
An Agent Based Pervasive Healthcare System: a
First Scalability Study?

Johannes Krampf1, Stefano Bromuri1, Michael Schumacher1, and Juan Ruiz2

1 Institute of Business Information Systems,
University of Applied Sciences Western Switzerland

johannes.krampf@students.hevs.ch

{stefano.bromuri,michael.schumacher}@hevs.ch,
WWW home page: http://aislab.hevs.ch/

2 Department of Endocrinology, Lausanne University Hospital, 1011 Lausanne
juan.ruiz@chuv.ch

Abstract. Gestational Diabetes Mellitus (GDM) occurs during preg-
nancy due to an increased resistance to insulin caused by the growth of
the baby. It appears after the 24th week of pregnancy and it is treated
with diet counselling and insulin treatment. In this paper we present
the complete implementation of a Pervasive Healthcare System (PHS)
based on intelligent agents to support continuous monitoring of pregnant
women affected by GDM. Our infrastructure is composed of a mobile in-
terface connecting to a distributed multi-agent system which in turns is
connected to a patient management system. This stores the data pro-
duced during the monitoring phase and present them to the doctors in
charge of the patient. Our system’s scalability is then evaluated to show
the strong and weak points of our approach.

Key words: Personal Health Systems, Agents, Pervasive Healthcare

1 Introduction

Gestational diabetes mellitus (GDM)[10] affects 3%–10% of all pregnant women
with no history of diabetes before pregnancy and manifests itself in high blood
sugar levels during pregnancy. Current treatment guidelines [13] consist in diet
adjustment and in anti-diabetic medicines such as insulin and metformin. In
particular, the patient starts the treatment by simply monitoring the levels of
glucose 4 times per day, with one preprandial observation and one postprandial
observation in the morning, and two postprandial observations after the lunch
and after the dinner. Such values are then written in a notebook that is handed
to the doctors twice weekly. According to the behaviour of the physiological
values the doctors may introduce further checks at lunch and dinner, and, if the
glucose values are outside the boundaries, start the treatment with metformin
or insulin. If not treated, GDM may have severe risks for the mother, who may

? This work has been partially funded by the Hasler Stiftung and by the Nano-Tera
Consortium.

2 Johannes Krampf et al.

develop high blood pressure and protenuria (preeclampsia) [14], and for the baby,
who may become large for the gestational age (macrosomia), with complications
at delivery and later in life.

Rather than checking the patient once or twice weekly, a better monitoring
may allow doctors to assess the situation of the patient and propose the cor-
rect treatment. One approach to continuous and intelligent patient monitoring
is represented by pervasive healthcare [12]. The goal of a pervasive healthcare
system (PHS) is to break the boundaries of hospital care, allowing patients to
be monitored while living their day-to-day life and to keep in touch with health-
care professionals. Due to its distributed nature, a PHS is faced with three main
challenges: scalability, accuracy and security. Scalability is important for PHSs
as these systems must be able to serve many patients at the same time, without
experiencing disruption due to high loads. Secondly, an accurate PHS should
be able to filter information efficiently in order to save time to the healthcare
professionals and produce alerts only when needed, with a good trade-off be-
tween false positives and false negatives. Finally, security is also an important
dimension for a PHS as it deals with medical data, which is sensitive data.

In this paper we present a PHS to monitor patients affected by GDM. A
previous version of this system was presented in [2], where we modelled a dis-
tributed agent-based PHS. We have chosen agents as a modelling abstraction for
our PHS as they are understood to be autonomous software entities, that act
proactively and pursue a set of goals [15] in an intelligent way, by applying AI
reasoning techniques. Using multi-agent systems (MAS) abstractions to model
PHSs is beneficial as this programming paradigm is well suited for distributed
systems, due to the autonomy property of the agents, and thanks to distributed
event based approach that these systems take into consideration to model the
interactions between the agents and the other available resources [3].

In [2] we have already provided a first validation of the accuracy of the no-
tifications provided to the health professionals by our intelligent agents. On one
hand, in this paper we present the full implementation of our PHS for GDM,
evaluating the scalability of our system and illustrating how healthcare profes-
sionals can utilise the functionalities of our tool. On the other hand, the security
of our PHS will be evaluated in future publications as the system is currently
being audited for security at the Lausanne University Hospital, although in this
paper we also present how we secured the interfaces of our PHS. The remainder
of this paper is structured as follows: Section 2 discusses the functionalities of
the components of our system; Section 3 discusses an evaluation of our PHS in
terms of its scalability; Section 4 puts our work in comparison with relevant re-
lated works; finally Section 5 concludes this paper and draws the lines for future
work.

2 A Personal Health System for GDM

Fig. 1 shows that our system is composed of three main components, which are
the Mobile Infrastructure (MI), the Agent Environment (AE) and the Patient

An Agent Based Pervasive Healthcare System: a First Scalability Study 3

Management System (PMS). Furthermore, these components are interfaced be-
tween each others by means of a mediator component, realised as a Web service
Data Gateway connector that accepts HTTPS requests. The MI component col-
lects the physiological data of the patient and delivers such data to the AE
component and to the PMS component.

Database

Personalised Patient Monitoring Component
Agent Environment & Multiagent System

 Web browser

 Mobile phone

Doctor's interface

Mobile connector

Authentication
Service

Data access
service

Data Access Layer
Internal Services

Service Layer
External Services

:ApplicationServer

:TrustedServer

:WebServer
SSL +

 Reverse Proxy

Doctor

Patient

1

1

1

1

1

2 AJP local

2

3 Unix sockets (local)

3

4

4

4

Mutually Authenticated TLS

Legende

 LDAP

Mutually authenticated HTTPS

Fig. 1. The Pervasive Health System Logic Architecture and the Security Interfaces.

The AE component utilises logic programming to model intelligent agents
that filter the data submitted to the PMS and provide alerts in case of significant
events, such as a possibility of preeclampsia in the patient or a high level of blood
sugar that requires a treatment adjustment. The AE system is subdivided in cells
associated to an area of a real city where the patients connect with their mobile
phones to produce their physiological data, that are then evaluated by intelligent
agents. The patients are represented in the AE as avatars that can communicate
to a personal intelligent agent, embodied in the AE. This representation of the
patient is convenient as we can reuse the AE communication and notification
facilities to interact with the intelligent agents situated in it. To every patient
avatar we associate an intelligent agent whose cognitive architecture will be
explained later in this Section. Finally the PMS allows the doctors to visualise
the patient’s data, to modify its treatment and to visualise the alerts produced
by the AE.

The three tier logic architecture shown on the top of Fig. 1 translate then to a
four tier architecture as shown on the bottom of Fig. 1. In particular, the mobile
phone and the Web browser represent the presentation layer, the reverse proxy

4 Johannes Krampf et al.

and the Web server represent the Web application layer, the agent environment
represents the business logic layer while the database represents the data layer.

The Web application layer accepts outside secure connections only on the
HTTPS port. It connects business logic and data layers. Caretakers and patients
use client authenticated HTTPS to connect to the system. A second authentica-
tion factor is provided by the combination of user name and password. Internal
components use local in-memory or mutually authenticated TLS connections to
communicate with each other. The data base partition is encrypted to protect
against physical access to the hard disk. User access to resources is restricted
by membership in one of the three groups users, caretakers and administrators.
Access to patient data is further restricted by an access control list which only
allows caretakers who treat a patient to access this patient’s data. All actions
are logged including IP address, user name, resource and success of the action
to provide an audit trail.

2.1 The Mobile Infrastructure

Fig. 2. The Mobile Interface.

The MI component is based on Android, and it is provided to the patient
through mobile phones and tablets to introduce their physiologic data and symp-
toms associated to GDM: blood pressure, blood glucose, weight, pulse, blurred
vision, epigastric pain, oedema in the legs, dyspnoea, chest pain, head ache.
Such an interface allows the patients to see if their physiological values meet the
targets for the week, with a set of pie charts as shown in Fig. 2. At the same
time the MI is also built with a synchronisation approach to avoid data loss:
whenever the connection with the AE is impossible, the MI saves the data in
a local database. When the connection with the AE is possible again, the data
stored in the mobile phone is submitted for storage in the PMS.

2.2 The Agent Environment and The Patient Management System

Our PHS makes use of intelligent agents to analyse and filter the physiological
data produced by the patients. In particular, we decided to include the GOLEM
agent platform in our system as it currently implements the patterns of Dis-
tributed Event-Based Systems (DEBSs) as described in [2]. By means of these

An Agent Based Pervasive Healthcare System: a First Scalability Study 5

patterns, the agents in the GOLEM agent platform can subscribe to events pro-
duced by the patients and the GOLEM platform will take care of notifying such
events when they take place.

Fig. 3. Caretaker Agent Mind Architecture.

In the particular case of our PHS, the patients are represented in the AE as
avatars that can communicate with a personal caretaker agent, whose architec-
ture is reported in Fig. 3. Every agent is deployed in GOLEM in a container.
A GOLEM container represents a portion of the distributed agent environment
which in this case is associated with a portion of the real environment, in order
to distribute the load of the requests of the patients. This topology was chosen
because we imagine that this system could work in synergy with the actual cel-
lular network. As described in [2], every caretaker agent has a cognitive model
with a deductive and an abductive part, whose specification is shown in Fig. 3.

The deductive rules are specified in Event Calculus [8], to describe the evo-
lution in time of the patient physiological values. Such rules specify how the
treatment of the patient should evolve. For example rule R6 specifies that, when
the patient had high glucose in the postprandial observations, then the agent
suggests to introduce further preprandial observations. Similarly, if the patient
is already in a 6 checks per day regime, then the agent suggests the doctors
to introduce a slow insulin in the morning to tackle the values that are out
range. The abductive rules take into consideration the symptoms of the patient

6 Johannes Krampf et al.

to provide alerts of macrosomia or preeclampsia to the doctors. In particular,
for preeclampsia, we also provide the probability of adverse outcome using the
fullPiers model [14], also reported in Fig. 3. To be able to provide this probabil-
ity, the agent connects to the PMS using the GOLEM middleware to download
the blood samples needed by the fullPiers model and introduced in the system
through the PMS. Further details about the agent cognitive model and its ac-
curacy are reported in [2] and we refer the interested reader to this publication.

The Patient Management System allows healthcare professionals to visualise
and analyse data as well as to introduce new data gathered during a patient’s
visit. The PMS is a hybrid application incorporating both elements of a clas-
sic server side Web application and a modern AJAX-powered client side Web
application.

Fig. 4. The Patient Overview Page.

After logging in to the PMS, healthcare professionals can visualise a dynamic
patient page, shown in Fig. 4. The patient page is divided into a static side bar
on the left and a changing content area on the right side of the window. When
showing different information about the patient, an HTML fragment will be
loaded and replace the content area. Graphs are handled completely on the
client side. There is a maximum of about 1700 data points, assuming 6 daily
blood sugar measurements during 40 gestational weeks, for a graph. Processing
and displaying this number of data points is almost instant on modern browsers
and allows for better interactivity than server side processing would. Healthcare
professionals can interact with the graphs by showing a specific time period,
changing this period and changing the view on the data. There exist two further
views on the data beside the point view in Fig. 4, which are a percentage view,
showing the data points in a week which are below, inside and above the normal
range of a physiological value, and and a distribution view that shows the 9th,
25th, 50th, 75th and 91th percentile for each week as well as outliers. These views
were created to fulfil the different information needs of doctors at the Lausanne
University Hospital.

An Agent Based Pervasive Healthcare System: a First Scalability Study 7

3 Evaluation

To evaluate our solution, we measured the performance for HTTPS requests
with different requirements on the application and database. Our goal in evalu-
ating our PHS was to understand if the system could support the traffic load of
the patients of an hospital of a medium sized city, such as the city of Lausanne
in Switzerland, where we plan to perform field tests. Also, another goal of this
evaluation is to understand what is the maximum amount of patients that we
can serve before having to introduce load balancing techniques in the PHS. We
therefore perform our evaluation on those components representing a bottleneck
of the current architecture. We do not perform an evaluation on the agent en-
vironment as this is based on the GOLEM platform, whose performances have
been previously evaluated in [3], showing that the system can scale up with the
number of GOLEM containers spawned for the application. For the tests, we
ran our PHS on a 3 GHz Intel Core 2 Duo processor, 4 GB RAM and Ubuntu
10.04.

101

102

103

104

0 20 40 60 80 100

lo
g(

R
eq

ue
st

s/
S

ec
on

ds
)

Concurrency

Doctor Start Page
Login Page

Insert Glucose Value From Mobile
Patient Page

Graph data for glucose
Patient's history

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100

90
th

 P
er

ce
nt

ile
 o

f R
es

p
on

se
 T

im
e

(m
s)

Concurrency

Doctor Start Page
Login Page

Insert Glucose Value From Mobile
Patient Page

Graph data for glucose
Patient's history

Fig. 5. Requests/second results and 90th percentile response time results.

The tests were performed using the ApacheBench [1] utility, which works
by performing a defined number of requests to a specified URL and measur-
ing various values such as response time or transferred bytes for each request.
After finishing the benchmark, ApacheBench shows a statistical analysis of all
requests, showing transfer rate and mean time per request. To prevent the bench-
mark utility from influencing the results, it was executed on a notebook with a
1.6 GHz Intel Core 2 Duo processor, 1 GB RAM running Linux with a direct
cable connection to the server, to minimise influences caused by network latency.
We tested different usage scenarios stressing different parts of the system. All re-
quests were executed at 1 to 100 concurrent requests to simulate different usage
load. Values were recorded during a 60 seconds stress testing period.

The curves on the left of Fig. 5 show the response time to different concurrent
calls performed in the system. In particular, we show the time to: retrieve the
data for glucose in the PMS; retrieve a patient history; insert glucose values from
the mobile phone; retrieve a patient summary page; access the login page and

8 Johannes Krampf et al.

patient page. We also assume that concurrent calls coming from different patients
are distributed in different cells of the agent environment. The requests per
second values increase with higher concurrency levels until a plateau is reached.
At this point the server becomes overloaded and the response time increases. The
graph of requests to the login page shows the plateauing behaviour when reaching
about 1400 requests per second. By looking at the detailed values we discovered
that the response time increase between 400% and 500% when comparing 20 and
100 concurrent connections while the processed requests per second are virtually
unchanged. The curves on top of Fig. 5 also show the plateauing behaviour of the
requests with database activity. The maximum value for requests per second is
reached between 10 and 20 concurrent requests. This suggests a database related
limit in concurrency. When increasing the concurrency from 10 to 15, the glucose
insertion from the mobile phones experiences a sharp fall from 130 to 20 requests
per second. The message queue in the Web service data gateway interface is
the limiting factor here: messages are acknowledged in order to ensure message
delivery and with many concurrent requests messages cannot be acknowledged
fast enough.

The 90th percentile response time charts on the right of Fig. 5 show the
expected maximum response time for 90% respectively of all requests. The re-
sponse time begins to be above 1 second and noticeable by a user at about 50
concurrent requests for requests with medium database activity and at about 15
concurrent requests for database heavy requests.

Each patient will transmit a number of values each day: Twice daily blood
pressure and four to six times blood sugar. Furthermore, the patient will trans-
mit one weight value per week and she will report symptoms when she experi-
ences them. We are interested in the maximum number of requests in a short
time period and will make the pessimistic assumptions that during one second
of usage of her mobile phone the patient transmits symptoms, blood pressure,
blood sugar and weight at the same time in the morning. The maximum num-
ber of requests/second for a user is therefore 4 requests/second. The worst case
scenario is all 10 patients of a planned pilot study making their 4 requests con-
currently in the same second, leading to 40 requests/second with 10 concurrent
connections. When producing Fig. 5 we found that the system is capable of 132
requests/second for a concurrency level of 10. As at the Lausanne University
Hospital, that serves the Canton Vaud in Switzerland, there are a maximum
of 5–6 patients with GDM at the same time, the system we defined is viable to
deal with the load experienced by a big sized university hospital. To estimate the
maximum number of users the system can serve, we modify our assumptions to
assume an uniform distribution of the 4 requests over the course of 30 minutes.
We will furthermore use 20 requests/second as the system’s performance due to
performance drop off at higher concurrency levels. This results in about 0.002
requests/second per user (Eq. 1) and 9000 patients (Eq. 2) with 20 concurrent
connections (Eq. 3). This allows us to consider usage for the whole canton Vaud.
The canton has a population of 700,000 [11] and 9.4 births per 1000 inhabitants

An Agent Based Pervasive Healthcare System: a First Scalability Study 9

per year. This results in 6580 births per year (Eq. 4) which means that the
system can theoretically monitor all pregnant women in the Canton of Vaud.

4

30 ∗ 60

request × user

second
=

1

450

request × user

second
(1)

20
request

second
/

1

450

request × user

second
= 9000user (2)

(4
request

user
× 9000user)/30 × 60 second = 20

request

second
(3)

700000 inhabitant ×
9.4

1000

birth

inhabitant × year
= 6580

birth

year
(4)

4 Related Work

From the related work stand point, several attempts have been done in the past
to combine agent technology with the healthcare domain. The systems described
by Huang et al. in [7] and by Hammond and Sergot in [6] use symbolic reasoning
over clinical workflows to manage oncological patients within a healthcare in-
stitution and to simplify the management of clinical trials. Larson et al present
Guardian in [9], an early attempt to provide an agent-based system for medical
monitoring and diagnosis. Guardian uses a tuple space based approach where
cognitive agents with a properly programmed knowledge base, provide a diag-
nosis for situations such as liver failure and hypothermia. In [4] Ciampolini et
al present a distributed MAS to deal with distributed diagnosis performed by
heterogeneous distributed abductive agents. In Ciampolini’s approach the di-
agnosis is provided in term of probabilities, although they do not consider a
realistic model for their experiments. The ASPIC project [5] has developed an
architecture based on argumentation theory for an autonomous agent that single-
and multi-agent healthcare applications can use. Evaluation scenarios focus on
the management and treatment of people with heart disease. With respect to
the systems reported above, our contribution is twofold: first of all we devel-
oped a practical system that takes into consideration scalability and security
issues following the needs of medical doctors at Lausanne University Hospital;
secondly, for our intelligent reasoning agents, we also utilise clinical models like
the fullPiers [14], whereas the systems mentioned above lack this approach.

5 Conclusion and Future Works

In this paper we presented a fully implemented Personal Health System for
the monitoring of GDM and alerting of treatment adjustment suggestions and
continuous diagnosis of conditions related to GDM. This system is composed
of a mobile infrastructure used by patients, a distributed agent environment
and a patient management system for medical professionals in charge of the
patients. We evaluated the performances in terms of scalability of our system
demonstrating the feasibility of the approach in the case of GDM. Future work
implies the evaluation of security interfaces amongst the different layers of our

10 Johannes Krampf et al.

infrastructure and the produced data. Another approach to future work is to have
a different PHS to doctors notification system, where the notifications are not
just produced in the Patient Management System, but also imply the submission
of emails or SMS to the medical professionals.

References

1. ApacheBench. http://httpd.apache.org/docs/2.2/programs/ab.html.
2. Stefano Bromuri, Michael Schumacher, Kostas Stathis, and Juan Ruiz. Monitoring

gestational diabetes mellitus with cognitive agents and agent environments. In Pro-
ceedings of the 2011th IEEE/WIC/ACM International Conference on Intelligent
Agent Technology (IAT 2011), August 2011.

3. Stefano Bromuri and Kostas Stathis. Distributed Agent Environments in the Ambi-
ent Event Calculus. In DEBS ’09: Proceedings of the third international conference
on Distributed event-based systems, New York, NY, USA, 2009. ACM.

4. A. Ciampolini, P. Mello, and S. Storari. Distributed medical diagnosis with abduc-
tive logic agents. In ECAI2002 workshop on Agents in Healthcare, Lione, 2002.

5. John Fox, David Glasspool, and Sanjay Modgil. A canonical agent model for
healthcare applications. IEEE Intelligent Systems, 21:21–28, November 2006.

6. Peter Hammond and Marek Sergot. Computer support for protocol-based treat-
ment of cancer. The Journal of Logic Programming, 26(2):93 – 111, 1996.

7. Jun Huang, Nicholas R. Jennings, and John Fox. Agent-based approach to health
care management. Applied Artificial Intelligence, 9(4):401–420, 1995.

8. R Kowalski and M Sergot. A logic-based calculus of events. New Gen. Comput.,
4(1):67–95, 1986.

9. Jan Eric Larsson and Barbara Hayes-Roth. Guardian: An intelligent autonomous
agent for medical monitoring and diagnosis. IEEE Intelligent Systems, 13:58–64,
January 1998.

10. D. C. Serlin and R. W. Lash. Diagnosis and management of gestational diabetes
mellitus. Am Fam Physician, 80:57–62, Jul 2009.

11. Swiss Statistics. The population of Switzerland 2009. http://www.bfs.admin.ch/
bfs/portal/en/index/themen/01/22/publ.Document.136821.pdf, 2010.

12. Upkar Varshney. Pervasive Healthcare Computing: EMR/EHR, Wireless and
Health Monitoring. Springer Publishing Company, Incorporated, 2009.

13. N. Vogel, B. Burnand, Y. Vial, J. Ruiz, F. Paccaud, and P. Hohlfeld. Screening
for gestational diabetes: variation in guidelines. Eur. J. Obstet. Gynecol. Reprod.
Biol., 91:29–36, Jul 2000.

14. P. von Dadelszen et al. Prediction of adverse maternal outcomes in pre-eclampsia:
development and validation of the fullPIERS model. Lancet, 377:219–227, Jan
2011.

15. M. Wooldridge. MultiAgent Systems. John Wiley and Sons, 2002.

