
58 The Open Medical Informatics Journal, 2011, 5, 58-72  

 

 1874-4311/11 2011 Bentham Open 

Open Access 

Prototypes for Content-Based Image Retrieval in Clinical Practice 

Adrien Depeursinge
*,1,2, Benedikt Fischer3, Henning Müller1,2 and Thomas M. Deserno3 

1
Business Information Systems, University of Applied Sciences Western Switzerland (HES–SO), TechnoArk 3, 3960 

Sierre, Switzerland 

2
Service of Medical Informatics, University and University Hospitals of Geneva (HUG), Rue Gabrielle–Perret–Gentil 

4,1211 Geneva 14, Switzerland 

3
Department of Medical Informatics, RWTH Aachen University, Pauwelsstr. 30, D-52057 Aachen, Germany 

Abstract: Content-based image retrieval (CBIR) has been proposed as key technology for computer-aided diagnostics 

(CAD). This paper reviews the state of the art and future challenges in CBIR for CAD applied to clinical practice. 

We define applicability to clinical practice by having recently demonstrated the CBIR system on one of the CAD 

demonstration workshops held at international conferences, such as SPIE Medical Imaging, CARS, SIIM, RSNA, and 

IEEE ISBI. From 2009 to 2011, the programs of CADdemo@CARS and the CAD Demonstration Workshop at SPIE 

Medical Imaging were sought for the key word “retrieval” in the title. The systems identified were analyzed and compared 

according to the hierarchy of gaps for CBIR systems. 

In total, 70 software demonstrations were analyzed. 5 systems were identified meeting the criterions. The fields of 

application are (i) bone age assessment, (ii) bone fractures, (iii) interstitial lung diseases, and (iv) mammography. 

Bridging the particular gaps of semantics, feature extraction, feature structure, and evaluation have been addressed most 

frequently. 

In specific application domains, CBIR technology is available for clinical practice. While system development has mainly 

focused on bridging content and feature gaps, performance and usability have become increasingly important. The 

evaluation must be based on a larger set of reference data, and workflow integration must be achieved before CBIR-CAD 

is really established in clinical practice. 
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1. INTRODUCTION 

1.1. History of Medical CBIR 

 In the early 1990s, the query by image content (QBIC) 
system of IBM was one of the first approaches to content-
based image retrieval (CBIR), and the query by image 
example (QBE) paradigm has since been established [1]. 
Representing images by means of numerical features 
(signature), relevant images are identified by comparing the 
signature of an example with all signatures in a repository. 
Initially, CBIR was applied to images from the Internet or 
large volumes of photographs [2]. The signatures were 
obtained from color, texture, and shape. Since color has been 
identified as the most relevant structure for CBIR, the 
semantic gap was recognized. It describes the differences 
between image similarity on the high level of human 
perception and the low level of a few numerical numbers 
describing a mean color. 

 A comprehensive review of CBIR systems in medical 
applications is given by Müller et al. [3]. To narrow the  
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semantic gap, first medical computer-aided diagnosis- 
(CAD) CBIR approaches focused on a particular modality 
and application domain, such as microscopy, photography of 
the skin, radiographs of spine, teeth, and mamma, computed 
tomography (CT) of lungs, and magnetic resonance imaging 
(MRI) of the head (Table 1). According to Tagare et al., 
medical image information further contains spatial data, and 
a large part of image information is geometric [4]. 
Accordingly, initial attempts in bridging the semantic gap 
were based also on local image signatures referring to pre-
segmented regions of interest (ROI) and relative positions of 
relevant objects (Table 1). 

 With the automatic search and selection engine with 
retrieval tools (ASSERT) system, for instance, the physician 
manually delineates the pathology bearing ROI and a set of 
anatomical landmarks when an image is entered into the 
database [5]. However, driven by the ever-increasing amount 
of medical image data acquired directly in the digital form in 
today’s clinical practice, manual annotations are time 
consuming, imprecise, irreproducible, and simply 
impracticable. 

 The development of rather general approaches such as I-
Browse and KMeD began about ten years ago. The 
established frameworks for medical CBIR systems today are 
the medical GNU image finding tool (MedGIFT) and the 
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image retrieval in medical applications (IRMA) project 
[15,16], which started in 2002 and 2001, respectively. 

1.2. Fields of Engineering 

 Simple CBIR prototypes can be developed quickly by 
computer scientists from the fields of image processing and 
machine learning, being central to the characterization of image 
content. To build large-scale CBIR systems however, expertise 
from several fields of engineering must be combined to fulfil 
the needs of specialized user groups including a high level of 
interaction (Table 2) [2]. Initially, raw, low-level information is 
extracted from original images using image processing 
techniques. These features are usually characterizing color, 
shape and texture, either globally or within an image region 
(locally). Then, computer vision, machine learning as well as 
knowledge from human vision and psychology are required to 

aggregate, optimize and map the low-level features to high-level 
semantic concepts driven by user’s intents and visual perception 
of the image collection of concern [17]. Another important cue 
is to maximize human-computer interaction with appropriate 
interfaces for query formulation and result visualization. In 
particular, allowing physicians to efficiently draw a sketch or 
quickly mark a volume of interest in 3D or in multiple-captured 
volumes (3D+time) is still an insufficiently solved problem. 
Studies in information retrieval also showed that involving the 
user in the loop for query refinement enables quicker 
convergence between user’s intents and retrieved results [18]. 
On the technical side, efficient database management and high-
performance computing are both required to optimize the 
retrieval quality offline (e.g., parameter optimization over large 
image collections) and to ensure quick online system response 
[19]. 

Table 1. Early Medical CAD-CBIR Systems in 2000 

 

System/Authors Body Region/Modality Signature Feature Extraction Medical Context/Application 

ASSERT [5] Lung CT Shape/texture Semi-manual CAD (differ 8 diseases) 

COBRA [6] Brain MRI  Shape/texture Automatic Ventricle system 

GEMINI [7] Mammography Shape Automatic Tumor diagnostics (CAD) 

I-Browse [8] Histology Color/texture Automatic General 

IME [9] Lung CT Shape relative position Semi-manual CAD by shape retrieval 

KMeD [10] Brain MRI Shape/texture relative position Automatic General  

NMPKB [11] Neuroradiology Shape/texture/asymmetry Automatic CAD  (differ 3 diseases) 

WebMIRS [12] Spine x-ray Shape Automatic Fracture detection and classification 

Qi & Snyder [13] Mammography Shape Automatic Tumor diagnostics (CAD) 

Zhang et al. [14] Intraoral x-ray Shape Manual Bone resorption 

Table 2. Field of Engineering for CBIR in Clinical Practice 

 

Field of Engineering Role Addressed Gaps [20] 

Image processing Extract low-level features from visual content • Content (semantic) 

• Features (extraction method, local/global, 

scale, dimension, …) 

Computer vision Feature aggregation, optimization and selection • Content (semantic) 

Machine learning Link between low-level visual features and high level semantic concepts 
such as objects and disease patterns 

• Content (semantic, use context) 

• Performance (indexing, evaluation) 

• Usability (query, feedback, refinement) 

Human vision Understanding of human visual perception and notion of similarity • Content (semantic) 

Psychology Understand user’s intents and behavior [21] • Content (semantic, use context) 

• Usability (query, feedback, …) 

• Performance (evaluation) 

Human-computer 
interaction 

Maximize user interaction with efficient interfaces and workflows • Content (use context) 

• Usability (query, feedback, refinement) 

Information retrieval Reuse and export concepts from retrieval of text and other media • Performance (indexing, evaluation) 

• Usability (query, feedback, refinement) 

Database management Storage of images, features and metadata such as clinical parameters • Performance (indexing) 

High-performance 
computing 

Enable using latest image processing technologies for feature extraction 
and indexing and to ensure rapid online system response 

• Performance (application, indexing) 
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1.3. CBIR vs CAD 

 The most popular approach to image-based CAD aims at 
providing automated interpretation of image examinations as 
a second opinion to radiologists. These systems have proved 
to be particularly useful for analysing large amounts of data 
containing easily detectable lesions but with low prevalence 
[22]. When compared to human readers, computers can 
efficiently and exhaustively analyse large numbers of images 
with high reproducibility. In the literature, two types of CAD 
systems are distinguished: 

1. Computer-aided detection (CADe) aims at pre-
analyzing images and automatically annotates 
suspicious regions in order to support the radiologist 
in reading. No classification of the ROIs is done. 

2. Computer-aided diagnostics (CADx) aims at deriving 
a diagnostic decision by adding a classification step, 
where the identified ROIs are analysed, classified, 
and a semantic conclusion is drawn, which might 
serve the radiologist as second opinion. 

 The initial attempts to CADx were carried out more than 
forty years ago in chest X-ray imaging [23,24]. These 
systems aimed at replacing radiologists as the originators 
relied on the assumption that computers were better at 
performing certain tasks than human beings. However, it 
quickly became clear that physicians and radiologists have to 
take the final decision and the outputs of CAD systems must 
be used as second opinions and information providers [25]. 
Recently, CADe systems have been used in clinical practice 
in the rather mature field of cancer screening in 
mammograms and allowed to improve the detection of non–
palpable cancerous masses [26]. Other notable examples are 
the assisted detection of lung nodules in chest radiographs 
such as Riverain Medical’s OnGuard

1
 which have obtained 

approval from the United States’ Food and Drug 
Administration (FDA). Furthermore, CADe is expected to be 
introduced into clinical routine for several other domains 
such as the chest, colon, brain, liver, skeletal and vascular 
systems [22]. 

 In summary, medical CBIR systems are well aligned with 
early 1990s’ conclusions that CAD should be used as second 
opinion and information providers [25], rather than 
independent automatic diagnostic systems. However, despite 
almost 20 years of intensive research in academia, CBIR has 
not reached as far as beyond research labs and, to our 
knowledge, no commercially available medical CBIR system 
exists yet. It is all the more surprising that the techniques in 
image processing and machine learning used for CADe and 
CBIR are similar in terms of structure, and the major 
disparities between the two occur in graphical user interfaces 
(GUI), clinical workflows and integration. 

 In this work, we try to answer the question why CBIR 
systems did not reach clinical practice yet. We provide a 
detailed analysis of CBIR systems that are close to be 
integrated and analyse their strengths and pitfalls. The 
corresponding unaddressed gaps are identified, and, from 
that, future directions are provided in a hope to foster the 
adoption of CBIR systems in clinical radiology. 

                                                
1http://www.riverainmedical.com/onguard-product.html, as of May 16, 2011 

2. MATERIALS AND METHODS 

2.1. State of the Art in Reviewing Systems 

 Reviewing medical CBIR systems is an often discussed 
issue with the first paper appeared in 1997 [4]. Thereafter, 
reviews usually are specialized on a certain medical or 
technological application domain such as forensics [27] or 
Web 2.0 [28], respectively. Rather general reviews have 
been published by Müller et al. [3] and Akgul et al. [29] 
referring to CBIR in radiology by current status, clinical 
benefits, and future directions. Ending up with 187 or 77 
references from the two reviews, respectively, inclusion or 
exclusion criteria are not fully clear, which limits the impact 
of such work. However, a somewhat more systematic 
methodology for classifying CBIR systems has also bee 
proposed [20,30]. 

2.1.1. Defining the Characteristics of Medical CBIR 
Systems 

 In [20], for instance, a set of 14 so called gaps are 
defined to classify medical CBIR systems, which are 
enriched with additional 7 characteristics. The gaps were 
identified as being responsible for potential pitfalls and 
inadequacy of current medical CBIR systems. For instance, 
the “semantic gap” describes the discrepancies between a 
high-level of semantic in human image perception and 
understanding and the simple numerical signature that is 
extracted by a machine in terms of color, texture and shape. 
More systematically, the authors define four clusters of gaps: 

 Content: The content gaps address the level of image 
understanding (1 – semantic gap) as well as the 
imaging and/or clinical context in which a CBIR 
system may be used (2 – use context gap). Obviously, 
designing a medical CBIR system for a broad use is 
more challenging, since the level of image details 
being relevant for the retrieval, the type of image data 
(modality) to handle, and other system preferences 
are highly variable. 

 Feature: The feature gaps address the automation of 
feature extraction (3 – extraction gap), the granularity 
or dimensionality of structure of image objects 
recognized by the system (4 –structure gap), of visual 
details in the image processed by the system (5 –scale 
gap), of spatial and time inputs actually used to 
compute the signature (6 – space & time dimension 
gap), and of channel inputs actually used to compute 
the signature (7 – channel dimension gap). 

 Performance: The performance gaps describe the 
levels of actual implementation of the system (8 – 
application gap), of integration into patient care 
information systems (9 – integration gap), of support 
for fast database searching (10 – indexing gap), and to 
which the system validity of retrieval has been 
evaluated (11 –evaluation gap). 

 Usability: The usability gaps address the levels to 
which user may use and combine text and visual 
queries (12 – query gap), to which the system helps 
the user to understand query results (13 – feedback 
gap), and to which the system enable the user to 
refine and improve query results (14 –refinement 
gap). 
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 These gaps highlight the need of contributions from 
several fields of engineering in order to successfully design, 
implement, and integrate medical CBIR systems into clinical 
practice (Table 2). With respect to our intention, the 
integration gap is of particular relevance. Already in 1999, 
Eakins & Graham explicitly have stated with respect to the 
non-medical CBIR application domain that “the experience 
of all commercial vendors of CBIR software is that system 
acceptability is heavily influenced by the extent to which 
image retrieval capabilities can be embedded within users’ 
overall work tasks” [32]. This is entirely true for medical 
applications as well. 

2.1.2. Defining the Review Methodology 

 According to previous work in general image retrieval 
[33], Long et al. proposed to formalize the review 
methodology to retrospectively assess the state of the art and 
future directions of medical CBIR systems [30]. Different 
criteria were defined: 

1. Journals: The journals were identified using informal 
selection criteria, but with the goal of providing a 
broad representation of the major publications 
reporting medical image retrieval research results. 
Ten journals from engineering and medicine were 
included. 

2. Date: Aiming at reviewing recent work, the date of 
publication was set between 2001 and 2010. Defining 
an ending date may be useful since the processes of 
paper writing, reviewing, and publishing may take up 
to five years [34]. 

3. Database: Several bibliometric databases and search 
tools are available. For instance, Pubmed (National 
Center for Biotechnology Information (NCBI), 
National Library of Medicine (NLM), National 
Institutes of Health (NIH), Bethesda, MD, USA), 
Google Scholar (Google Corp., Mountain View, CA, 
USA), and the ISI Web of Science (Thomson Reuters 
Corp., New York, NY, USA) are most recognized. 
However, the visibility of medical informatics 
regarding may differ with respect to coverage and 
completeness [35]. 

4. Terms: The search phrases must also be determined in 
order to produce reproducible results. In the work of 
Long et al., the terms [“medical image retrieval” 
AND search_phrase] were used, where search_phrase 
was one of eleven CBIR-related phrases including, 
for instance, “content-based image retrieval], 
“Indexing”, “Performance”, or “Relevance Feedback” 
[30]. 

2.1.3. Evaluations with Clinical Practitioners 

 Another idea to assess the “user readiness” of CBIR 
systems was proposed by Antani et al. [31]. The authors 
applied a set of usability evaluation methods known from 
quantitative and qualitative research to evaluate exemplarily 
a CBIR system supporting the access to 100,000 cervigrams 
and related, anonymized patient data. These methods 
include: 

 Questionnaire: Designed for the purpose of gathering 
information from respondents, a series of questions 

and other prompts or scales are presented either 
paper-based or electronically. Such questionnaires are 
filled by the user and usually analyzed statistically. 

 Structured Interview: Similar to paper-based surveys 
(questionnaire), the users are presented with exactly 
the same questions in the same order to support data 
aggregation. Such interviews are also referred to as 
(researcher-administered survey). 

 Focus Group: A group of people is asked about their 
perceptions, opinions, beliefs, and attitudes towards a 
system. The questions are asked in an interactive 
setting where participants are free to talk with other 
group members. 

 Think-aloud Method: Participants are encouraged to 
voice their thoughts on the system as they perform 
given tasks, while an expert facilitator is guiding the 
process of the session, and comments the voice 
recordings. 

 The methods also help to identify obstacles that hamper 
practical use of such systems. In the above given example, 
for instance, the user uncovered many problems such as it 
was (i) challenging to obtain a clear understanding of the 
purpose and functionality of the tool without any training on 
the tool’s capabilities, (ii) difficult to discern how to properly 
formulate a visual query, which is a critical component in 
CBIR systems, and (iii) almost impossible to use the 
interactive drawing tools successfully [31]. 

2.2. Definition for CBIR in Clinical Practice 

 However, complex schemes of terminology do not 
guarantee unambiguous location and complete inclusion of 
relevant work. Although a well-defined ontology is most 
important to science, it may still remain ambiguous to apply 
these terms correctly, since relevant information may be 
missing in the reports that are published as scientific article. 
The same holds for a detailed search strategy. Including or 
excluding systems by user evaluation studies delivers the 
most objective assessment of readiness for clinical practice, 
but is too costly regarding both, system and man power. 

 In order to identify content-based image retrieval systems 
that are really near to clinical practice, we assume they have 
been demonstrated in one of the recent workshops on CAD. 
Such workshops may be organized by: 

 CARS: The Computer-Assisted Radiology and 
Surgery private initiative, Kuessaberg, Germany, 
along with the annual CARS Conference, 

 RSNA: The Radiological Society of North America, 
Oak Brook, IL, USA, along with its annual meeting, 

 SIIM: The Society for Imaging Informatics in 
Medicine, Leesburg, VA, USA, along with its annual 
meeting, 

 IEEE: The Institute of Electrical and Electronics 
Engineering, Piscataway, NJ, USA, along with the 
international Symposium for Biomedical Imaging 
(ISBI), 

 SPIE: The Society of Photo-Optical Instrumentation 
Engineers, Bellingham, WA, USA, along with its 
annual International Symposium on Medical Imaging, 
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 MICCAI: The Medical Image Computing and 
Computer Assisted Intervention Society, Minnesota, 
USA, along with the annual MICCAI Conference. 

 The workshops were analysed in the years between 2009 
and 2011, where “Computer-aided Diagnosis” and 
“retrieval” were in the workshop and software presentation 
title, respectively. 

2.3. Applying Criteria 

 Among the six targeted conferences, two have dedicated 
sessions for live demonstrations of CAD systems. The events 
are: 

1. CADdemo@CARS in years 2009 and 2010 (2011 had 
not happened yet at the time when this paper was 
written), 

2. SPIE Medical Imaging (MI) CAD workshop in years 
2009, 2010 and 2011. 

 Other targeted conferences (i.e., RSNA, SIIM, IEEE 
ISBI and MICCAI) may have live software demonstrations 
in the context of commercial exhibitions, but these are not 
dedicated to CAD systems and very few technical details can 
be found for commercial systems. 

 In total, 4 systems presented in the five workshops 
(CADdemo@CARS 2009-2010 and SPIE MI CAD 
workshops 2009-2011) and containing “retrieval” in the title 
were analyzed. Some other CADx systems that did not 
contain “retrieval” in the title may contain CBIR features but 
were not in the main focus of the developments. At the 
CADdemo@CARS 2010 in Geneva, three CBIR-based CAD 
systems were presented: 

• A platform for bone age assessment, developed by the 
Rheinisch-Westfälische Technische Hochschule 
(RWTH) in Aachen, Germany entitled “Web-based 
bone age assessment using case-based reasoning and 
content-based image retrieval”. 

• Retrieval of fracture cases for operation planning 
developed at the University Hospitals of Geneva 
(HUG), Switzerland entitled “Case-based visual 
retrieval of fractures”. 

• Analysis and retrieval of high-resolution CT (HRCT) 
images from patients affected with interstitial lung 
diseases (ILDs) developed by the HUG entitled 
“Content-based retrieval and analysis of HRCT 
images from patients with interstitial lung diseases: a 
comprehensive diagnostic aid framework”. 

 At the SPIE MI CAD workshops 2009 and 2010, two 
CAD systems for the characterization of breast masses in 
mammograms were found with “retrieval” in the title: 

• “Expert-guided content–based mammographic mass 
retrieval system”, developed by Georgetown 
University Medical Center, Washington DC, USA. 

• “Content-based image retrieval (CBIR) CADx system 
for characterization of breast masses”, developed by 
University of Michigan Medical Center, USA. 

 The collaboration between the two research groups 
resulted in a publication at SPIE MI 2011 [36], which was 
used for the description of the CBIR system in Section 3.1.4. 

These four systems are described in details in Section 3.1, 
compared in Section 3.2. and analyzed in terms of gap 
identification in Section 3.3. 

3. RESULTS 

 The programs of 6 conferences were analyzed. In years 
2009-2011, workshops and special sessions dedicated to live 
demonstration of CAD systems were found in CARS and 
SPIE MI conferences. As CAD@CARS2011 had not 
happened yet at the time this paper was written, the program 
of five workshops (CAD@CARS 2009-2010 and SPIE MI 
CAD demo 2009-2011) were sought for CBIR systems. 70 
CAD systems were presented, and 5 of them (7%) contained 
“retrieval” in the title (Table 3). 

Table 3. Statistics of CAD Demonstration Workshops 

 

Event Number of Systems “Retrieval” in the Title 

CAD@CARS 2009 11 0 

CAD@CARS 2010 9 3 (33%) 

SPIE MI CAD 2009 20 1 (5%) 

SPIE MI CAD 2010 15 1 (7%) 

SPIE MI CAD 2011 15 0 

Total 70 5 (7%) 

 

3.1. System Descriptions 

3.1.1. Bone Age Assessment 

 With its underlying flexible structure of image processing 
and image retrieval algorithms, the IRMA framework was 
adjusted to enrich CAD in the context of bone age 
assessment (BAA). A live demonstration of this system was 
presented at the CADdemo@CARS 2010 in Geneva. 

Background and Objective 

 Bone age assessment based on hand radiographs is a 
frequent and time-consuming task for radiologists to 
estimate the maturity of patients. Relating the bone to 
chronological ages and the current status of growth allows 
estimating adult height of pediatric subjects, as well as 
diagnosing and tracking endocrine disorders or pediatric 
syndromes [37]. Clinically, the methods by Greulich & Pyle 
(GP) [38] or Tanner & Whitehouse (TW3) [39] are applied. 
In the former method, radiologists compare all bones of the 
hand to those shown in radiographs from the standard atlas. 
In the latter case, a certain subset of bones is examined. 

 Several approaches have been taken to (partially) 
automate the BAA-process, and recently, a commercial 
application was reported [40]. In general, all existing 
approaches rely on computation and measurements of 
image- or region-related features, which are usually 
incomprehensible to the user. Providing more transparency, 
the IRMA-based BAA application aims at merging CBIR 
with case-based reasoning (CBR). This is achieved by 
retrieving similar radiographs with validated ages from a 
case database, and subsequently presenting these to a 
radiologist along with a suggested bone age deduced from 
similarity and bone age of previous cases. 
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Methods and Application 

 The development of the hand bones is most evident in 
certain image regions, namely the epiphyses, the carpal 
bones, as well as the distal radius and ulna. Therefore, ROIs 
are subjected to CBIR queries rather than the entire 
radiograph. In the current IRMA-BAA prototype, only the 
epiphyses are considered, while the other bones are 
proclaimed to be included in future releases. 

 For a new hand radiograph, the processing pipeline 
consists of four steps (Fig. 1): 

- Center localization: At first, the centers of the 
epiphyses are localized. This can be attempted 
automatically, but a manual localization was proven 
to be more reliable. 

- Region extraction: A bounding box is oriented 
automatically around these centers, scaled and 
extracted, yielding the query epiphysial ROIs (eROIs) 
for the CBIR part of the IRMA-BAA. 

- Case comparison: With each extracted eROI, a query 
by example is send to the case database, which 
contains complete radiographs, corresponding eROIs, 
and meta-information such as gender, ethnic origin, 
chronological age, and the validated bone age from 
expert readings. For each query, the K most similar 
eROIs are returned with similarity scoring and 
validated bone age. Currently, the similarity is 
determined by cross-correlation, the image distortion 
model, and the Tamura texture features [41].  

- Age assessment: The overall bone age is predicted 
from the similarities of the K retrieved eROIs and the 
validated bone ages: 
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 Here, R is the number of eROIs used for the query, 

age
validated

(r,k) is the validated bone age of the k-th similar  

 

eROI to the r-th query eROI, while ),( kr  provides the 

corresponding similarity. In (Eq.1) only corresponding bones 

are compared, e.g., an eROI of distal phalanges of the index 

finger is compared solely to other eROIs of distal phalanges 

of the index finger. 

 Since the IRMA system already provides mechanisms for 
the inclusion of CBIR into web-based interfaces [42], the 
BAA-application makes use of these features and a research 
prototype is available as an online demo

2
. The prototype 

allows BAA for a radiograph of the demo database or the 
analysis of a user-uploaded image. The integration into 
clinical information systems can be achieved by Digital 
Imaging and Communications in Medicine (DICOM) Hosted 
Applications and DICOM Structured Reporting. 

 The result of the CBIR-based age estimation is presented 
to the user (Fig. 2). Query image and extracted eROIs are 
shown at the top-most area of the web-based interface. Their 
most similar counterparts retrieved from the database are 
shown below (scrollable) in decreasing similarity and with 
the validated bone age. The estimated bone age is shown 
below the query image. If the query image is contained in the 
demo database, the validated bone age is also provided. A 
click on one of the thumbnails opens the full resolution 
image. The display mode can also be switched to show the 
hands belonging to the retrieved eROIs. 

Validation 

 In order to estimate the potential for clinical use, the 
research prototype was evaluated in terms of the mean 
absolute prediction error of the estimated bone age in 
comparison to the validated bone age. As ground truth, the 
publicly available hand atlas provided by the University of 
Southern California (USC) is used, providing 1,102 
radiographs with gender, ethnic origin (Caucasian, African 
American, Asian, Hispanic), and bone age readings by two 
experienced radiologists. The mean of the two readings is 
defined as the validated bone age in (Eq. 1). In leaving-one-
out experiments, a mean absolute error of 0.97 years and a 
variance of 0.63 are observed over all ages and regardless of 
gender. 

 

                                                
2http://irma-project.org/onlinedemos_en.php, as of May 16, 2011 

 

Fig. (1). CBIR approach to bone-age assessment. 
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Summary and Perspective 

 Although the CBIR-CAD for bone age assessment 
performs less exact than the commercial application 
BoneXpert, where a root mean square error of 0.61 years is 
reported [40], it provides the radiologist not only the 
estimated age as a number but also the images to compare 
with. Further developments in the similarity computation, 
the inclusion of carpal bones and a gender-specific retrieval 
are expected to improve the performance. From a CBIR 
perspective, relevance feedback on the results should be 
established allowing the radiologist to express his level of 
agreement to the retrieved images, and restart the CBIR 
cycle (query refinement) to improve the age estimation. 

3.1.2. Bone Fractures 

 The application described in this section is a case-based 
CBIR system for surgical planning of bone fractures 
developed at the HUG [43]. A live demonstration of this 
system was presented at the CADdemo@CARS 2010 in 
Geneva. 

Background and Objective 

 Fractures are common injuries, and some more 
complicated fractures require a surgical intervention. 
Statistics from the Swiss Federal Office of Statistics (SFOS) 
show that in Switzerland in 2000, 62,535 hospitalizations 
were due to fractures, and the direct medical cost of 
hospitalization of patients with osteoporosis and/or related 
fractures was 357 million of Swiss Francs. Helping the 
surgeons to plan an intervention in an optimal manner is 
important from both clinical and economic aspects. Images 

play an important role in the decision making and the 
judgment of a fracture. The most common imaging 
technique used is X-ray, but CT, MRI, and 3-dimensional 
reconstructions can be required to precisely identify and 
understand complex configurations. The choice of the 
surgical technique (e.g., plate, screws) to apply is based on 
standardized fracture classifications provided by the 
Orthopaedic Trauma Association (OTA), as well as the 
personal experience of the surgeon, the latter being often 
limited to a subgroup. Therefore, it can be beneficial to have 
access to similar past cases including follow ups to compare, 
which method might be the most adapted one in a particular 
situation. However, searching for similar cases in large 
image databases using keywords is not optimal as it requires 
prior manual annotation of all images, which is time-
consuming and error-prone. Content-based visual 
information retrieval is used in this application to allow 
surgeons to submit images of a case to be operated as query 
and find similar cases ordered by visual similarity. 

Methods and Application 

 The study is based on an image database built at the 
surgery department of the HUG containing 2,693 fracture 
cases associated with 43 different fracture types based on 
OTA classification. Beside images, a few clinical attributes 
such as age, sex, implant type and exact diagnosis are 
available in eXtensible Markup Language (XML) files. The 
fracture retrieval engine is based purely on visual 
information extracted from image content and the diagnosis 
information is used only for evaluation. Images are indexed 
using a bag of visual features strategy, where 1600 local 
descriptors based on scale-invariant feature transform (SIFT) 

 

Fig. (2). Result display for the query image indicated at the top left. 
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[44] are obtained at fixed positions (40x40 grid). Descriptors 
located at the corresponding position are gathered for 
variance analysis. Positions are ranked based on the variance 
as low variance leads to low saliency of the associated 
position. Only descriptors associated to the best 500 
positions were taken. K-means clustering is used to reduce 
the feature space, which led to 1000 clusters. Consequently, 
each image is represented by a histogram of 1000 features. 

 To execute queries, a case-based query interface was 
developed (Fig. 3). Similarity measurement based on 
histogram intersection is used to rank the returned cases. 
Both query and results are case-based and contain multiple 
images. A fusion strategy based on a mix of sum and max 
operators is in use. 

Validation 

 To evaluate the retrieval performance, a maximum of ten 
cases per fracture type in the database (i.e., class) were used 
for queries. Each query used all images of one case. Only 
cases of the same fracture type were considered as relevant. 

 Average retrieval precisions of the system using the 
selected subset of queries are of 0.73, 0.29 and 0.21 for 
P@1, P@10 and P@30, respectively. Although performance 
is strongly dependent to the number of existing cases per 
diagnosis, one observed challenge is to distinct two types of 
factures in the same bone. Typically the precisions for distal 
fractures are often worse due to the existence of a large 
number of diaphysis fractures and proximal fractures in the 
same bone. 

Summary and Perspective 

 A case-based fracture retrieval engine is available online 
as a treatment planning tool for the surgeons at the HUG. 
The main novelty of the system is to allow for case-based 
queries using multiple images. An evaluation of the retrieval 
precisions based on diagnosis information was performed. 
The results showed that the system can retrieve fracture 
cases from the correct bone, but has limited performance for 
characterizing the exact location and type of fracture (e.g., 
partial, complex). Involving the user in the loop to refine 
returned results and using ROIs for queries may help to 
improve user satisfaction. 

3.1.3. Interstitial Lung Diseases 

 A diagnosis aid framework for HRCT images from 
patients with ILDs developed by the HUG was presented as 
a live demonstration at the CADdemo@CARS 2010 in 
Geneva [45]. 

Background and Objective 

 The interpretation of HRCT of the chest from patients 
with ILD is often challenging with numerous differential 
diagnoses [46]. Whereas automatic detection and 
quantification of the lung tissue patterns showed promising 
results in several studies, its aid for the clinicians is limited 
to the challenge of image interpretation, letting the 
radiologists with the problem of the final histological 
diagnosis. In this application, a hybrid CBIR-CADx was 
developed. In a first step, a 3D map of the lung tissue 
resulting from texture classification reduces the risk of 

 

Fig. (3). A Screen shot of the GUI for visual retrieval of fracture cases. 
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omission and ensures the reproducibility of the diagnosis by 
drawing the radiologists’ attention on diagnostically 
interesting events. Then, content-based retrieval of similar 
cases based on the 3D map of lung tissue provides 
comprehensive information concerning histological 
diagnoses in the form of HRCT image series with annotated 
regions in 3D and contextual clinical parameters. 

Methods and Application 

 So far, 85 cases associated with 13 frequent diagnoses of 
ILDs that underwent an HRCT examination were 
retrospectively collected at the HUG. Based on each 
histological diagnosis, the most discriminative clinical 
parameters for the establishment of the differential 
diagnostic were kept, resulting in 159 clinical attributes. For 
each case having a biopsy-based or equivalent (e.g. 
tuberculin skin test for tuberculosis, Kveim test for 
sarcoidosis, ...) proven diagnosis, the HRCT image series 
were simultaneously annotated by two radiologists with 
more than 15 years of experience. The 159 clinical attributes 
were filled based on their availability in the electronic health 
record within a time interval of two weeks around the date of 
the HRCT image series. 

 Block-wise texture analysis based on tailored wavelet 
transforms and support vector machines is used for the 

categorization of the lung tissue in HRCT. The considered 
classes of lung tissue are healthy, emphysema, ground glass, 
fibrosis and micronodules and were selected as being the 
most represented lung tissue. The segmentation results for 
the five classes are color-coded to constitute a three-
dimensional map of the lung tissue sorts as diagnostic aid 
(Fig. 4). 

 Based on the proportions of the five lung tissue types as 
well as clinical parameters, a multimodal similarity measure 
is introduced to enable case-based retrieval. The multimodal 
inter-case measure used is a linear combination of Euclidean 
distances that combines clinical parameters of two 
importance levels as well as the respective volumes of lung 
tissue sorts output from the texture classification. The 
interfaces for query formulation and result visualization 
provide pictograms of the images (Fig. 5). The retrieval is 
annotated with a pie chart visualizing the relative occurrence 
of different tissue types (Fig. 6). 

Validation 

 In order to evaluate the performance of both texture 
analysis framework for classifying the lung tissue regions 
and case-based retrieval, a leave-one-patient-out cross-
validation (LOPO CV) of 85 image series was performed. 
Global geometric and arithmetic mean accuracies of 88.5% 

 

Fig. (4). A screen shot of the GUI for the 3D categorization of the lung tissue. 
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and 71.6% are achieved respectively for the lung tissue 
categorization. Confusions between healthy and 
micronodules patterns are observed as some of the 
bronchovascular structures are mixed with small nodules and 
inversely. The case-based retrieval precision was evaluated 
based on the diagnosis of the retrieved cases using the seven 
most represented histological diagnoses. Mean retrieval 
precisions of 71.05, 47.22 and 39.71 at ranks 1, 5 and 10 
respectively are obtained with a LOPO CV. 

Summary and Perspective 

 The main novelty of the system is to allow for submitting 
3D queries with contextual clinical parameters. It also shows 
how CADx and CBIR can be complementary both on the 
algorithmic and on the user side. Limitations occur as low 
retrieval performance is obtained when based on visual 
similarity only, also because the link between visual 
similarity of two HRCT scans and their associated diagnoses 
is not straightforward (Fig. 6). Another limitation of the 

 

Fig. (5). Left: the query interface for clinical parameters. Right: a ranked list of retrieved cases. 

 

Fig. (6). Two examples of a 3D query and retrieved results. 
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system lies in the computing time necessary for creating the 
3D map of lung tissue, which is of approximately 20 
minutes. High-performance computing may help reducing 
the computational time of this online task. 

3.1.4. Mammographic Mass Retrieval 

 A mammographic mass retrieval platform developed by 
the Georgetown University Medical Center and University 
of Michigan Medical Center was presented in SPIE CAD 
workshops in 2009 and 2010 [36]. 

Background and Objective 

 Breast cancer is among most important causes of 
mortality of women. Imaging examinations allow early 
detection of cancerous masses, which can be consequently 
removed to avoid cancer generalization and metastases. The 
most common imaging technique used is digital 
mammography that enables highly detailed visual 
assessment of breast tissue with low radiation dose delivery. 
However, only 13-29% of suspicious masses are malignant 
[47] and a high level of experience is required for accurate 
staging that is based on the visual appearance of the mass 
(e.g., shape regularity, texture). To ensure reproducibility of 
the image interpretation, standardized reporting rules are 
available, such as the Breast Imaging-Reporting and Data 
System (BI-RADS) [48]. 

 In clinical practice, experienced radiologists often refer 
to mental personal images of past cases to evaluate the 
malignancy of the observed masses, which is subject to inter- 
and intra- observer variations depending on level of 
experience and eyestrain. Therefore, using CBIR to 
systematically provide similar masses with proven diagnoses 
can assist less experienced radiologists and refresh mental 
memories of the experienced ones. 

Methods and Application 

 In a first step, the system detects mass candidates using a 
pixelwise analysis of the mammogram [49]. The shape of 
each detected mass is characterized based on its likelihood to 

belong to the following BI-RADS-related categories: 
regular, irregular and lobulated. To allow this 
characterization, a classifier outputs likelihood of each 
category based on features describing the boundary-based 
shape. The latter consists of: third order moments, curvature 
scale space descriptors (CCSD), radial length statistics, and 
region-based shape features including compactness, solidity, 
and eccentricity. Another four BI-RADS-related categories 
(i.e., circumscribed, microlobulated, indistinct and 
spiculated) are used to characterize the masses and are 
predicted using texture features derived from gray level co-
occurrence matrices, intensity-based statistics and acutance 
histograms. The similarity between two masses is computed 
using locally linear embedding [50] in the hyperspace of all 
seven BI-RADS-related categories. 

 The system provides the user with the necessary 
functionality to query using radiologist annotated keyword, 
specific image features, or using both of them at the same 
time (Fig. 7). The system also allows the user to select the 
image features used to characterize masses. 

Validation 

 The system is validated on two datasets. The first one 
consisted of 415 mammographic biopsy-proven masses, in 
which 244 were malignant and 171 were benign. A receiver 
operating curve (ROC) analysis showed that the retrieval 
performance had an area under the ROC curve of 0.75±0.03 
for the five first retrieved masses. The second dataset 
consisted of 476 masses (219 malignant and 257 benign). 10 
random test/train partitions are used to evaluate the retrieval 
performance where the test set consisted of 76 masses (38 
malignant and 38 benign), and the training set of the 400 
remaining. An area under the ROC curve of 0.80±0.06 was 
obtained for the five first retrieved masses. 

Summary and Perspective 

 The development of the system is strongly focused on 
image features able to catch the subtle differences between 
benign and malignant with performance close to experienced 

 

Fig. (7). Left: the query interface allowing for online selection of specific image features to be used for retrieval and result visualization. 

Right: A detail view of the mass region and its localization in the mammogram. 



Prototypes for Content-Based Image Retrieval in Clinical Practice The Open Medical Informatics Journal, 2011, Volume 5    69 

readers. A potential limitation of the system lies in the fact 
that radiologists may not be able to understand the various 
influences of advanced image features (e.g., Fourier 
descriptors, gray-level co-occurrence matrices) on the 
retrieval performance. 

3.2. System Comparison 

 A direct comparison of the four systems would not lead 
to meaningful results, as the contributions in medical CBIR 
are driven by the various application needs. For instance, 
only the application for interstitial lung diseases would 
benefit from possibility to submit three-dimensional queries. 
Moreover, a comparison of the retrieval performance would 
be of little interest, since the latter strongly depends on the 
difficulty of the medical task as well as the database and 
methodology used for validation. However, the systems can 
be compared in terms of their “user readiness”, as defined in 
Section 2.13. The strengths and possible improvements of 
the systems relatively to the addressed medical application 
are summarized in Table 4. 

 The IRMA system for bone age assessment provides 
contributions in the GUI and clinical workflows. The 
visualization of the results enables transparency of the 
methods by displaying the epiphyseal regions used for 
retrieval and age prediction. The processing workflows 
correspond to the human approach for BAA, which improves 
the system’s intuitiveness. Several possible developments 
could still improve the user readiness of the system. In 
particular displaying intermediate steps allowing for 
selecting the epiphyseal regions used for retrieval. Using 
clinical parameters (e.g., gender, ethnics) as well as 
implementing query refinement and relevance feedback 
could also be beneficial to enable quicker convergence to 
sought cases. 

 The fracture case application is the only one enabling 
case-based multi-image queries. This important feature 
allows including the intra-class variations directly in the 
query and subsequently improves the level of semantics 
expressed by the user. The system suffers from the 
complexity of the medical task, since finding the fracture 
region is challenging. Therefore, this system would highly 
beneficiate from ROI-based queries, where the user could 
use ROIs from several images to best represent the fracture 
class. In addition, including clinical parameters such as the 
patient’s age in the query as well as enabling user feedback 
would be beneficial to improve user readiness of the system. 

 The clinical requirements of the application for 
interstitial lung diseases are challenging. The three-
dimensionality of HRCT images used and the non-triviality 
of the links between visual appearance of the lung tissue and 
histological diagnoses of ILDs open various challenges for 
developing a CBIR system fulfilling user needs. Some issues 
are addressed, as the system allows submitting 3D queries 
and enables system transparency by displaying intermediate 
image analysis results in the form of a 3D map of 
categorized lung tissue. It also permits to formulate 
multimodal queries with a large set of clinical parameters 
related to ILDs. Additional work is required to develop 
visual features characterizing three-dimensional lung 
textures in isotropic multi-detector row computed 
tomography (MDCT) image series to closely express human 

perception of lung textures and exploit the three-
dimensionality of the original data. Implementing multiple 
ROI-based queries and user relevance feedback 
functionalities are also important issues to reduce the 
semantic gap. High performance computing is required to 
reduce online computational time required to create the 3D 
map of categorized lung tissue. 

 The mammographic mass retrieval system investigated 
several developments in terms of visual features in order to 
characterize the subtle differences among benign and 
malignant breast masses. It allows submitting mixed text and 
visual queries based on automatically detected ROIs. Several 
improvements are possible in clinical workflows to enhance 
user interaction. For instance involving the user in the 
selection of the candidate masses, enabling for submitting 
multiple examples of the same mass (over time for example), 
allowing several iterations with user relevance feedback 
could enhance the rapidity of convergence to sought masses. 
The understandability of the system is not trivial for a 
radiologist user, especially for selecting visual features to be 
used for retrieval, since clinicians may not be familiar with 
the impact of Fourier descriptors or gray-level co-occurrence 
matrices on the quality of retrieval. 

3.3. Major Gap Identification 

 Although several strengths have been emphasized for the 
four prototype systems included in this analysis, they still are 
prototypes with a certain degree of readiness for clinical use. 
Table 5 reflects the systems with respect to the gaps [20]. 

 In general, the content gaps including the semantic gap 
are bypassed via the specificity of the systems and including 
some manual components in locating the region of interest. 
While global 2D features in 3D data have been used for a 
long time, the feature gaps obviously have been closed by all 
of the systems. Only one system is a 3D application, and 
here a multi-scale implementation might speed up the 
process and simplify the user interaction. So far, the group of 
performance gaps has been addressed only partly. All 
systems provide an application that has been evaluated 
quantitatively on a comprehensive set of ground truth data, 
guaranteeing its effectiveness. On the other hand, however, 
integration and indexing gaps have not been dealt 
sufficiently yet. The same holds for the systems’ usability. 
Man machine interaction for query formulation and 
refinement as well as relevance feedback may need 
improvement to successfully migrate the prototypes into 
clinical practice. 

4. DISCUSSIONS AND CONCLUSIONS 

 In this paper, we have systematically searched for CBIR 
applications in CAD with high level of “user readiness”. In 
total, 70 system presentations on internationally recognized 
workshops and conferences were analyzed and four CBIR 
prototypes were identified. The applications are in the fields 
of bone age assessment, bone fracture, interstitial lung 
diseases, and screening mammography. All of these fields 
were identified as having a key role for medical image 
processing and CAD, including a long history of developing 
reference databases [51]. Accordingly, optical imaging 
(microscopy and endoscopy) and medical ultrasound 
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imaging in colon and esophagus might be the future fields 
for CBIR prototype development. 

 With respect to the gaps [20], all systems – based on the 
training data –annotate query images with meaningful terms 
such as age, tissue type, or diagnosis, and by this, adequately 
bridge the semantic gap. However, the use context is very 
specific, not allowing the transfer of the system into other 
domains in clinical practice. Future CBIR-CAD shall aim at 
more generic architectures, principles and interfaces to 
support rapid prototyping for other applications. 

 Nonetheless, all of the prototypes have bridged the 
various feature gaps, and efficiency was proven on relatively 
large reference databases and ground truth images. This can 
be seen as a prerequisite for any prototype in the field of 

CBIR-based CAD. However, all of the prototypes still need 
improvement in user interaction and system integration. So 
far, stand-alone systems are demonstrated that are not 
appropriately integrated in the hospital information system 
environments. To become part of the medical information 
system environment that is usually operated in clinical 
practice, seamless integration is required on different levels 
[52,53]: 

- data integration is achieved if any data stored in the 
prototype must not be entered more than once; 

- functional integration is obtained if any services 
provided by the prototype can be used from any other 
module of the information system requiring this 
particular service; 

Table 4. Comparison of CBIR Systems 

 

CBIR System Strengths and User Readiness Possible Improvements 

Bone age  
assessment 

• Understandability of the system functionalities 

• Developments of visual features related to observer’s visual perception 

• User relevance feedback 

• Mixed text/visual queries 

• Multi-image queries (case-based) 

• Enable querying using a ROI 

Fracture case 
retrieval 

• Allows for multi-image queries • User relevance feedback 

• Mixed text/visual queries 

• Enable querying using a ROI 

Interstitial lung 
diseases 

• Enables 3D query formulating 

• Allows for mixed text/visual queries 

• Shows image analysis results as an intermediate step 

• User relevance feedback 

• Multi-image queries 

• Online computational time 

• Enable querying using a ROI 

Mammographic 
mass retrieval 

• Developments of visual features related to observer’s visual perception 

• Allows for mixed text/visual queries 

• Allows querying using a ROI 

• User relevance feedback 

• Understandability of the system 
functionalities 

• Multi-image queries (e.g., over time) 

 

Table 5. Gap Classification of Prototypes According to [20] 

 

Gap Name Bone Age Assessment Bone Fractures Interstitial Lung Disease Mammographic Mass Retrieval Highest level in [20] 

Semantic Manual Automatic Manual Automatic Automatic 

Use context Specific Narrow Specific Specific General 

Extraction Computer-assisted Automatic Computer-assisted Automatic Automatic 

Structure Local Local Local Local Relational 

Scale Not addressed Not addressed Not addressed Not addressed Multi 

Space/time dimension Complete Complete Complete Complete Complete 

Channel dimension Complete Complete Complete Complete Complete 

Application Online Documented Documented Documented Online 

Integration Not addressed Not addressed Not addressed Not addressed Active 

Indexing Not addressed Not addressed Not addressed Not addressed Both 

Evaluation Quantitative Quantitative Quantitative Quantitative Quantitative 

Query Pattern Pattern Pattern Pattern Hybrid 

Feedback Basic Not addressed Basic Not addressed Advanced 

Refinement Not addressed Not addressed Not addressed Not addressed Learning 
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- presentation integration is obtained if data presented 
in the prototype and other modules of the entire 
system appears in a unified way and style; and 

- context integration is present if specific settings such 
as the selection of a certain patient or image, which is 
done in one module, is passed automatically to the 
prototype when it is called, and vice versa. 

 Furthermore, the results obtained from the prototype 
must be stored in the picture archiving and communication 
system (PACS). DICOM Hosted Application and DICOM 
Structured Reporting might be suitable concepts in bridging 
the integration gap [54]. 

 In conclusion, the usability of the prototypes bears 
several options for improvement. Whereas some of the 
improvements may not be applicable to disease- or organ-
specific CBIR systems, most of the strengths of the 
prototypes analyzed in this work are applicable to any 
medical application where CBIR is relevant. Intuitiveness of 
a system is an unconditional prerequisite and should not rely 
on user’s computer literacy level. The workflows of the 
system must be as close as possible to common clinical 
practices. Query formulation is also an important issue to 
allow clinicians to adequately express their search intentions. 
Among the four systems, ROI-based queries, multiple 
image/ROI queries as well as mixed text/visual queries 
showed to allow efficient query formulation. ROI-based 
queries allow selecting visual patterns corresponding to the 
targeted classes with high precision whereas multiple 
image/ROI queries express intra-class variations. Extended 
query refinement and relevance feedback are concepts that 
need integration in the prototypes [42]. When applicable, 
showing intermediate image analysis results used for 
retrieval (e.g., automatically segmented objects or regions) 
provides transparency of the methods. At last, rapid online 
response of the system is also an important factor for a 
successful adoption in the stressful environments that 
hospitals are. 
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