DICOM viewers integrated tools
for representing four–dimensional color visual information [212]. A notable example is the open
source software OsiriX1 [207] based on the visualization toolkit2 (VTK) [216]. Attempts using
virtual reality was proposed in [82]. Transfer functions mapping density values to colors allow
realistic rendering of bone structures and organs (see Figure 5.1). The visualization tools aim at
representing the most information at once in order to reduce the reading time and to assess global
views of organs synthesizing visual information to ease the diagnosis workup.

The definition of use cases adapted to the needs of the radiologists in a particular context is
also an important clue for the success of the CAD. In this thesis, three use cases are defined to
optimize diagnostic aid for ILDs:

• navigation through the multimedia database records for teaching and learning purposes,

• automated 3D categorization of the lung tissue in HRCT image series,

• case–based retrieval.

The second and the third use cases are strongly interdependent, yielding a hybrid detection–
CBIR–based CAD system (see Section 4.3). The three use cases were implemented in a RIA
based on Adobe FLEX3 and Java Applet4 using Java3D5. The goal was to develop a fully web–
based application, so it can be used by either students or clinicians and from various places inside

1http://www.osirix-viewer.com/, as of 5 November 2009
2http://www.vtk.org/, as of 5 November 2009
3http://www.adobe.com/fr/products/flex/, as of 5 November 2009
4http://java.sun.com/applets/, as of 5 November 2009
5http://java3d.j3d.org/download.html, as of 5 November 2009
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Figure 5.1: CT scan of the head: a transfer function maps HU values
to colors for realistic rendering of the bone structures and organs (source:
http://www.osiriximaging.com/2008/12/how-to-create-a-fly-through-in-osirix-written-by-esther-pulley/,
as of 17 November 2009).

the hospitals. All software to be installed on clinical desktops at the HUG has to go through
a tedious administrative task. As soon as a Java virtual machine and Java3D are installed, the
RIA application can be accessed directly by typing the corresponding uniform resource locator
(URL) in a web browser. Once logged in, the user can choose between browsing the multimedia
database using exact text search and analyzing a new case along with retrieving similar patients
(see Figure 5.2).

This section is organized as follows. The use case for browsing the database is detailed in
Section 5.1.1. The workflow for the analysis of lung tissue of a new case combined with the
case–based retrieval is described in Section 5.1.2.

5.1.1 Multimedia database browsing

The workflow for the navigation through the database records is depicted in Figure 5.3. This use
case is mostly intended for teaching where students, interns and little experienced radiologists can
consult the typical clinical and radiological manifestations of ILD diagnoses but also realize their
variabilities through real cases. This use case is recommended to be used along with textbooks and
literature such as [114, 268] that describe the fundamental mechanisms of the studied histological
diagnosis.

The user can perform a text–based search by defining the target value of each clinical parameter
as shown in Figure 5.4. And and Or combination rules are available to favor either precision or
recall of the retrieved information. Based on the query, an exact text search is performed. The
retrieved patients are listed in a dynamic page that allows to preview the clinical parameters
organized in three levels of importance (see Figure 5.5). The importance level of each clinical
parameter vary based on the diagnosis of the case in order to show the most relevant parameters in
the second level. A pop–up window showing a preview of the HRCT image series can be obtained
by clicking on the miniature image displayed on the right side of each case. As soon as the user
wants to access full case data based on the previewed information, a “Detail” button can be clicked
to open a new page that displays every available clinical parameter using a tree–like structure (see
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Figure 5.2: Welcome menus of the RIA. Once logged in, the user can choose between navigating
through database records (see Figure 5.3) and analyzing a new case along with retrieving similar
patients (Figure 5.9).

Figure 5.6). On the right panel of this page, the HRCT image series are listed by the date of the
study. By double–clicking on an image series, the YaDiV Java Applet is launched and opens the
requested image series along with the associated annotated regions (see Figure 5.7). 2D and 3D
views are available to navigate through the image series and visualize the delineated pathological
lung tissues. The user can switch between clinical parameters and HRCT images by clicking either
on the “Patient data” tab or the “YaDiV” tab. In order to perform a new search or to return to
the main menu, the button showing a backward arrow on the top left of each page can be used.

5.1.2 3D lung tissue categorization and case–based retrieval

The second use case implements the analysis of the image series of a new case and case–based
retrieval. The main components of the hybrid approach are detailed in Figure 5.8. In a first step,
the clinician can run the three–dimensional categorization of the lung tissue on the undiagnosed
incoming HRCT image series in order to obtain a 3D map of the lung tissue. On the one hand,
this map highlights diagnostically useful events in the image series and thus reduce the risk of
omission of important lesions of the lung tissue. On the other hand, it provide first insights of
the potential histological diagnosis of the patient under investigation by providing the respective
volumes of five lung tissue sorts6 that are associated with most of the ILDs. In a second step,
the clinician can retrieve similar cases from the multimedia database based both on the respective
volumes of the previously segmented lung tissue sorts and on the value of the clinical parameters
(see Section 4.3). The range of the diagnoses of the retrieved cases provides information to the
clinician with detailed examples. The workflow for the categorization of the lung tissue and case–
based retrieval is detailed in Figure 5.9. Starting from the page for submitting the query, the user
can either categorize lung tissue and fill clinical parameters to retrieve similar cases based both on
visual features and text or skip the image analysis step to retrieve cases based only on the clinical

6healthy, emphysema, ground glass, fibrosis and micronodules
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Figure 5.3: Workflow of the RIA for the navigation in the database using exact text search.

Figure 5.4: Form containing the clinical parameters for querying ILD cases using exact text search.
And and Or combination rules are available.
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Figure 5.5: List of cases returned by an exact test search. The user can preview the clinical
parameters of the patients with three levels of importance. Levels of importance are varying based
on the diagnosis.

Figure 5.6: Detailed view of a selected case: clinical parameters. This page is reached from the
button “Detail” of Figure 5.5.
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Figure 5.7: Detailed view of a selected case: image series and annotations. 2D and 3D views are
available to visualize the ROIs. YaDiV was adapted and embedded in a Java Applet.

parameters.

Similar case retrieval

Starting from the Flex page for the specification of the clinical parameters (top left image in
Figure 5.9 and Figure 5.10) for similar case retrieval, the user has two choices:

• analysis of a new image series,

• similar case retrieval.

By clicking on the button showing a 3D map of lung tissue (see Figure 5.10), the YaDiV Java
Applet is launched and the user can perform the 3D categorization of the lung tissue by opening
an HRCT image series, segmenting the lung volumes and running the blockwise classification. The
user can submit the query for the retrieval of similar cases by clicking on the button showing a pie
chart (see Figure 5.10). If an image series was previously categorized, the query will be based both
on visual and clinical features. Alternately, the retrieval will be based on the clinical parameters
only.

The ranked list of retrieved cases shown in Figure 5.11 contains the same functionalities as the
list of cases used in the use case for browsing the database in Figure 5.5. A pie chart was added to
display the similarity measure in percent for each case. Detailed views of the selected case identical
to the one used in the “browse” use case (see Figures 5.6 and 5.7) can by obtained by clicking on
the “Detail” button.

3D categorization of lung tissue

The use case described in this section implements the categorization of the lung tissue detailed
in Section 3.1.3. It composed of the segmentation of the lung volumes in a first step, and of the
blockwise classification of the lung tissue in a second step.
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Figure 5.8: Main components of the hybrid (detection– and CBIR–based) CAD system.

Figure 5.9: Workflow of the RIA for the lung tissue categorization of a new case and the retrieval of
similar patients. The query can be based both on specified clinical parameters and on the volumes
of the segmented tissue sorts.
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Figure 5.10: Selection of the clinical parameters for case–based retrieval. The multimodal Eu-
clidean distance described in Section 4.3.1 is used (see Eq. 4.5). The visual modality is included
only if a query image series was previously analyzed.

Figure 5.11: List of cases returned by the multimodal query. The similarity measure is displayed
using pie charts. Similarly to the “browse” use case, detailed views of a selected case are available
by clicking the “Detail” button to access pages depicted in Figures 5.6 and 5.7.
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Figure 5.12: Segmentation of the lung volumes using YaDiV. A “closing” tab was added to YaDiV
to perform a closing operation after the region growing.

Segmentation of lung volumes The segmentation of the lung volumes is a prerequisite step
for the categorization of the lung tissue. It consist of a 3D region growing followed by a closing
operation. More details can be found in Section 3.1.3. The 3D region growing routines are already
available in the original distribution of YaDiV. A tab was added for the closing operation (see
Figure 5.12). When required, the user can manually edit the lung mask. The lung mask can be
visualized in 2D and 3D to verify the completeness of the segmented volume.

Blockwise classification of the lung tissue As soon as the user is satisfied with the seg-
mentation of the lung volumes, the routines for the categorization of the lung tissue can be run
from the “lung tissue analysis” tab that was added to YaDiV. The distance separating the cen-
ters of 32 × 32 blocks can be specified. The “Generate” button runs the feature extraction and
classification of each block belonging to the lung mask. Thanks to the wavelet frame transform,
the values of the wavelet coefficients can be accessed through every scale using identical (x, y, z)
coordinates (see Section 3.1.3 and Figure 3.12). For each block, the corresponding feature vector
is classified using previously trained SVMs. The result of the categorization is displayed using a
three–dimensional map of the lung tissue that can be visualized using the 2D and 3D views of
YaDiV as depicted in Figure 5.13. The volumes in liters of each tissue sort can be obtained by
clicking on the corresponding segment.

5.2 Evaluation

Although almost all CAD systems described in Section 1.3.2 provide an estimation of their
retrieval or classification efficiency, it remains very problematic to compare them objectively [167].
Indeed, the diversity of the addressed tasks and the database used for validation render the com-
parison of the various systems very difficult. Moreover, the validation methods used to assess the
performance of the CADs proposed in the literature have also a large variability over the studies
and the performance measures are strongly related to the latter.
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Figure 5.13: Segmentation of the lung tissue using YaDiV. A “lung tissue analysis” tab was created
to run the blockwise feature extraction and classification. The distance between the centers of the
blocks can be tuned.

In this section, the evaluation methods are discussed with both quantitative and qualitative
considerations of the performance assessment. The need for simulating clinical situations as reliably
as possible to ensure the success of the CAD system at the time it will be integrated in clinical
routine and used by clinicians under time constraints is highlighted. This section is organized as
follows. Section 5.2.1 lists and discusses the validation strategies used in this work and in the
literature. Section 5.2.2 details the metrics used to assess the performance measures of image–
based CAD systems. The Section 5.2.3 enumerates and discusses common causes of error and bias
found in this work and in the state–of–the–art. At last, a discussion on qualitative considerations
is given in Section 5.2.4.

5.2.1 Validation strategies

The validation of the classification and retrieval algorithms is a critical step to assess the
performance of the proposed methods. The latter must be able simulate the conditions in which the
system is intended to be used. In this work, the targeted usage is clearly the clinical routine and the
validation methods must reproduce the clinical conditions where the diagnosis and the lung tissue
patterns are predicted for one unknown incoming patient based on training information derived
from ILD cases with verified diagnosis and annotated HRCT image series that constitutes the
so–called “ground truth”. This ground truth is obtained from the multimedia database described
in Chapter 2.

In machine learning, it is crucial to be able to evaluate the GP (or true risk) of the algorithms
(Section 1.2.2). The GP cannot be directly computed because an infinite number of instances that
form the clusters of classes would be required. However, the error obtained on a training set called
“empirical risk” is known to provide an unbiased estimation of the GP [262]. The challenge then
is to obtain an unbiased estimation of the empirical risk using an appropriate validation method.
In this work, the latter is estimated using one of the four types of validations:
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Figure 5.14: Cross–validation. In this example, 12 instances are split into 3 groups. Over Nfolds
folds, the instances of one group will serve Nfolds − 1 times for training and 1 time for testing.

• repeated random drawing to split the data into training and testing sets,

• Nfold–fold cross–validation (CV),

• leave–one–ROI–out (LORO) CV,

• leave–one–patient–out (LOPO) CV.

Random drawing consists of splitting data into two parts and use one for training and the remaining
instances for testing. The two parts can be unbalanced (e.g. 80% of the samples for training and
20% for testing). The performance measures are averaged over repeated drawings to obtain an
estimation of the performance with limited bias. The other three validation strategies are based
on CV and are detailed and discussed below.

Cross–validation

The cross–validation (CV) consists of partitioning samples of data into Nfolds complementary
subsets (see Figure 5.14) called “folds”. Aiming at assessing the GP, one of the subset is left
aside for further testing of the algorithms and the remaining subsets are used to train the learning
algorithms. The former subset is called the “testing set” and simulates unknown instances and the
latter is called the “training set”. To reduce variance of the performance measures, this experiment
is repeated as many times asNfolds and the global performance measures are obtained by averaging
the performances of each fold. A particular case of the cross–validation is the leave–one–out (LOO)
where Nfolds is equal to the number of instances Ninstances. LOO is appropriate to evaluate the
performance of the algorithm on relatively small datasets and is computationally intensive. CV
showed to provide an estimation of the empirical risk with a tunable bias–variance trade–off with
Nfolds [121].

Leave–one–ROI–out cross–validation In the context of an image–based CAD system, the
instances are constituted of ROIs (e.g. hand–drawn, square or circular blocks, entire image, ...).
Thereby, a LOO CV consists of leaving aside one ROI for testing and use all the remaining ROIs
for training (see Figure 5.15 (a)). This can be extremely computationally intensive as the number
of models to train is equal to the number of instances. For example, the number of instances
obtained by cutting all hand–drawn ROIs of the 5 most represented lung tissue patterns of the
multimedia dataset described in Table 2.3 into 32 × 32 blocks is superior to 15’000. Running the
whole LORO CV requires to train more than 15’000 classifiers using very large training sets of
Ninstances − 1.

Another problem occurs when splitting the training and testing sets by ROIs. Most often in
medical pattern recognition, the number of instances is larger than the number of patients as
several ROIs are drawn in the same image series. It allows to assess the intra–patient variance of
the classes. However, the LORO CV permits to train and test with ROIs that belong the same
patient, which has the effect of introducing a positive bias to the performance measures. The visual
aspects of two ROIs of the same patient are indeed very similar because of individual anatomy
and image settings that are independent of the classification problematic. The probability that
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(a) LORO CV (b) LOPO CV

Figure 5.15: LORO and LOPO validation schemes.

the two ROIs from the same patients belongs to the same class is very high because both ROIs are
associated with the same predominant disease. Thereby, the classification task is simplified as the
classifier will learn visual aspects that are related to the particular patient and not to the disease,
leading to overfitting. The bias is even stronger when the ROIs consist of overlapping blocks where
groups of voxels are used both for training and testing.

Leave–one–patient–out cross–validation A solution to reduce the estimation bias of the
empirical risk is to build the folds of the CV based on the patients (see Figure 5.15 (b)). The
leave–one–patient–out (LOPO) ensures that all ROIs belonging to the same patient are contained
in the same fold and thus does not allow to train and test with identical patients [69]. This situation
corresponds to the clinical routine where the CAD system is trained using the entire database and
unseen ROIs from an unknown patient are classified.

When compared to random drawing and Nfolds–fold CV, the LOPO has the advantage of LOO
which eliminates the variance of the performance measures as exactly the same experience is carried
out for each run (no random draw is carried out with LOO). This is very desirable when searching
for optimal parameters where the variance introduced by a random draw of the folds can lead to
an inappropriate choice of parameters.

At last, the computational cost is affordable with Nfolds equals to the number of cases Ncases.
The number of classifiers to train is equal to Ncases − 1.

5.2.2 Metrics

Mostly depending on the research communities, complementary metrics are used in the liter-
ature to assess the performance of CAD systems. In this section, the performance metrics used
throughout this work are made explicit and discussed.

Confusion matrix and derived measures

The confusion matrix (sometimes also called “table of contingency”) categorizes the predictions
of a classifier in order to visualize and count the occurrences of the correct predictions and the
confusions among the classes (see Table 5.1). It contains all the results of a classification run of a
given dataset with a given model. From the confusion matrix four class–specific measures can be
derived:

• true positive (TP): number of positive instances classified as positive,

• true negative (TN): number of negative instances classified as negative,

• false positive (FP): number of negative instances classified as positive,

• false negative (FN): number of positive instances classified as negative.



5.2. EVALUATION 95

Table 5.1: Nclass–confusion matrix.

actual

predicted class 1 · · · class Nclass

class 1 a11 · · · a1Nclass

...
...

. . .
...

class Nclass aNclass1 · · · aNclassNclass

The latter can be computed for each class cl from the elements aij of the confusion matrix as
follows:

TPl = all, (5.1)

TNl =
Nclass∑
i=1

Nclass∑
j=1

{
aij , if i �= l and j �= l,

0, otherwise.
, (5.2)

FPl =
Nclass∑
j=1

{
aij , if i = l and j �= l,

0, otherwise.
, (5.3)

FNl =
Nclass∑
i=1

{
aij , if i �= l and j = l,

0, otherwise.
. (5.4)

With Nclass the number of classes. From these measures, several performance measures can be
derived such as the precision, recall, accuracy and F–measure.

Precision and recall The precision measures the correctness of the predictions for the class l:

precisionl =
TPl

TPl + FPl
. (5.5)

The recall is complementary to precision as it assess the completeness of the predictions for the
class l:

recalll =
TPl

TPl + FNl
. (5.6)

Precision will be favored for CAD systems where each prediction needs to be correct whereas
systems with high recall ensure to detect every instance of the considered class (e.g. important for
the detection of malignant lung nodules).

Accuracy Whereas specialized CAD systems require either high precision or recall, most of the
systems aim at maximizing the two measures together. The accuracy Al combines the two by
computing the rate of correctly classified instances for the class l:

Al =
TPl + TNl

TPl + TNl + FPl + FNl
. (5.7)

For multiclass systems, either the arithmetic or the geometric mean of Al can be used to assess the
global multiclass performance. The arithmetic mean A of the class–specific accuracies computes
the rate of correctly classified instances over all classes:

A =
∑Nclass

l=1 TPl + TNl∑Nclass

l=1 TPl + TNl + FPl + FNl

. (5.8)

A allows to assess the global performance of all predictions for all classes but is of limited use
when the distribution of the classes is highly imbalanced. For example, consider the two–class
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Figure 5.16: ROC curves. The point A denotes a working point of a CAD system and corresponds
to a prediction of all instances of the dataset (i.e. full confusion matrix).

configuration with a dataset of 90% and 10% of negative and positive instances, respectively.
Based on this dataset, a classifier always predicting the negative class will lead to A=90% but is
useless in practice. Alternately, the geometric mean Ageom of each class–specific accuracy Al gives
the same importance to each class, even if the classes are imbalanced [127]:

Ageom = Nclass

√√√√Nclass∏
i=1

Al. (5.9)

F–measure F–measure (also called “F–score”) is the weighted harmonic mean of precision and
recall rates:

Fl =
2 · precisionl · recalll
precisionl + recalll

. (5.10)

Fl yields a class–specific performance based both on precision and recall. The F–measure is useful
to assess the performance of one versus all configurations.

ROC curves

As mentioned above, depending on the CAD task, either the precision or the recall will be
favored. Most often, the trade–off between the two can be tuned with the underlying algorithm
parameters of the CAD (e.g. the cost of the errors with SVM classifiers). In order to assess
the behavior of the precision–recall trade–off, the receiver operating characteristics curves (ROC)
represent the TP rate functions of the FP rate (see Figure 5.16). Clearly, a system with best
performance will maximize the area under the curve. Based on the ROC curve, the user can
choose the working point that provides an appropriate precision–recall trade–off. However, ROC
curves are class–specific and several one versus all configuration have to be used for multiclass
configurations, which is not appropriate to visualize the global performance of a multiclass CAD
system.
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5.2.3 Causes of error and bias

Clinical environments are extremely demanding in terms of robustness (high variability of data
to be analyzed), usability and efficiency of the CAD system. The clinicians are expecting to
access accurate information simply and rapidly [31]. Recently, the Food and Drug Administration
(FDA7) of the United States issued two draft guidance documents8 concerning the premarket
approval process for CAD devices that contain valuable recommendations for evaluating image–
based CAD systems. Hazards of the validation methods were discussed in Section 5.2.1. In this
section, potential pitfalls of the validation methods concerning the influences of the dataset and
optimization techniques are identified.

Influence of the dataset

The dataset used for the validation of the CAD is of course of primary importance to obtain
statistically significant performance assessment. An inappropriate dataset will lead to very biased
results. For instance, in the context of CBIR, Müller et al. showed that validating the same CBIR
system on various selected subsets of the Corel Photo CDs leads to very different performance
values [167]. The testing database has to be representative of the target population and the target
disease, condition or abnormality for which the CAD system is intended (see Chapter 2). It is
important to have a collection of cases showing the full range of the variability of the considered
classes or diseases. This is especially true for the normal cases as the variability among healthy
subjects is very large.

To objectively compare the performance of CAD systems, benchmarking with standardized
databases was proposed in CBIR with ImageCLEF [91], in pulmonary image analysis at the MIC-
CAI 2009 conference9 with VolCANO10 for the characterization of lung nodules and EXACT11 for
the segmentation of the airways. Yet, no challenge was proposed for lung tissue categorization in
HRCT imaging, which is probably due to the lack of databases of ILD cases for comparing the
methods.

Influence of the annotation As already mentioned in Section 2.3.2, particular care is required
when carrying out annotations to be used as ground truth for computerized analysis. A measure
of the performance of the radiologists is desirable to assess the quality of the ground truth itself.
The intra and inter–observer variations allow to objectively evaluate the radiologists as well as to
be aware of the specific challenges of interpreting the considered images [9]. For example, common
causes of error when interpreting HRCT images of the lung are to mix partial volume with ground
glass or nodules with bronchovascular structures [90].

As soon as high–quality ground truth is obtained, bias can be introduced when the validation
is carried out only with typical visual aspects of the patterns. In most of the studies in the state
of the art as well as in this work, the validation is based on manually selected ROIs (hand–drawn
or blocks). This can potentially bias the performance measures as the typical instances are usually
easier to classify. In lung tissue characterization in HRCT, problems occur for the classification
of blocks that are close to the mediastinium or adjacent to the lung border where high gradient
values are found because the radiologists are usually delineating ROIs in the central regions of the
lung parenchyma (see Figure 5.17). The system is thus evaluated on facilitated instances, which
introduce a positive bias in the performance measures. A negative bias was found in this work
that is highlighted in Table 3.7 with the blockwise classification where recurrent confusions are
found between ground glass and fibrosis. Most often, small regions of ground glass are found in the

7http://www.fda.gov/, as of 14 November 2009
8The documents are available online at

http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm187249.htm and
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm187277.htm, as of
14 November 2009.

9Medical Image Computing and Computer Assisted Intervention, http://www.miccai2009.org/, as of 15 Novem-
ber 2009

10Volume Change Analysis of NOdules, http://www.via.cornell.edu/challenge/ as of 15 November 2009
11EXtraction of Airways from CT, http://image.diku.dk/exact/ as of 15 November 2009
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Figure 5.17: Common missclassifications near the lung border and the mediastinium (source [113]).

remaining functional tissue surrounding fibrotic patterns and were encircled with fibrosis regions,
which induce classification errors.

Optimization

Optimization is required to find optimal values of the underlying parameters of the CAD. It
aims at minimizing the empirical risk but the final performance claimed must be measured with
an untouched testing set (see Section 4.1.1). Test data, used once before, does not constitute inde-
pendent data because the CAD algorithm my have become trained to that data, either implicitly
or explicitly. Although rather straightforward, it is important to note that these guidelines are not
always respected in the state–of–the–art.

5.2.4 Qualitative evaluation

Although fundamental to be aware of the limitations of the CAD, the standalone quantitative
evaluation is not directly related to the usability of the system in a clinical environment [81].
The performance level of automated computer diagnosis is equal to the performance achieved
by computers. However, the performance level of the CAD system is equal to the performance
achieved by the physician who makes the final decision by using the computer output as a second
opinion. The latter is of course related to the standalone performance, but also to the allowance
offered by the CAD as well as the user–friendliness of the GUIs. For instance, with image–based
CAD for ILDs in HRCT, the choice of the classes of lung tissue is crucial for an optimal usage in
clinical routine. While aiming at providing an exhaustive analysis of the HRCT image series as
diagnostic aid for ILDs, the set of classes must be able to characterize most of the ILDs to avoid
that the clinicians still have to go through the whole image series to seek for the patterns that were
not included in the CAD. Normal versus abnormal classification configuration should be favored
to detection of one single specific pattern (e.g. ground glass, emphysema, honeycombing, ...).

At last, regular meetings and discussions with radiologists are strongly recommended starting
from the beginning of the design of a CAD system to have continuous feedback on the functionali-
ties, user interfaces and of course to gain experience providing insights of solutions to the considered
problems and challenges. A methodology must be put in place to conduct a clinical evaluation
aiming at quantitatively measure to benefits of the CAD system by comparing the precision and
recall measures of the radiologists with and without the CAD [4].



Chapter 6

Conclusions and Perspectives

At the end of the early days of computer vision, multidisciplinary research efforts are required
to enable image–based computer–aided diagnosis to clinicians. It is the role of computer scientists
to make the first step towards the clinicians to demonstrate the full potential of their emerging
technologies for clinical benefits. Close collaborations with health care professionals are necessary
to adapt and further develop the existing state–of–the–art techniques in computer vision to the
very challenging demands of clinical environments.

In this thesis, image analysis and retrieval methods are proposed to cope with the exponential
growth of the amount and variability of medical visual information. A focus on texture analysis
of HRCT imaging of the chest of patients with ILD allowed to study medical image–based CAD
systems from theoretical aspects of image processing and machine learning to ergonomics of user
interfaces through the construction of a multimedia case collection and CAD performance assess-
ment. The main achievements representing contributions in the fields of image processing, machine
learning and information retrieval as well as the respective limitations are recalled in Section 6.1.
Based on the proposed achievements, perspectives of computer–aided analysis and management of
medical visual information are discussed in Section 6.2.

6.1 Achievements and limitations

At the crossing of computer vision, medicine, artificial intelligence, information retrieval, data
management and human–computer interaction, the main contributions and underlying limitations
proposed in this thesis are summarized in this section.

6.1.1 Literature analysis

57 papers on texture–based CADs for lung tissue analysis in thin–section CT from 27 research
groups from 1997 to 2009 were systematically categorized and reviewed in Section 1.3.2. The trends
and weaknesses were identified and showed a lack of systems integrating non–visual data calling
upon contributions on multimodal CAD systems fusing visual and clinical data.

6.1.2 Multimedia library

A multimedia collection of 128 ILD cases (108 with image series) was created to provide a
reference dataset for the evaluation of pattern recognition techniques and teaching purposes. A
methodology for selecting, annotating and capturing patients with verified diagnoses of ILD and
quality assessment was established. A limitation is the lack of healthy cases. Consequently, most of
the healthy regions of the lung parenchyma were annotated in formerly diseased cases and further
investigations are required to ensure that the annotated regions of healthy tissue are representative
of the large variety of normal lung tissue in HRCT.

99
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6.1.3 Features

A multimodal feature set for the categorization of lung tissue patterns associated with ILDs in
HRCT was developed and validated in Chapter 3. The consistency of the heterogeneous feature
space was studied using correlation analysis. Further work is necessary to study the interactions
among the subgroup of features in order to define features spaces with maximal positive synergy.

Visual features

An affine–invariant texture feature set based on a tailored WT was developed. It is the result
of the combination of isotropic polyharmonic B–spline wavelets with a redundant frame transform
using a quincunx lattice. The characterization of the wavelets coefficients using parameters of a
mixture of Gaussian combined with grey–level histogram bins in Hounsfield Units showed to effi-
ciently describe five lung tissue patterns. Limitations occur as no directional analysis is carried out.
The assumption was that no prevailing directions are contained in lung tissue patterns projected
on 2D axial slices in HRCT.

A N–dimensional extension of the visual features is desirable for the characterization of organs
in volumetric medical images (see Section 6.2.2). The three–dimensional expression of an isotropic
polyharmonic B–spline in the Fourier domain is given Section 3.1.2. The custom WT transform
is consequently easily extendable to three dimensions with the limitation that the extension of the
quincunx lattice will no more yield inter–scale similarity transforms [256]. It is important to note
that 3D wavelet transforms are not appropriate for analyzing HRCT image series because filtering
along the z–axis with a very low axial resolution (20 to 50 slices with 10 mm distance) would lead
to coarse blurring of the relevant information.

Clinical attributes

A set of clinical features was built from MySQL fields of the database. Two measures for
ranking heterogeneous clinical parameters based on the information gain ratio and the generaliza-
tion performance were compared in Section 3.2. The results of the comparison were qualitatively
evaluated based on the medical significance of the ranking. The substitution of the missing values
of the clinical parameters with the average value may arbitrarily favor one of the class and the
associated impact on the generalization performance has to be investigated.

6.1.4 Machine learning

A methodology for comparing the performances of classification models based on McNemar’s
test was built in Section 4.1.1. It assess the global and class–specific accuracies and studies the sta-
bility of the hyperparameters of the models. This methodology can be applied to any classification
task.

Contextual medical image analysis was proposed in Section 4.2. The optimal scheme for fusing
visual and clinical parameters was studied. Although fundamental for medical image analysis, the
clinical context of images is rarely used for improving the performance of image–based CADs in
the literature. To our knowledge, it was never used for the categorization of lung tissue patterns
associated with ILDs in HRCT so far. In this work, the combination of two SVMs classifiers (late
fusion) allowed an average absolute gain of 5% of accuracy for the classification of five lung tissue
sorts.

6.1.5 Information retrieval

Case–based retrieval based on a multimodal inter–case similarity was developed and described in
Section 4.3. The clinical and visual similarities are combined using a weighted Euclidean distance.
No low–level local features are used for inter–case visual comparison, which can potentially be a
bottleneck to the retrieval performance.
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6.1.6 Application

A hybrid detection–CBIR–based CAD system was developed and integrates the texture analysis
framework along with case–based retrieval (see Section 5.1). Three use cases adapted to the needs
of the radiologists were developed including:

• multimedia database browsing,

• automated 3D categorization of the lung tissue in HRCT image series,

• case–based retrieval.

Ergonomic interfaces were implemented in a rich Internet application accessible from a web browser.
The major limitations of the CAD system are:

• no possibility to store the cases analyzed by a user to enrich the multimedia database,

• high computational time for the categorization of the lung tissue (∼ 1 minute per slice),

• the clinical parameters are not used for the classification of the lung tissue.

6.1.7 Evaluation of image–based CAD systems

The pitfalls and common mistakes of the evaluation of image–based CAD systems were iden-
tified in Section 5.2 and a subsequent evaluation methodology was proposed to reproduce actual
clinical conditions of the target usage of the CAD system. However, the performance of human
observers using the CAD system in a true clinical environment was not carried out. The robust-
ness of the lung tissue classification framework towards the image parameters (i.e. slice thickness,
manufacturer, ...) was not assessed.

6.2 Perspectives

Short, medium and long term future research directions are proposed in this section, which is
structured as follows. Section 6.2.1 contains a couple of practical solutions that may improve the
classification and retrieval performances of the hybrid CAD system. In Section 6.2.2, the need for
further developments required to extend the proposed retrieval techniques to more dimensions is
highlighted. Section 6.2.3 briefly reviews the literature of content–based indexing of the PACS. At
last, general conclusions concerning future clinician–computer interactions are given in Section 6.3.

6.2.1 Potential improvements and extensions of the CAD system

Future work concerning the visual features, the classification algorithms, the multimodal fusion
and the case–based retrieval are proposed in this section. Some other domains where the affine–
invariant texture analysis framework can potentially perform well are listed at the end of the
section.

Monogenic directional texture analysis

A possible directional extension of the proposed texture analysis framework is to use the mono-
genic extension of the polyharmonic wavelets using a complexified Riesz transform [251, 285]. The
complex wavelet domain yields directional analysis using steerability. For instance, directional tex-
ture features can be obtained by measuring local orientations, energy, coherency and many more
using the structure tensor [257]. The complex wavelet transform is available in a frame flavor and
is extendable to N dimensions.
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Imbalanced class distributions

SVM with asymmetric margins was proposed by Cohen et al. in 2006 to cope with imbalanced
class distributions [42]. In two–class problems, errors from positive and negative example are
not equally penalized using two cost values C+ and C−. In order to optimize and regularize
the classification performance for every regions of the lung parenchyma, a uniform distribution of
the lung tissue classes can be used for training with class–specific Cn values using one versus all
configurations initialized based on the respective prevalence of the lung tissue sorts.

Kernel modality fusion

The challenge when fusing modalities at the early level is to obtain a coherent feature space,
which strongly depends on the transformation implicitly applied by the kernel. Consequently, mul-
tiple kernels with adjustable feature–specific parameters (e.g. Gaussian kernel with varying σK for
each feature or group of feature) can potentially build optimal feature spaces for multimodal clas-
sification problems [10]. Fusing modalities with multiple kernels is very computationally intensive
but can be formulated as a semi–definite program, which rapidly converges to the optimum [133].

Local texture analysis and learning to rank for similar case retrieval and literature
retrieval

Currently, the visual similarity used for case–based retrieval is not based on local comparisons of
the texture measures. Local features can potentially improve the importance of the visual modality
in Eq. 4.5. To do so, a localization system based on the anatomy of the lung is required, which
was proposed by Zrimec et al. in [291].

Supervised learning with regression–SVMs can be used to predict the inter–case similarity
measure to improve the generalization performance when compared to the weighted Euclidean
distance [24, 229]. In this case, the multimodal fusion can still be performed either using early or
late fusion.

At last, based on the images of the query cases, a search for similar images in the literature
can provide relevant additional peer–reviewed information for treatment planning [70].

Grid computing

In the context of the KnowARC project1, parts of algorithms were parallelized to speed up the
following computationally intensive tasks [171]:

• feature extraction over the entire database (split by image series),

• categorization of the lung tissue of an image series (separate by slices),

• cross–validation (split by folds),

• grid search for SVM hyperparameters (distribution of the parameter values).

Virtualization techniques allowed to create virtual computing nodes inside the hospital yielding a
secure solution to speed up image analysis tasks of the CAD system [175].

Other potential application domains of the texture analysis framework

The texture analysis framework can potentially provide satisfying results on other biomedical
data such as, for instance:

• characterization of skin lesions in dermoscopic images [271],

• differentiation of dementia of patients with Alzheimer’s disease in MRI images [118],

• categorization of the liver tissue in ultrasonic images [100, 162],
1http://www.sim.hcuge.ch/medgift/01 KnowARC EN.htm, as of 21 November 2009
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• and many more [103, 106, 163, 283]

Most often, the characterization of biomedical tissue is related to texture analysis [30, 138], which
opens a wide variety of potential applications of the texture analysis framework proposed in this
work. However, at least some modifications concerning the GLH (based on HU) and tuning of the
parameters of QWF (i.e. γ, number of iterations) are required.

6.2.2 Classification and retrieval in N dimensions

In modern hospitals, the majority of the medical images are produced in more than two di-
mensions. The commonly used imaging modalities are CT and MRI. Both are three–dimensional
and the combination of these imaging modalities with functional imaging (i.e. PET, fMRI) as well
as their temporal extension (i.e. videos) lead to multidimensional data. Although many image
processing and analysis algorithms were initially developed in two dimensions, some of them can
be extended to additional dimensions.

In the literature, the most common higher–order texture measures (GLCM, RLE, autocorre-
lation function as well as multi–resolution filtering such as multiscale Gabor filters and gradients,
fractal analysis and wavelet transforms) were already extended to three dimensions and evaluated
at least on small test data sets.

GLCM and run–length encoding being the most populars of the lot, were extended to three–
dimensions several times [124, 129, 278]. Volumetric textures were characterized using GLCM in
MRI data in [39, 125, 149]. Three–dimensional GLCM, run–length and fractal features are used
together to identify normal and pathological lung parenchyma in MDCT images in [279, 280].
Another 3D hybrid feature set is proposed in [148] where first–order statistics, GLCM, gradient
features and multiscale steerable Gabor filters are combined to segment prostatic adenocarcinoma
in high–resolution MRI. Feature selection on 3D multi–resolution filtering allows for a superior
classification performance compared to GLCM with various 3D texture datasets in [201]. Although
several studies showed that GLCM and run–length encoding can be outperformed by the WT for 2D
texture categorization [61, 198], few research groups have extended it to 3D for texture analysis,
yet. The simplest way to extend it to 3D is to carry out separable WTs along all the three
directions. The latter was used in [103] to characterize the volumetric texture of the hippocampus
in MRI images to quantify epilepsy. In [13], texture features based on a non–redundant 3D wavelet
transform are used to discriminate among cerebro–spinal fluid, gray matter and white matter.
However, there is no a priori reason for carrying out the transforms along x, y and z axes and
directional and/or isotropic transforms are preferable for analyzing textures in medical images [59]
(see Section 3.1.2).

Motion analysis in videos can be considered a multi–dimensional texture analysis problem as
proposed in [215]. Spatio–temporal textures are characterized in video sequences with GLCM
in [21] and multi–resolution analysis based on three–dimensional Gabor filters in [41]. A separable
3D wavelet transform (along x, y, and time axes) is used in [227] to index video sequences for
retrieval. In moving 3D data (or 4D datasets) very little has so far been published in terms of
texture analysis.

Globally, multi–resolution analysis using filter banks (Gabor filters, wavelets) is generally more
appropriate for characterizing N–dimensional textures in comparison with GLCM and run–length
encoding as it corresponds better to our perception of textures. Following this direction, research
efforts are needed to develop N–dimensional affine–invariant wavelet transforms with tunable pa-
rameters and able to manage anisotropy inherent in medical image series as well as in video
sequences.

6.2.3 Towards indexing the whole PACS

As soon as visual similarity measures can be built in N–dimensions, indexing the whole PACS
is tempting to enable access to all image series and the associated metadata within the hospital.
Whereas concepts, insights and even prototypes addressing the methodology for the indexing
the PACS [71, 134, 194] as well as practical implementations for a particular imaging modality
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or organ [83, 213] was proposed several times in the literature, to our knowledge, no practical
implementation able to deal with the heterogeneity of the medical visual information was proposed
yet.

6.3 Better than clinicians?

As mentioned in the introduction, computer vision is still far behind the formidable skills of
human vision for the interpretation of visual scenes in terms of recognition time, accuracy and
robustness as well as context integration. Consequently, clinicians will still be the main actors
within the health care loop for a long time. Expert computerized systems have the potential of
being of precious help to little experienced radiologists and non–specialist. Thanks to machine
learning techniques, modern CAD systems have the capacity of learning from unstructured data
and thus are able to gain experience by extracting knowledge from data repositories. Expert CAD
systems proved to be incontrovertible tools also in high–risk professional domains from aeronautics
to architecture. Information retrieval technologies enable access to up–to–date multimedia infor-
mation, which is absolutely complementary to human skills and does not alter the workflow of the
clinicians. In that perspective, clinicians and computers are expected to team up in a very close
future.
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Appendix B

HTML form for clinical data

Figure B.1: HTML form used to capture the clinical parameters (page 1/4).
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Figure B.2: HTML form used to capture the clinical parameters (page 2/4).
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Figure B.3: HTML form used to capture the clinical parameters (page 3/4).



118 APPENDIX B. HTML FORM FOR CLINICAL DATA

Figure B.4: HTML form used to capture the clinical parameters (page 4/4).



Notation

The mathematical notation and symbols used throughout the thesis are listed in this chapter.
The section and the page number of the first apparition of the notation is indicated in brackets.

ˆ denotes the Fourier transform.

A is the arithmetic mean of the class–specific accuracies Al (Section 5.2.2, page 95, Eq. 5.8)

Acv is the accuracy obtained while averaging the accuracies of the all the folds of the cross–
validation (Section 4.1.1, page 68)

Atesti is the testing accuracy of the classifier i computed as the number of correctly classified
instances divided by the total number of instances in the test set (Section 4.1.1, page 70)

Atestmean is the mean of Atesti over the global experiment (Section 4.1.1, page 70)

Al is the accuracy specific to the class l (Section 5.2.2, page 95, Eq. 5.7)

Ageom is the geometric mean the class–specific accuracies Al (Section 5.2.2, page 96, Eq. 5.9)

Ageommean is the mean of Ageom over the global experiment (Section 4.1.1, page 70)

ALORO is the accuracy obtained with a LORO cross–validation (Section 3.1.3, page 48)

Asingle is the single testing accuracy (Section 3.2.1, page 61)

a is the scaling factor in Eq. 1.6 (Section 1.2.1, page 11)

aj is weight of the modality i in the multimodal distance measure (Section 4.3.1, Eq. 4.5, page 82)

α is the degree of B–spline wavelets (Section 3.1.3, page 50)

B is the bandwidth of a continuous signal (Section 1.2.1, page 7)

b is the translation factor in Eq. 1.6 (Section 1.2.1, page 11)

βγ is an isotropic polyharmonic B–spline function (Section 3.1.2, page 46)

cn denote the clinical features indexed by n (Section 3.2.1, page 60)

Cpruning is the feature confidence factor for pruning the tree in C4.5 (Section 1.2.2, page 15)

C is the cost of the errors in the soft margin formulation of the SVM (Section 1.2.2, Eq. 1.12,
page 16)

Δ is the Laplacian operator (Section 3.1.2, page 44)

γ is the order of the isotropic polyharmonic B–spline βγ (Section 3.1.2, page 46)

F is the set of classification function which models the boundaries among the distinct classes of
lung tissue patterns represented in the feature space (Section 1.2.2, page 13)

f(v) is the decision function of a classifier (Section 1.2.2, page 16)
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fs is the sampling frequency (Section 1.2.1, page 7)

Fl is the F–measure of the class l (Section 5.2.2, page 96, Eq. 5.10)

Gj contains the coefficients generated by the convolution of s(x) with the highpass filters gj at
iteration j (Section 1.2.1, page 12)

gj stands for a highpass filter at iteration j of the WT (Section 1.2.1, page 12)

H is the reproducing kernel Hilbert space (Section 1.2.2, page 16)

H0:1 are the hypotheses for McNemar’s test used to compare the classifier families (Section 4.1.1,
page 70)

IG is the information gain (Section 3.2.1, page 61, defined in Eq. 3.11)

IGratio is the information gain ratio (Section 3.2.1, page 61, defined in Eq. 3.14)

I(x) is a two–dimensional image indexed by the coordinate vector x =
(
x
y

)
(Section 1.2.1, page 10)

j is the scale index of the WT (Section 1.2.1, page 12)

J is the number of iterations of the WT (Section 1.2.1, page 12)

k denotes the number of neighbors to be used in the k–NN algorithm (Section 1.2.2, page 14)

K(vi,vj) denotes the kernel function (introduced in Section 1.2.2, page 16)

‖ · ‖K is a norm in H defined by the kernel function K (Section 1.2.2, Eq. 1.12, page 16)

HJ contains the coefficients generated by the convolution of s(x) with the lowpass filter hJ at the
last iteration J (Section 1.2.1, page 12)

hj stands for a lowpass filter at iteration j of the WT (Section 1.2.1, page 12)

H(Y ) is the entropy of the variable Y (Section 3.2.1, page 61, defined in Eq. 3.12)

H(Y |X) is the conditional entropy of the variable Y when the value of X is known (Section 3.2.1,
page 61, defined in Eq. 3.13)

l2 stands for the l2 norm (Section 1.2.1, page 12)

M is a subsampling matrix in Eq. 3.6 (Section 3.1.2, page 46)

Mquincunx is the quincunx subsampling matrix (Section 3.1.2, page 47)

Mlung is a binary mask marking the lung tissue region (Section 3.1.3, page 52)

μ is used for the mean of a distribution (Section 3.1.2, page 48)

Nc is the number of wavelet (or Fourier) coefficients (Section 1.2.1, page 12)

Ncases is the number of cases (Section 5.2.1, page 94)

Nclass denotes the number of classes (Section 5.2.2, page 95)

Nclin denotes the number of clinical parameters (Section 4.2.4, page 78)

Nbins is the number of bins of gray–level histograms (Section 3.1.3, page 48)

Nfeatures is the number of features (Section 4.2.4, page 77)

Nfolds denotes the number of folds of a cross–validation (Section 5.2.1, page 93)

Ngray is the number of gray–levels contained in an image I(x) (Section 1.2.1, page 11)
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Nhidden is the number of hidden units of the MLP (Section 1.2.2, page 15)

Ninstances is the minimum number of instances per leaf in C4.5 decision tree algorithm (Sec-
tion 1.2.2, page 15)

Nmod is the number of modalities (Section 4.2.3, page 76)

NPCA is the number of principal component in Eq. 4.3 (Section 4.2.4, page 77)

Nupsample upsamples the images by 2Nupsample (Section 3.1.3, page 50)

Nv is the total number of feature vectors in Eq. 1.12, page 16

P (x) is the probability of x (Section 1.2.2, page 14)

pi is a parameter of a classification algorithm (Section 4.1.1, page 68)

R2 is the coefficient of regression of Pearson (Section 3.2.3, page 62)

Rlearn is learning rate of the MLP (Section 1.2.2, page 15)

ρmean denotes the mean correlation between two groups of features (Section 3.2.3, page 65)

s(x) is a 1D signal indexed by the variable x (Section 1.2.1, page 11)

S is a family of templates that yield a WT of s(x) when taking the scalar product of s with each
element of S (Section 1.2.1, page 12)

σ is used for the standard–deviation of a distribution (Section 3.1.2, page 48)

σK is the width of the Gaussian kernel (Section 1.2.2, Eq. 1.11, page 16)

tm denote the visual features indexed by m (Section 3.2.1, page 61)

v is the feature vector corresponding to an instance expressed in the feature space (Section 1.2.2,
page 14)

vi is the volume percentage of the class i of lung tissue (Section 4.3.1, Eq. 4.4, page 81)

wj denotes the class of lung tissue indexed by j (introduced in Section 1.2.2, page 14)

yi is the class label of vi (Section 1.2.2, Eq. 1.12, page 16)

φ is a smoothing function in Eq. 3.6 (Section 3.1.2, page 46)

ψ denotes a function that satisfies wavelet admissibility conditions as defined in Eq. 1.5 (Sec-
tion 1.2.1, page 11)

ψiso(x) is an isotropic wavelet (Section 1.2.1, page 12)

ψfovea is the psychophysical linespread function that models receptive fields of retinal ganglion
cells in the foveal region (Section 1.2.1, page 9).

ψDG is the difference of two Gaussians (Section 1.2.1, Eq. 1.2, page 9)

ψΔG is the two–dimensional Laplacian of a Gaussian (Section 1.2.1, Eq. 1.3, page 10)
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Glossary

This chapter contains a list of the most common abbreviations in the field of computer vision
and all the abbreviations used in this thesis, to avoid confusion. The location of the first apparition
of the abbreviation is indicated in brackets.

AIP Acute Interstitial Pneumonia (Section 1.5, page 19)

AMFM Adaptive Multiple Feature Method (Section 1.3.2, page 22)

ASSERT Automated Search and Selection Engine with Retrieval Tools (Section 1.3.2, page 22)

BAL Bronchoalveolar Lavage (Section 2.3.1, page 33)

BOOP Bronchiolitis Obliterans Organizing Pneumonia (Section 1.5, page 19)

CAD Computer–Aided Diagnosis (Section 1.1, page 2)

CBIR Content–Based Image Retrieval (Section 1.1, page 2)

CFS Correlation–based Feature Selection (Section 1.3.2, page 22)

COP Cryptogenic Organizing Pneumonia (Section 1.5, page 19)

COPD Chronic Obstructive Pulmonary Disease (Section 1.3.2, page 20)

CT Computed Tomography (Section 1.1, page 2)

CV Cross–Validation (Section 5.2.1, page 93)

DICOM Digital Imaging and COmmunications in Medicine (Section 1.1, page 2)

DIP Desquamative Interstitial Pneumonia (Section 1.5, page 19)

DWF Discrete Wavelet Frame (Section 3.1.2, page 43)

ECG ElectroCardioGram (Section 1.1, page 2)

EEG ElectroEncephaloGram (Section 1.1, page 2)

EHR Electronic Health Record (Section 1, page 1)

EM Expectation–Maximization (Section 3.1.2, page 48)

EMD Earth’s Mover Distance (Section 1.3.2, page 23)

EMG ElectroMyoGram (Section 1.1, page 2)

EP Eosinophilic Pneumonia (Section 1.5, page 19)

EU European Union (Section 2, page 31)

FDA Food and Drug Administration (Section 5.2.3, page 97
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fMRI functional Magnetic Resonance Imaging (Section 1.1, page 2)

FN False Negative (Section 5.2.2, page 94, Eq. 5.4)

FP False Positive (Section 5.2.2, page 94, Eq. 5.3)

GLCM Gray–Level Co–occurrence Matrices (Section 1.2.1, page 10)

GLH Gray–level histograms (Section 3.1.1, page 42)

GMM Gaussian Mixture Models (Section 3.1.2, page 48)

GP Generalization Performance (Section 1.2.2, page 13)

GUI Graphical User Interface (Section 1.1.1, page 3)

HON Health On the Net (Section 4.3, page 80)

HP Hypersensitivity Pneumonitis (Section 1.5, page 19)

HRCT High–Resolution Computed Tomography (Section 1.3.1, page 18)

HTML HyperText Markup Language (Section 2.2.2, page 32)

HU Hounsfield Units (Section 1.3.1, page 17)

HUG Hôpitaux Universitaires de Genève (Section 1, page 1)

IAPR International Association for Pattern Recognition (Section 4.2.3, page 76)

ICA Independent Component Analysis (Section 1.3.2, page 23)

ILD Interstitial Lung Disease (Section 1.3.1, page 16)

ImageCLEF Image Cross Language Evaluation Forum (Section 1.3.2, page 25)

IPF Idiopathic Pulmonary Fibrosis (Section 2.1, page 31)

IT Information Technology (Section 2, page 31)

JPEG Joint Expert Picture Group (Section 1.3.2, page 22)

k–NN k–Nearest Neighbor (Section 1.2.2, page 14)

LBP Local Binary Patterns (Section 1.3.2, page 24)

LCH Langerhans Cell Histiocytosis (Section 1.5, page 19)

LDA Linear Discriminant Analysis (Section 1.3.2, page 22)

LGN Lateral Geniculate Nucleus (Section 1.2, page 5)

LIDC Lung Imaging Database Consortium (Section 2.1, page 31)

LIP Lymphocytic Interstitial Pneumonia (Section 1.5, page 19)

LMIK Learning Medical Image Knowledge (Section 2.1, page 32)

LOPO Leave–One–Patient–Out cross–validation (Section 5.2.1, page 93)

LOO Leave–One–Out cross–validation (Section 5.2.1, page 93)

LORO Leave–One–ROI–Out cross–validation (Section 5.2.1, page 93)

LTRC Lung Tissue Research Consortium (Section 2.1, page 31)
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MAP Mean Average Precision (Section 4.2.1, page 74)

MCS Multiple Classifier Systems (Section 4.2.3, page 76)

MD Medical Doctor (Section 2.3.3, page 36)

MDCT MultiDetector Computed Tomography (Section 1.3.1, page 17)

MEG MagnetoEncephaloGram (Section 1.1, page 2)

MeSH Medical Subject Headings (Section 2.2.2, page 32)

ML Machine Learning (Section 1.4.2, page 28)

MLP Multi–Layer Perceptron (Section 1.2.2, page 14)

MRI Magnetic Resonance Imaging (Section 1.1, page 2)

NBIA National Biomedical Image Archive (Section 2.1, page 31)

NHLBI National Heart, Lung, and Blood Institute (Section 2.1, page 31)

NIH National Institutes of Health (Section 1.3.2, page 25)

NSIP Non–Specific Interstitial Pneumonia (Section 1.5, page 19)

PACS Picture Archiving and Communication Systems (Section 1, page 1)

PCA Principal Component Analysis (Section 1.3.2, page 23)

PCP Pneumocystis Pneumonia (Section 1.5, page 19)

PET Positron Emission Tomography (Section 1.1, page 2)

PF Pulmonary Fibrosis (Section 1.5, page 19)

PFT Pulmonary Function Tests (Section 1.3.2, page 24)

PTA(l,r) Plus l–Take Away r (Section 1.3.2, page 24)

QDA Quadratic Discriminant Analysis (Section 1.3.2, page 23)

QMR Quick Medical Reference (Section 1.1, page 2)

QWF Quincunx Wavelet Frame (Section 3.1.2, page 47)

RB–ILD Respiratory Bronchiolitis associated ILD (Section 1.5, page 19)

RIA Rich Internet Application (Section 5.1, page 83)

RLE Run–Length Encoding (Section 1.2.1, page 10)

ROC Receiver Operating Characteristics (Section 5.2.2, page 96)

ROI Region Of Interest (Section 1.1.1, page 3)

RSNA Radiological Society of North America (Section 1.1, page 2)

RWF Rotated Wavelet Frames (Section 1.3.2, page 24)

SADH Sum And Difference Histogram (Section 1.3.2, page 24)

SBS Sequential Backward Selection (Section 1.3.2, page 24)

SFS Sequential Forward Selection (Section 1.3.2, page 22)
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SFFS Sequential Floating Forward Selection (Section 1.3.2, page 24)

SFBS Sequential Floating Backward Selection (Section 1.3.2, page 24)

SOM Self–Organizing Maps (Section 1.3.2, page 22)

SNOMED–CT Systematized Nomenclature of Medicine – Clinical Terms (Section 2.2.2, page 32)

SPECT Single Photon Emission Computed Tomography (Section 1.1, page 2)

SVM Support Vector Machines (Section 1.2.2, page 14)

TALISMAN Texture Analysis of Lung ImageS for Medical diagnostic AssistaNce (Section 2,
page 31)

TB Tuberculosis (Section 1.5, page 19)

TN True Negative (Section 5.2.2, page 94, Eq. 5.2)

TP True Positive (Section 5.2.2, page 94, Eq. 5.1)

UMLS Unified Medical Language System (Section 4.2.1, page 74)

URL Uniform Resource Locator (Section 5.1, page 84)

US Ultrasound Imaging (Section 1.1, page 2)

VOI Volume Of Interest (Section 1.3.2, page 24)

VTK Visualization ToolKit (Section 5.1, page 83)

WT Wavelet Transform (Section 1.2.1, page 11)

XOR eXclusive OR (Section 3.2.1, page 60)

YaDiV Yet Another DIcom Viewer (Section 2.3.2, page 34)
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[257] D. Van De Ville, D. Sage, K. Balać, and M. Unser. The Marr wavelet pyramid and multi-
scale directional image analysis. In Proceedings of the Sixteenth European Signal Processing
Conference (EUSIPCO’08), Lausanne, Switzerland, August 2008.

[258] D. Van De Ville and M. Unser. Complex wavelet bases, steerability, and the Marr–like
pyramid. IEEE Transactions on Image Processing, 17(11):2063–2080, November 2008.

[259] C. van der Walt and E. Barnard. Data characteristics that determine classifier performance.
In Proceedings of the Sixteenth Annual Symposium of the Pattern Recognition Association of
South Africa, pages 166–171, Parys, South Africa, November 2006.

[260] B. van Ginneken and B. M. ter Haar Romeny. Multi–scale texture classification from gener-
alized locally orderless images. Pattern Recognition, 36(4):899–911, November 2003.

[261] A. Van Nevel. Texture classification using wavelet frame decompositions. In Signals, Sys-
tems & Computers, 1997. Conference Record of the Thirty–First Asilomar Conference on,
volume 1, pages 311–314, November 1997.

[262] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, November
1995.

[263] A. Vargas, A. Depeursinge, A. Platon, A. Geissbuhler, P.-A. Poletti, and H. Müller. A
multimedia library of interstitial lung diseases at the University Hospitals of Geneva. In
Swiss Society of Radiology (SSR 2009), Geneva, Switzerland, June 2009.

[264] K. Vo and A. Sowmya. Directional multi–scale modeling of high-resolution computed tomog-
raphy (HRCT) lung images for diffuse lung disease classification. In Proceedings of the 13th
International Conference, CAIP ’2009, volume 5702, pages 663–671. Springer, September
2009.

[265] J. F. Wade and T. E. King. Infiltrative and interstitial lung disease in the elderly patient.
Clinics in Chest Medicine, 14(3):501–521, September 1993.

[266] G. Wald. The receptors of human color vision. Science, 145:1007–1016, September 1964.

[267] B. A. Wandell. Foundations of Vision. Sinauer Associates, Sunderland, Massachusetts, June
1995.

[268] W. R. Webb, N. L. Müller, and D. P. Naidich, editors. High–Resolution CT of the Lung.
Lippincott Williams & Wilkins, Philadelphia, PA, USA, 2001.

[269] P. Welter, T. M. Deserno, B. Fischer, B. B. Wein, B. Ott, and R. W. Günther. Integration
of CBIR in radiological routine in accordance with IHE. In K. M. Siddiqui and B. J. Liu,
editors, Medical Imaging 2009: Advanced PACS–based Imaging Informatics and Therapeutic
Applications, volume 7264, page 726404. SPIE, March 2009.

[270] T. Westerveld. Image retrieval: Content versus context. In Recherche d’Informations As-
sistée par Ordinateur (RIAO’2000) Computer–Assisted Information Retrieval, volume 1,
pages 276–284, Paris, France, April 2000. CID.

[271] P. Wighton, M. Sadeghi, T. K. Lee, and M. S. Atkins. A fully automatic random walker
segmentation for skin lesions in a supervised setting. In G.-Z. Yang, D. J. Hawkes, D. Rueck-
ert, J. A. Noble, and C. J. Taylor, editors, MICCAI (1), volume 5762 of Lecture Notes in
Computer Science, pages 1108–1115. Springer, September 2009.



BIBLIOGRAPHY 149

[272] P. M. Willy and K.-H. Kufer. Content–based medical image retrieval (CBMIR): An intelligent
retrieval system for handling multiple organs of interest. In CBMS ’04: Proceedings of the
17th IEEE Symposium on Computer-Based Medical Systems, pages 103–108, Washington,
DC, USA, June 2004. IEEE Computer Society.

[273] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann Series in Data Management Sys. Morgan Kaufmann, second edition, June
2005.

[274] J. S. J. Wong and T. Zrimec. Automatic honeycombing detection using texture and structure
analysis. In Computational Intelligence Methods and Applications, 2005 ICSC Congress on,
pages 1–4. IEEE Computer Society, December 2005.

[275] J. S. J. Wong and T. Zrimec. Classification of lung disease pattern using seeded region
growing. In Australian Conference on Artificial Intelligence, pages 233–242, December 2006.

[276] T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability estimates for multi–class classification by
pairwise coupling. Journal of Machine Learning Research, 5:975–1005, August 2004.

[277] Y. Wu, E. Y. Chang, K. C.-C. Chang, and J. R. Smith. Optimal multimodal fusion for
multimedia data analysis. In MULTIMEDIA ’04: Proceedings of the 12th annual ACM
international conference on Multimedia, pages 572–579, New York, NY, USA, October 2004.
ACM.

[278] D.-H. Xu, A. S. Kurani, J. Furst, and D. S. Raicu. Run–length encoding for volumetric
texture. In The 4th IASTED International Conference on Visualization, Imaging, and Image
Processing – VIIP 2004, Marbella, Spain, September 2004.

[279] Y. Xu, M. Sonka, G. McLennan, J. Guo, and E. A. Hoffman. Sensitivity and specificity of 3–D
texture analysis of lung parenchyma is better than 2–D for discrimination of lung pathology
in stage 0 COPD. In A. A. Amini and A. Manduca, editors, SPIE Medical Imaging, volume
5746, pages 474–485. SPIE, February 2005.

[280] Y. Xu, M. Sonka, G. McLennan, J. Guo, and E. A. Hoffman. MDCT–based 3–D texture
classification of emphysema and early smoking related lung pathologies. IEEE Transactions
on Medical Imaging, 25(4):464–475, April 2006.

[281] Y. Xu, E. J. R. van Beek, Y. Hwanjo, J. Guo, G. McLennan, and E. A. Hoffman. Computer–
aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature
method (3D AMFM). Academic Radiology, 13(8):969–978, August 2006.

[282] J. I. Yellott. Spectral analysis of spatial sampling by photoreceptors: topological disorder
prevents aliasing. Vision Research, 22(9):1205–1210, 1982.

[283] O. Yu, Y. Mauss, I. J. Namer, and J. Chambron. Existence of contralateral abnormali-
ties revealed by texture analysis in unilateral intractable hippocampal epilepsy. Magnetic
Resonance Imaging, 19(10):1305–1310, December 2001.

[284] S.-N. Yu and C.-T. Chiang. Similarity searching for chest CT images based on object features
and spatial relation maps. In Engineering in Medicine and Biology Society, 2004. EMBS ’04.
26th Annual International Conference of the IEEE, volume 1, pages 1298–1301, September
2004.

[285] D. Zang and G. Sommer. Signal modeling for two–dimensional image structures. Journal of
Visual Communication and Image Representation, 18(1):81–99, February 2007.

[286] V. A. Zavaletta, B. J. Bartholmai, and R. A. Robb. High resolution multidetector CT–aided
tissue analysis and quantification of lung fibrosis. Academic Radiology, 14(7):772–787, July
2007.



150 BIBLIOGRAPHY

[287] V. A. Zavaletta, B. J. Bartholmai, and R. A. Robb. Nonlinear histogram binning for quan-
titative analysis of lung tissue fibrosis in high–resolution CT data. In A. Manduca and
X. P. Hu, editors, Medical Imaging 2007: Physiology, Function, and Structure from Medical
Images, volume 6511, page 65111Q. SPIE, February 2007.

[288] J. Zhang and T. Tan. Brief review of invariant texture analysis methods. Pattern Recognition,
35(3):735–747, March 2002.

[289] A. Zien and C. S. Ong. Multiclass multiple kernel learning. In ICML ’07: Proceedings of the
24th international conference on Machine learning, pages 1191–1198, New York, NY, USA,
June 2007. ACM.

[290] T. Zrimec and S. Busayarat. A system for computer aided detection of diseases patterns
in high resolution CT images of the lungs. In Twentieth IEEE International Symposium on
Computer–Based Medical Systems, 2007. CBMS ’07., volume 0, pages 41–46, Los Alamitos,
CA, USA, June 2007. IEEE Computer Society.

[291] T. Zrimec, S. Busayarat, and P. Wilson. A 3D model of the human lung with lung regions
characterization. In International Conference on Image Processing, 2004. ICIP ’04, volume 2,
pages 1149–1152, October 2004.

[292] T. Zrimec and J. Wong. Methods for automatic honeycombing detection in HRCT images
of the lung. In 11th Mediterranean Conference on Medical and Biomedical Engineering and
Computing 2007, volume 16, pages 830–833, June 2007.

[293] T. Zrimec and J. S. J. Wong. Improving computer aided disease detection using knowledge of
disease appearance. In MEDINFO 2007. Proceedings of the 12th World Congress on Health
(Medical) Informatics, volume 129, pages 1324–1328. IOS Press, August 2007.



Index

4D imaging, 2

Abstract, vii
Accuracy, 95
Achievements, 99
Acknowledgements, ix
Acute interstitial pneumonia, 19
Affine invariance, 7
Affine transformation, 7
Annotation, 33
Applications, 83

B–spline wavelets, 50
Bayes, 14
Bias, 97
Bibliography, 130
Block size, 53
Blockwise classification, 52, 91

C4.5, 14
Case selection, 33
Case–based retrieval, 80
CBIR–based CAD, 3
Chapter five, 83
Chapter four, 67
Chapter one, 1
Chapter six, 99
Chapter three, 41
Chapter two, 29
Classifier comparison, 67
Classifier ranking, 70
Clinical features, 60
Clinical parameter selection, 32
Closing operation, 53
Co–occurence matrix, 10
Color histograms, 12
Computed tomography, 2
Computer vision, 5
Computer–aided diagnosis, 2
Conclusions, 99
Conditional entropy, 61
Confusion matrix, 94
Consistency of the multimodal feature space, 65
Consolidation, 21
Content–based image retrieval, 3
Contents, iii

Contextual medical image analysis, 73
Contributions, 27
Correlation matrix, 62
Cross–validation, 93
Cryptogenic organizing pneumonia, 19

Data collection, 32
Data entry, 36
Database, 29
Database browsing, 84
Database contents, 36
Decision trees, 14
Desquamative interstitial pneumonia, 19
Detection–based CAD, 2
Difference of two Gaussians, 9
Discrete wavelet frames, 50
Distance measure, 81
Dyadic lattice, 46

Early fusion, 76
Electrocardiogram, 2
Electroencephalogram, 2
Electromyogram, 2
Electronic health record, 1
Emphysema, 21
Empirical risk, 13, 92
Entropy, 61
Eosinophilic pneumonia, 19
Euclidean distance, 82
Evaluation, 91
Evalutation metrics, 94
Evidence–based medicine, 1
Expectation–maximization, 48
Eye, 7

F–measure, 96
False negative, 94
False positive, 94
Feature extraction, 7
Feature ranking, 60
Feature vector, 53
Features, 41
Fibrotic tissue, 21
Fovea, 9
Functional MRI, 2

151



152 INDEX

Gaussian kernel, 16
Gaussian mixture model, 48
Generalization performance, 13, 92
Glossary, 123
Grey–level histograms, 42, 48
Grid computing, 102
Grid search, 68
Ground glass, 21

Healthy tissue, 21
High–resolution computed tomography, 17
Hounsfield Units, 17
HRCT protocol, 18
HTML form for clinical data, 115
Human cognition, 12
Human vision, 5
Hybrid CAD system, 85
Hypersensitivity pneumonitis, 19

Imbalanced class distributions, 102
Improvements, 101
Index, 150
Information gain, 61
Information gain ratio, 61
Information retrieval, 80
Interstitial lung diseases, 16
Introduction, 1
Iris, 30
Isotropic analysis, 43
Isotropic polyharmonic B–spline wavelets, 44

k–nearest neighbor, 14
Kernel modality fusion, 102

Langerhans cell histiocytosis, 19
Laplacian of a Gaussian, 10
Late fusion, 76
Learning medical image knowledge, 32
Learning to rank, 102
Leave–one–out, 93
Leave–one–patient–out, 94
Leave–one–ROI–out, 93
Lena, 30
Limitations, 99
Linear transformation, 7
List of Figures, 126
List of Tables, 128
Lung imaging database consortium, 31
Lung tissue pattern, 18
Lung tissue research consortium, 31
Lymphocytic interstitial pneumonia, 19

Magnetic resonance imaging, 2
Magnetoencephalogram, 2
McNemar’s test, 70

Metrics, 94
Micronodules, 21
Monogenic directional texture analysis, 101
Multi–layer perceptron, 15
Multimedia database, 29
Multimodal distance measure, 81
Multimodal fusion, 76
Multiple classifier systems, 76
Multiresolution, 10

Naive Bayes, 14
Non–specific interstitial pneumonia, 19
Notation, 119

Optimization, 98
Overfitting, 72

Pattern locations, 34
Pearson’s coefficient of regression, 62
Perspectives, 101
Picture archiving and communication system, 1
Pneumocystis pneumonia, 19
Positron emission tomography, 2
Precision, 95
Principal component analysis, 77
Product rule, 76
Pulmonary fibrosis, 19
Pyramidal image decomposition, 42

Qualitative evaluation, 98
Quality control, 36
Quincunx lattice, 46
Quincunx wavelet frames, 47
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