
The Potted Plant Packing Problem

René Schumann, Jan Behrens and Johannes Siemer

OFFIS, Escherweg 2 26121 Oldenburg Germany
rene.schumann|jan.behrens|johannes.siemer@offis.de

Abstract. In this article we describe a practical planning problem, the potted plant packing prob-
lem, and our first approaches to solve this problem. The transportation of plants is comparably
expensive as they require careful treatment due to there sensitivity. For standardised transport,
potted plants are loaded on transport trollies. The cost of transportation depends on the number of
these trollies. In order to minimise transportation costs, effective packing of trollies is necessary.
This packing problem is herein presented and a first proposal for a solution, based on problem
decomposition and multi-dimension bin packing, is given.

1 Introduction

The packing problem presented in this article is a problem a customer of our research
group asked us to solve. The transportation of potted plants is comparably expensive,
because plants are sensitive products and their size to value ratio can be exceedingly
low. The standardised mode of transport for potted plants is on transport trollies. Such
a trolley, a so called ’CC-trolley’, is shown in figure 1.

Fig. 1. A ’CC-trolley’ for plants
Picture taken from [1].

As one can see in the picture all plants are placed on layers. These layers can be
mounted into a trolley. Depending on the height of the plants on each layer a trolley
can carry a varying number of layers.

The cost of transportation is mainly a function of the number of trollies used for
the transport of one particular order. Effective trolley loading therefore is a key re-
quirement for cost reduction. The resulting planning problem is a variation of a 3-D
bin packing problem, with a number of additional constraints. We will present this
problem in the following section. Thereafter we illustrate a possible solution through
problem decomposition. We conclude with a short summary and an outlook on further
work in the last section.

2 The packing problem

2.1 Detailed description of the packing problem

This section offers a detailed description of the potted plant packing problem. At first
we describe the business process that leads to the transportation of an order:
Initially an order is given. Such an order consists of any number of order items. Each
order item relates to a specific article and contains the numbers ordered. Each article,
e.g. a potted plant, has various attributes like height, width, depth, weight and type of
packing-unit (e.g. a flowerpot). There are of course further attributes, price for exam-
ple, they are however neglected here as they are not related to the packing problem.
The computation of the relevant attributes, especially the dimensions, is not trivial, as
the dimensions of a plant are subject to change in time. The available article data is
based on the estimated size at a point in time some weeks into the plant season. The
actual size at any given time varies from this and has to be estimated with the help of
further parameters like seasonal information.
Each plant is packed into a packing-unit, a flowerpot or a tray for example. Con-
sequently a packing-unit can hold one or more plants of one article. The form of a
packing-unit can differ from rectangular to circular. Apart from its form, a packing
unit also has further attributes relevant to the packing problem, e.g. height, width,
depth and weight. In theory, packing-units can differ for one article, depending on the
plant supplier for subcontracted part orders. We assume that all plants of an order item
were delivered by one supplier and thus have the same type of packing-unit. Such a
simplification can be made without restricting the general approach as we could in-
troduce a middle tier that would map packing articles - with only one packing unit
associated - to actual articles later.
In practice sometimes subcontracted part orders are supplied by external nurseries.
These might arrive pre-packed on cc-trollies at the central packing facility. Such trol-
lies are typically left as is, because repackaging them would usually lead to a sub-
stantial additional effort. Except that, if they have additional space for entire layers
available, this might be used for other order items of the same order.

After some pre-processing computation the relevant information for packaging of
potted plants can be extracted from an order item. Recapitulating this information
comprises of:

– An order consisting of a number of order items.
– Each order item consists of a number of identical packing-units.
– Packing-units: For each packing-unit, information about its dimension, weight

and form are given.
– Pre-packed trollies may combine some order items on cc-trollies.

Our main objective is the computation of a valid packing plan, based on the order
data, as well as providing detailed packing-instructions for the staff. Any packing-
instruction, and therefore also every packing-plan, consists of a number of trolley-
packing-instructions, one for each cc-trolley in the order. Such a trolley-packing-
instruction itself consists of a number of layer packing-instructions. They define the
exact position of the layer (mounting height) along with detailed packing instructions
for all packing-units on the layer. Each single layer consists of a set of packing-units
along with the exact position of every packing-unit on the layer. The position in-
cludes information about each packing-units height, because certain articles allow for
stacking of further packing-units. This is shown in figure 2 where a second layer of
flowerpots is stacked upon a first layer. The generation of a valid, stable and realis-

Fig. 2. A simple example of stacked flowerpots

able packing-instruction requires the observance of a number of constraints. Usually
a differentiation is made between soft constraints (e.g. keep order items together) and
hard constraints like the fixed size of layers, or the fact that an item can not span over
more than one layer.
When plants are stacked, stability is an important aspect. Another facet of the stack
packaging is that it has to be ensured that those items at the bottom are not damaged
by the stacked items. This constraint can be formulated as an additional artificial at-
tribute of an article. Each article has an inner region which is of bounds for stacking.
If this region has the same size as the packing-unit itself, the packing-unit is called
non stackable. This concept is displayed in figure 3. The overall height of a loaded
trolley is of course limited too, because the trollies are transported on truck. Thus the
available height varies from approx. 240 to 260 cm. For stability reasons the position
of a layer in a cc-trolley must correspond to the weight of that layer, e.g. a heavy
layer should be placed lower within the trolley. Furthermore each layer as well as the
cc-trolley itself has a maximum payload.
The definition of rules leading to valid stacking strategies and packing plans and so

Fig. 3. stacked flowerpots with non stackable regions (displayed in dark color)

ensuring the adherence of all constraints, is not a trivial task.
As a further - soft - constraint it is desirable to keep order items together, there-
fore one order item should be loaded onto one layer - if fit - or at least contiguous
onto subsequent layers and trollies. This is desirable because usually all packing-
units of an order item will be provided together at the loading zone and the number
of cc-trollies concurrently in loading is limited. The overall goal is to provide said
packing-instruction for any given order, with the minimisation of needed cc-trollies -
and therefore costs of transport - as the objective function.

2.2 The formalised potted-plant packing problem

One general approach when describing planning problems is to use a tuple of param-
eters, which are capable of describing the entire problem. Scheduling problems for
example are described in such a way by Keng et al. [2] or Sauer [3]. The potted-plant
packing problem can be formalised in this way, too. Its tuple contains the following
parameters.

– resources (trollies:) Because one could argue that this problem is a complex bin-
packing problem with a virtually unlimited number of trollies on which to pack
the entire order, it may be doubtful why resources should be modelled explicitly.
There are however two main reasons for doing so:
• It is possible to use add-on modules with the trollies to increase their height.

The number of available add-on modules however does not necessarily corre-
spond to the number of available trollies

• Any order might include a number of pre-packed cc-trollies which may not be
loaded entirely. Thus a planning might start with any number of pre-packed
trollies with limited capacity left.

– objects (plants:) These are the objects the algorithm is supposed to pack. We
actually do not focus on the plants themselves, but on an artificial entity called
packing-unit instead. We use this simplification because a typical instance of the
potted-plant packing problem can have some 50.000 different plants. In using an
abstraction such as the packing-units instead, we can greatly reduce the number
of different entities the algorithm has to respect.

– order (order items:) An order comprises of a set of order items, each declaring
a number of specific packing-units which have to be packed on trollies. Addition-
ally the order details the customer as well as the delivery and packing time. The

later is relevant in computing the height of the different plants, since plants grow
over time. An order furthermore specifies the maximum height any cc-trollies is
allowed to have.

– hard-constraints: This list is imperfect so far.
• stability of packed plants
• safety-aspects for stacking plants, ensuring no plant is damaged by stacking
• any single packing-unit has to be stored in its entirety on one layer
• a layer has to be mounted correctly into one trolley
• the overall trolley height is lesser than or equal to the allowed maximum
• any single layer can be mounted into one trolley only
• a packing-unit can not be stored bottom up

– soft constraints: The packing-units of an order item are placed contiguously on
layers.

– objective function: The objective function is to minimise the number of trollies
needed for packing all potted plants of an order onto trollies.

3 Proposed solution

In this section we present our concept of an algorithm capable of solving the de-
scribed potted plant packing problem. As this paper addresses work in progress, this
algorithm has not been implemented so far and can therefore not be presented with
actual test results.
The original potted-plant packing problem, which is a 3-D bin packing problem, is
decomposed in a 2-D bin packing and a 1-D bin packing problem. We are able to
do so, because one can first compute the layers, which is a 2-D bin packing problem
with a modified objective function. After completing this first step the layers have to
be fitted into trollies, this corresponds to a 1-D bin packing problem. The following
section describes the algorithm in more detail.

Since there is a huge number of different plant species, which differ only in
aspects irrelevant for packing, the first step of our solution is the forming of plant
groups. All plants classified in one group will have similar packing parameters. There
could be a number of articles only differing in colour for instance, as colour is not
relevant to packing it can be neglected and all articles differing in this respect only
can be classified into the same packing group. Classification will go beyond the mere
exclusion of irrelevant attributes however, it will also be necessary to look for sim-
ilarities between different plants. Thus our classification algorithm will be looking
at these parameters: width, height, depth, weight, type of packaging-unit, flexibility
of article (e.g. can it be bend) and stack ability. Furthermore it must be possible to
classify one article as belonging to different groups, with the assignment to a group
being limited to a certain time frame (e.g. June to September). For each packing-unit
the packing groups have to be computed from the existing data base, containing of
the

– length,
– depth,
– height and
– weight

of the packing-units. Afore mentioned additional attributes (e.g. stack ability) will be
filled at request, as the data does not allow for an automatic computation of these.
Because of the huge number of possible solutions and to enable the integration of
existing knowledge on well packed layers at trollies, the use of packing patterns
seems profiting. A packing pattern encodes a valid packing of packing-units of cer-
tain groups on a single layer. A packing pattern can contain one or more groups of
packing-units. Figure 2 shows an example of a packing-pattern, containing packing
instructions on one kind of packing group per layer only. In figure 4 another example
with different kinds of packing groups is shown. A preference coefficient can be as-

Fig. 4. packing-pattern with different packing groups

signed to any particular packing pattern to distinguish favourable and less favourable
patterns from one another. Such a preference coefficient can for example express the
degree of space utilisation per layer. A variety of packing-patterns is required for the
proposed system to work. They can either be derived from expert knowledge or be
computed offline, thus reducing online computing time. All packing patterns will be
stored in a knowledge base. To compute such packing-patterns, a 2-D packing prob-
lem has to be solved. Therefore a heuristic like the G4 heuristic [4] can be used.
Besides the G4 heuristic, a first approach can be made using a much simpler strategy,
already in use today by the packing staff. The basic idea of this strategy is to use
existing knowledge on the number of similar plants that can be fitted on one layer. If,
for instance, 21 plants of one type fit on a single layer then one equals 1

21 of a layer.
Accordingly computing the packing instruction of one layer is simple fractional arith-
metic. This simple heuristic has the advantage of being faster and can therefore be
used for online-computation of packing instructions. The results produced however
deteriorate with increasing number of different plants or smaller number of simi-
lar plants. For instance, one can think of a packing-pattern for three large plants, as
shown in figure 5. Obviously only three plants of this particular size fit on one layer
- thus one plants size would be 1

3 of a layer. It is also obvious though, that enough
space for the packing of smaller plants remains on that layer (see figure 6).

Fig. 5. packing-pattern with three large plants)

Fig. 6. packing-pattern with three large and six small plants

The first step of our actual runtime packing algorithm is finding those order items
being delivered on pre-packed trollies and computing the storage capacity left avail-
able on them. The pre-packed order items will be neglected for the remainder of the
planning process.

The second step of the algorithm is grouping all packing-units as per their clas-
sification, their packing-group. For each packing-group a queue is used, holding all
corresponding packing-units. The order of packing-units in the queue is analogue to
the order of items in the initial order.

To compute an initial packing plan, a simple heuristic is used. The queues are
sorted by their group height in descending order. Thus the algorithm starts with the
queue containing the tallest plants. The algorithm then accesses the knowledge base
and tries to find packing-patterns for the packing-units of the group stored in the ac-
tive queue. If no matching packing-pattern can be found, or if there are not enough
packing-units to fill an entire layer the packing-units of the next queue are added to
the pool and the procedure is repeated. If there is more then one applicable packing-
pattern, the one with the highest preference coefficient is chosen. The algorithm will
try to assign all items to complete packing-patterns without a rest of unassigned items.
It is however doubtful, that this will be possible, we anticipate to usually have a re-
mainder of items that is unassigned after the pattern filling procedure. Said remainder
will then be packed on layers using the same algorithm used for the offline compu-
tation of the packing-patterns or an appropriate heuristic. While this second step will
ask for much higher computation times, we still expect to see a low overall runtime
as we anticipate a pattern filling rate of 80% at the least.

The packing pattern knowledge-base basically improves the performance of the
planning tool through the reuse of sub-solutions. Future steps will see the adoption
of self-learning strategies such as the extraction of patterns from commonly used
online computed layers. Such patterns would then be added to the knowledge base.

Furthermore the preference coefficient could be automatically adjusted by the system
for often used patterns, or those not used at all. The knowledge-base will start with
patterns based on expert knowledge already existing and a set of computed patterns
to broaden the base. It is expected to grow trough the aforementioned steps and the
possible addition of further manually compiled patterns. The knowledge-base enables
the planning system to use advantages learning systems offer, to improve computed
packing instructions.

The algorithm will result in an initial plan, this initial plan than serves as the start-
ing point for further improvement strategies. Modifications can be made for example
by moving a group of packing-units on the layers. Another modification may be the
exchange of packing-patterns used. This may improve the density of packed layers
and thus after some modification steps results in reducing the number of needed lay-
ers. The objective function for the improvement strategy is not the reduction of layers,
like it would be in classic 2-D bin packing problems. Since a minimal number of lay-
ers does not guarantee a minimal number of cc-trollies. Assume the plants are placed
on n layers. A solution leading to a close to minimal number of cc-trollies then can be
computed using the following objective function for the improvement strategy h(E):

h(E) = min ∑
1≤i≤n

h(Ei)

h(Ei) = max1≤ j≤max count plantson layerheight(p j)

This objective function leads to a minimal overall height of an order. The overall
height of an order h(E) influences the number of needed cc-trollies, since every trol-
ley can be loaded only up to an upper bound.
The final step of the packing algorithm is the optimised distribution of the layers onto
the trollies. This problem is equivalent to a 1-D bin packing problem. The objective is
once again the minimisation of the number of cc-trollies needed to transport all layers.
A point that differs from classic bin packing is the fact that available resources (trol-
lies) may differ. There may be some trollies containing pre-packed layers and thus
limited free capacity. There may also be a number of trollies using add-on modules
for additional capacity. Finally there is a virtual unlimited number of normal trollies.
Other aspects of the 1-D trolley packing problem, like the maximum payload restric-
tion are alike for all trollies and can easily be computed by simple addition of the
weights per layer. The layers each have a known height, and so correspond to the
heights that have to be distributed to the bins. We are convinced that an existing algo-
rithm solving the common bin packing problem can be adopted to solve our modified
problem. One possible adoption would be to group layers in such a way that their
overall height is close to or equal to the maximum height allowed per trolley. The
layer containing those packing-units with the greatest height is placed at the topmost
valid position within the trolley. This is done in order to use as much as possible of
the available loading height (e.g. on the lorry), as opposed to the maximum storage

height on the trolley itself. The remaining layers are placed in the trolley, sorted by
their weight in descending order for stability reasons.

4 Conclusion and Further work

In this article we presented a real-world planning problem, the potted plant packing
problem. This problem is a special instance of a 3-D bin packing problem. We de-
scribed its particularities and focused on selected key aspects like stacking plants. We
then presented a first formalisation of the problem. According to this formalisation a
packing problem can be described by a 6-tuple consisting of resources, objects, order
items, hard constraints, soft-constraints and an objective function.
Finally we presented the concepts of our proposed solution to the potted-plant pack-
ing problem. One of our main ideas is the usage of packing-patterns and a knowledge
base to storing them. This allows for reuse of sub-solutions and should reduce online
computation time considerably. The later is in fact a critical factor when attempting to
solve a real-world problem especially as our costumer plans to integrate the packing
planning tool in his software-architecture - if the quality of computed plans is satis-
fying.
We furthermore think that using the concept of a knowledge base offers great poten-
tial for developing the system into a self-learning system. Such self-learning, self-
adapting functionality would reduce the administration effort for maintaining the
knowledge base, e.g. create new packing patterns if the typical categories mix within
an order changes over time, while at the same time increasing the quality of the pack-
ing plans produced.
Due to the algorithm design we decompose the 3-D bin packing problem into a 2-D
bin packing problem for layer packing and a 1-D bin packing problem, for distribu-
tion of the layers into the trollies. So far we expect the implementation of the layer
pa king algorithm with its mix of offline and online computation parts to be the most
challenging point.
So far our project is still in a conceptual phase. The presented solution has to be im-
plemented and has to be proven with real world data and in day to day business. We
hope to have a first set of test results by October, which we then plan to present in a
forthcoming version of this paper.

References
1. Foko Lübsen und Sohn Internationale Spedition: Hompage Focko Lüpsen & Sohn GmbH,

http://www.luepsen.de/seite01e.htm. (2005) accessable on 02.05.05.
2. Keng, N.P., Yun, D., Rossi, M.: Interaction sensitive planning system for jop-shop scheduling. In Oliff, M.D.,

ed.: Expert Systems and Intelligent Manufacturing. Elsevier (1988)
3. Sauer, J.: Knowledge-based systems in scheduling. In Leondes, T.L., ed.: Knowledge-Based Systems Tech-

niques and Applications. Academic Press, San Diego (2000) 1293–1325
4. Scheithauer, G., Terno, J.: The G4-Heuristic for the Pallet Loading Problem. Journal of the Operational

Reseach Society 47 (1997) 511–522

