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Abstract. We develop a texture analysis framework to assist radiolo-
gists in interpreting high–resolution computed tomography (HRCT) im-
ages of the lungs of patients affected with interstitial lung diseases (ILD).
Novel texture descriptors based on the Riesz transform are proposed to
analyze lung texture without any assumption on prevailing scales and ori-
entations. A global classification accuracy of 78.3% among five lung tissue
types is achieved using locally–oriented Riesz components. Comparative
performance analysis with features derived from optimized grey–level
co–occurrence matrices showed an absolute gain of 6.1% in classifica-
tion accuracy. The adaptability of the Riesz features is demonstrated by
reconstructing templates according to the first principal components of
the lung textures. The balanced performance achieved among the various
lung textures suggest that the proposed methods can complement human
observers in HRCT interpretation, and opens interesting perspectives for
future research.
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1 Introduction

Successful diagnostic interpretation of medical images relies on two distinct pro-
cesses. First, abnormal image patterns are identified (e.g., fibrous tissue, ar-
chitectural distortion, ...) and, second, links between the patterns and possible
diagnoses can be established [1]. Whereas the latter requires a deep understand-
ing and comprehensive experience of the involved diseases, the former is closely
related to visual perception. Interestingly, a large scale study on malpractice in
radiology showed that the majority of errors in medical image interpretation are
caused by perceptual misapprehensions [2]. Texture analysis is central to human
image understanding and plays an important role in efficient characterization
of biomedical tissue, that cannot be described in terms of shape or morphol-
ogy [3]. As a consequence, computer–aided diagnosis (CAD) based on texture
quantification in radiological images has been an active research field over the
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past 20 years with the aim of reducing omission errors of pathological tissue by
providing systematic second opinions to radiologists.

Texture analysis is the cornerstone for differentiating between pathological
and healthy lung tissue of patients affected by interstitial lung diseases (ILD)
in high–resolution computed tomography (HRCT). ILDs group more than 150
disorders of the lung tissue of varying origin and can be differentiated only by
detecting subtle texture changes of the lung parenchyma with a characteristic
distribution within the lung anatomy [4]. Interpreting HRCT images of the chest
represents a challenge even for trained radiologists and lung specialists. Several
studies have been conducted on the use of computerized lung texture classi-
fication to assist the radiologists in HRCT interpretation for ILDs or chronic
obstructive pulmonary disease (COPD) starting from 1997 [5–8]. The success
of the CAD system is intimately related to the ability of the visual features to
catch and learn the subtle texture signatures specific to each lung tissue type,
which are typically non–deterministic. Therefore, statistical approaches that are
able to capture texture properties at any location, scale and orientation (i.e.,
affine–covariant) are required to achieve high tissue classification performance
to complement human observers. Whereas more than 60 papers using texture
analysis to classify lung tissue can be found in the literature of the past 15
years [9], research contributions on novel texture descriptors are still required as
several papers [5, 6, 10, 11] rely on texture features derived from grey–level co–
occurrence matrices (GLCM) [12], oriented filters from Gaussian derivatives [7]
or local binary patterns (LBP) [8]. The performance of these methods depends on
the arbitrary choice of scales and/or orientations as well as a necessary grey–level
reduction for GLCMs, the latter entailing the risk of loosing precious information
contained in the full bit depth of the original image. Wavelets and filtering tech-
niques have the advantage of providing continuous responses when compared to
the binary or categorical outputs of GLCMs or LBPs, which allows for a finer de-
tection and quantification of transients in medical images and were successfully
used for lung texture classification in [7, 13, 14]. Specific wavelet transforms yield
multiscale, multi–orientation with infinitesimal angular precision (i.e., steerable
filterbanks) and translation invariant (i.e., undecimated transforms) analysis,
which allows to characterize textures without making a priori choices on the
affine parameters [15].

In previous work [13, 9] we used isotropic wavelet frames enabling texture
analysis with translation and scale covariance as well as rotation invariance. The
use of isotropic analysis was based on the assumption that no prevailing orienta-
tions are contained in the lung tissue patterns of 2D axial slices in HRCT. Three
research contributions are proposed in this article. First, a novel texture char-
acterization approach based on the Riesz transform yielding translation, scale
and rotation covariance is introduced. Second, the assumption that lung tissue
patterns are locally rotation–invariant is investigated by aligning textures using
the local prevailing orientation. Third, principal component analysis (PCA) of
the Riesz features is used to obtain templates that are discriminative for lung
textures. The approaches are evaluated and compared using a dataset of 85
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ILD cases with a large variety of lung tissue types and a realistic validation
scheme based on a leave–one–patient–out (LOPO) cross–validation (CV). We
used 13808 overlapping blocks from 2037 manually drawn regions of interest in
1225 2D HRCT slices to validate the proposed methods. A quantitative perfor-
mance comparison with optimized GLCMs is carried out.

2 Material and Methods

2.1 Dataset

A database of 85 ILD cases containing HRCT image series with a slice thickness
of 1mm, inter–slice distance of 10mm and hand-drawn regions annotated in a
collaborative fashion by two radiologists with 15 and 20 years of experience at the
University Hospitals of Geneva (HUG) [16] is used to evaluate the performance
of the proposed approaches. The diagnosis of each case was confirmed either
by pathology (biopsy, bronchoalveolar washing) or by a laboratory/specific test.
Based on [4], the texture classes are defined as healthy and four pathological lung
tissue types (i.e., ground glass, fibrosis, micronodules and emphysema) that are
used to characterize the most frequent ILDs in HRCT. The distribution of the
annotated regions and patients is detailed in Table 1.

2.2 Texture Analysis with Nth–Order Riesz Transforms

The Riesz transform is a multidimensional extension of the Hilbert transform,
which maps any function f(x) to its harmonic conjugate and is a very pow-
erful tool for mathematical manipulations of periodic signals [17]. For a two–
dimensional signal f(x), the different components of the Nth–order Riesz trans-
form R are defined in the Fourier domain asÙR(n1,n2)f(ω) =

r
n1 + n2

n1!n2!

(−jω1)
n1(−jω2)

n2

||ω||n1+n2
f̂(ω), (1)

for all combinations of (n1, n2) with n1+n2 = N and n1,2 ∈ N. f̂(ω) denotes the
Fourier transform of f(x), where the vector ω is composed by ω1,2 corresponding
to the frequencies in the two image axes. The multiplication by jω1,2 in the
numerator corresponds to partial derivatives of f and the division by the norm of
ω in the denominator results in only phase information being retained. Therefore,
the 1st–order R corresponds to an allpass filterbank with directional (singular)
kernels h1,2:
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where
h1,2(x) =

x1,2

2π||x||3
, (3)

and x1,2 correspond to the axes of the image [15]. The Riesz transform commutes
with translation, scaling or rotation. The orientation of the Riesz components



4 A. Depeursinge et al.

N = 1 N = 2

N = 3

Fig. 1. Templates corresponding to the Riesz kernels convolved with a Gaussian
smoother for N=1,2,3.

is determined by the partial derivatives in Eq. (1). Whereas 2N Riesz filters
are generated by (1), only N + 1 components have distinct properties due to
commutativity of the convolution operators in (2) (e.g., ∂2/∂x∂y is equivalent
to ∂2/∂y∂x). The Riesz components yield a steerable filterbank [15] allowing
to analyze textures in any direction, which is an advantage when compared to
classical Gaussian derivatives or Gabor filters. Qualitatively, the first Riesz com-
ponent of even order corresponds to a ridge profile whereas for odd ones we obtain
an edge profile, but much richer profiles can be obtained by linear combinations
of the different components. The templates of h1,2(x) convolved with Gaussian
kernels for N=1,2,3 are depicted in Fig. 1. The Nth–order Riesz transform can
be coupled with an isotropic multiresolution decomposition (e.g., Laplacian of
Gaussian (LoG)) to obtain rotation–covariant (steerable) basis functions [15].

The main idea of the proposed approach is to derive texture signatures from
multiscale Riesz coefficients. An example showing healthy and fibrosis tissue
represented in terms of their Riesz components with N=2 is depicted in Fig. 2 a).
In order to provide a local categorization of the lung parenchyma, lung regions
in 2D axial slices are divided into 32×32 overlapping blocks with a distance
between contiguous block centers of 16. The Riesz transform is applied to each
block, and every Riesz component n = 1, . . . , N+1 is mapped to a multiscale
representation by convolving them with four LoG filters of scales s = 1, . . . , 4
with a dyadic scale progression. In a total of (N+1)×4 subbands, the variances
σn,s of the coefficients are used as texture features along with 22 grey level
histogram (GLH) bins in [-1050;600] Hounsfield Units (HU). The percentage
of air pixels with values ≤ −1000 HU completes the feature space learned by
support vector machines (SVM) with a Gaussian kernel.

The local dominant texture orientations have an influence on the reparti-
tion of respective responses of the Riesz components, which is not desirable for
creating robust features with well–defined clusters of instances. For example, a
rotation of π/2 will switch the responses of h1 and h2 for N=1. To ensure that
the repartitions of σn,s are comparable for two similar textures having distinct
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a) b)

Fig. 2. Riesz representation of healthy (gray dots) versus fibrosis (black crosses) pat-
terns. a) Initial Riesz coefficients in 3D. b) the Riesz coefficients in 2D after having
locally aligned the texture based on local prevailing orientation. The component cor-
responding to ∂2/∂x∂y is zero after local rotation and is not shown in b).

local prevailing orientations, the filters are oriented to have maximal response
along h1. The dominant orientation θdom of h1 at the position xp is

θdom(xp) = argmax
θ∈[0,π]

 �
h
(θ)
1 ∗ g

�
∗ f

!
(xp), (4)

where h
(θ)
1 (x) is h1 rotated by θ and g(x) is a Gaussian kernel. A local ori-

entation is obtained by rotating every Riesz filter hn with θdom and is done
analytically [15]. 2nd–order Riesz coefficients of healthy and fibrosis tissue after
local orientation are shown in Fig. 2 b).

3 Results

The proposed methods are evaluated using blocks from annotated ROIs with a
LOPO CV of 85 patients. For each fold, the cost C of the SVMs and the width
σk of the Gaussian kernel are optimized with the training set where parameters
allowing best classification accuracy on the training set are found with a grid
search (C ∈ [0.1, 1000], σk ∈ [10−2, 101]) and a 5–fold CV. The classification per-
formances are compared with optimized GLCMs that are extensively used for
lung texture analysis in the literature. Texture features derived from GLCMs
are contrast, correlation, energy and homogeneity for various pixel distances
d = 1, . . . , 5 and orientations θ = 0, π/4, π/2, 3π/4, similarly to [8]. Three grey–
level reductions are compared: 8, 16 and 32 levels l. Optimized SVMs learn in the
feature space spanned by concatenated GLCM attributes from every spacing and
orientation parameters as well as GLH and air percentage. Classification accura-
cies using Riesz features of various orders (N = 1, . . . , 13) are compared before
and after local rotation in Fig. 3 a). A class–specific performance comparison
of best setups for Riesz, Riesz with local orientation, and GLCMs is shown in
Fig. 3 b). The confusion matrix of the best performing technique (N=6 with lo-
cal orientation) is detailed in Table 1. In Fig. 4, the distributions of the classes in
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terms of the two dominant principal components of the 6th–order Riesz features
with local orientation are shown. The coefficients from the PCA components are
used to weight each Riesz component and create learned templates represented
on axes in Fig 4.
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Fig. 3. a) Global classification accuracies with N = 1, . . . , 13. N=6 with local orien-
tation reaches best performance with 78.3% correct predictions of 13808 instances. b)
Class–specific accuracies of the two best configurations (N=1 and N=6 with orienta-
tion) and best performance of GLCMs (l=16).

Table 1. Confusion matrix in % of the best performing setup (N=6 with local orien-
tation). The numbers of blocks and patients used for the evaluation are detailed. Note
that a patient may have several types of lung tissue disorders.

healthy emphysema ground glass fibrosis micronodules # blocks # patients

healthy 77.5 7.6 4.1 0 10.7 1975 7

emphysema 8.4 73.3 5.9 6.2 6.2 1298 6

ground glass 14.1 0.5 72.3 10 3.1 3513 32

fibrosis 0.7 2.6 8.4 84.5 3.8 3554 37

micronodules 11.6 0.7 3.5 3.7 80.5 3468 16

4 Discussions and Conclusions

We propose a novel texture classification method based on the Riesz transform
to categorize lung tissue patterns in HRCT image series from patients affected
with ILDs. Compared to the literature, the Riesz features allow to analyze lung
texture without prior assumptions on the prevailing scales and orientations and
show higher classification performance than popular GLCM texture features.
The inherent local orientations of the lung texture are studied by locally steer-
ing the Riesz components before further classification. An optimal order of N=6
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Fig. 4. Visualization of the feature space projected on the two dominant principal
components. The corresponding Riesz templates (scale 2) are shown on the axes.

with local orientation allows best classification performance with 78.3% correct
predictions. Fig. 3 a) shows that even orders of the Riesz transform are providing
best results, which suggests that ridge detectors are more appropriate than edge
detectors for lung texture characterization. Fig. 3 b) shows that all lung tissue
types except ground glass are better classified with local orientation. All lung
tissue types benefit from Riesz texture features when compared to GLCM fea-
tures. Classes with highest improvement are healthy, fibrosis and micronodules,
which are those containing most texture information. The performance com-
parisons are statistically significant for all classes (p ≤ 0.0002) but emphysema
(p = 0.073). An absolute gain of 6.1% in global classification accuracy is obtained
with Riesz and rotation adjustment (78.3%) when compared to GLCM (72.2%).
This suggests that the arbitrary choices of scale and orientation parameters are
not optimal for accurate characterization of the lung texture, although these val-
ues are the most commonly used in the literature [5–7, 10, 11, 8]. Table 1 shows
that healthy and ground glass patterns are the most challenging to separate due
to high intra–class variability among patients and severity of disease . Confusion
between micronodules and healthy tissue is observed, which is a limitation of 2D
approaches as bronchovascular structures have similar appearance as micronod-
ules in the 2D axial slices. Unfortunately, the HRCT imaging protocol is very
anisotropic with a gap between slices of 10mm and does not allow for full 3D tex-
ture analysis. The Riesz features are easily extendable to three dimensions [15] to
reduce the confusions between micronodules and healthy bronchovascular struc-
tures in isotropic multidetector CT. The balanced performance achieved among
the various classes of lung tissue suggest that the proposed features are efficient
to analyze lung tissue patterns for a large variety of ILD diagnoses. The ability
of the Riesz features to adapt to lung textures is illustrated in Fig. 4 where tem-
plates according to the dominant principal components of the feature space are
shown. In future work, feature selection and learning methods will be incorpo-
rated to promote the most relevant Riesz components and reduce the influence of
noise. Thanks to the affine–covariant properties of the proposed methods, they
are expected to provide tools for analyzing textures with no prior assumptions
on translation, scale and orientation parameters in various applications.
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