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Abstract—This paper presents an agent-based pervasive
healthcare system (PHS) to support pregnant women with
Gestational Diabetes Mellitus (GDM). Such an infrastructure
uses a mobile application to monitor patients affected by GDM,
whose parameters are then sent to and analysed by cognitive
agents. We utilise a symbolic reasoning approach to formalise
the events happening in the system, the entities participating
in the interaction and the agent cognitive model for continuous
monitoring of GDM. Such a cognitive model is based on
deductive treatment adjustment rules to provide doctors with
indications about the patient’s treatment and on abductive rules
to provide a diagnosis of the illness’ current state. We evaluate
our system by means of medical data to assess the precision
of our infrastructure.

Keywords-Agent Environments; Pervasive Health; Abduction
Logic, Multi-agent Systems.

I. INTRODUCTION

Gestational diabetes mellitus (GDM) [1] is a type of
diabetes which temporarily affects 4% of otherwise healthy
pregnant women, and typically improves or disappears after
delivery. The factors associated with GDM are age, preg-
nancy weight, family history of diabetes, and ethnicity. GDM
can increase the risk of health problems developing in an
unborn baby, so it is important that the glucose levels in
the pregnant woman blood are under control. If untreated,
GDM can cause the baby to have macrosomia (excessive
weight at birth) [2] or the woman to develop a hypertensive
state called preeclampsia, which could lead to eclampsia,
a serious condition that can lead to epileptic seizures and
coma. One interesting fact about GDM is that patients are
motivated to have a pregnancy that is as smooth as possible
and they rarely lie about their health in the current practice,
that is based on recording glucose levels and blood pressure

on a notebook that is checked weekly by the doctors. There
have been attempts to define a statistical model to deal
with preeclampsia, such as the fullPiers model presented in
[3], but between checks the woman may still develop poor
glycemic control, leading to the aforementioned adverse
effects. In this paper we focus on improving GDM care,
by utilising a pervasive healthcare system (PHS) [4]. The
primary goal of a PHS is to break the boundaries of
hospital care, allowing patients to be monitored while living
their day-to-day life and to keep in touch with healthcare
professionals. Thus, we document the collaboration between
computer scientists and doctors to give to GDM a formal
representation, extrapolated from medical guidelines [5], in
order to define a PHS for continuous monitoring, treatment
adjustment and diagnosis of GDM, that can provide useful
feedback to doctors and save their time when dealing with
the physiological values of the patient, as usually multiple
patients are assigned to one doctor.

We embedded such a GDM model in intelligent agents
providing decision support to GDM caregivers. Agents are
the most appropriate modelling abstraction for our PHS as
they are understood to be autonomous software entities,
that pursue a set of goals [6] in an intelligent way, by
applying AI reasoning techniques such as abduction and
deduction, and act proactively, without necessarily receiving
a stimulus from a user. This set of properties can benefit
the current definition of PHS, by having monitoring tools
that are capable of complex and proactive reasoning on the
current patient’s physiological parameters.

Moreover, the agent environment concept [7], is becoming
increasingly more important to simplify the definition and
deployment of multi-agent applications, by mediating the



interaction between the agents and resources deployed in the
system, by hiding to the agents the complexity of dealing
with the state of resources external to the agent, and by
providing standard interfaces and standard descriptions to
resources so that the agents can utilise them for their own
goals.

The contribution of this paper is two-fold: from the med-
ical perspective, we provide a formal model of GDM based
on symbolic reasoning, which, to the best of our knowledge,
is a new approach to GDM care; from the technological per-
spective, we present an heterogeneous and multi-disciplinary
system that makes use of symbolic reasoning, agents and
agent environments to define a PHS for decision support
in GDM care. In particular, the main contribution of the
paper consist in the definition of the abductive/deductive
cognitive model of the agents to deal with GDM. In [8]
we presented an earlier version of the PHS presented in this
paper, where the agent environment was mapped to a set of
locations of a real city. On one hand, with respect to [8] we
extended our PHS in the following ways: we introduced a
more complete interface for the mobile platform, so that
the patients can visualise and introduce data about their
blood glucose, their blood pressure, their weight and the
current symptoms experienced; we extended the agent’s
cognitive model with a realistic deductive/abductive model
for GDM; finally we provided a first laboratory evaluation
of the agent’s cognitive model, with realistic physiological
parameters provided by GDM caregivers. On the other hand,
this paper does not yet describe the full implementation
of our system with the monitoring Web interface for the
doctors, which will be subject of future publications.

The remainder of this paper is structured as follows:
Section II discusses about the background technologies and
concepts utilised in this paper; Section III discusses the com-
ponents of our implemented Pervasive Healthcare System;
Section IV discusses a laboratory evaluation of our system;
finally, Section V concludes this paper and summarises our
plans.

II. BACKGROUND ON THE GOLEM AGENT PLATFORM

Our Pervasive Healthcare System (PHS) is based on
the GOLEM agent platform [9]. GOLEM implements the
agent environment concept, and it is built around four main
entities: agents, avatars, objects and containers. In GOLEM
agents are active cognitive entities with a body to perceive
and produce events and a declarative mind capable of
symbolic reasoning and decision making. Avatars are agents
where the decision making is done by a human user via an
interface.

Objects are reactive entities representing services for the
agents. Containers represent a portion of the distributed
agent environment, which is organised as a hierarchical
structure in terms of super, sub and neighbour containers.
GOLEM entities and events are specified in terms of C-logic

Table I
AEC PREDICATES

structures [10], a formalism that allows the description of
complex objects. C-logic is a compact specification language
that is particularly convenient to describe complex entities
and that has a direct translation to the Ambient Event
Calculus (AEC) [9], an Event Calculus [11] dialect, that
handles the evolution of objects, agents and containers by
means of production of events. In what follows, we will
produce C-logic descriptions of the entities used in our PHS,
to exemplify how GOLEM handles them. For example the
following C-logic structure:

container:c1[address ⇒ ”container://one@134.219.7.1:13000”,
location⇒coordinates:co1[longitude⇒0,latitude⇒0],
entities ⇒ {caretaker:ag1,avatar:av1, caretaker:ag2, avatar:av2}]

describes a PHS’ container that includes
an address attribute whose value is con-
tainer://one@134.219.7.1:13000, the location of the
container pointing another object co1 with the longitude
and latitude coordinates of the container, and the entities
contained in the container is a set (multiple values attribute)
of two caretaker agents ag1 and ag2 and two avatars av1
and av2. Entities within a container can have their own
description, as shown for the caretaker agent ag1, below:

caretaker:a1[monitors ⇒ avatar:av1, sensors⇒{sight:s1,hearing:s2},
effectors⇒{speak:ef1,arm:ef2},location ⇒ container:c1, activity ⇒ idle]

GOLEM containers behaviour is defined in terms of a
declarative Prolog-like theory on top of the AEC formalism.
In Table I we report the definition of the main predicates
of the AEC and then we show how C-logic descriptions
can be handled with the AEC, whose implementation details
are discussed in [9]. The C-logic description reported above
has a direct translation to a set of elementary Prolog-like
assertions, bound to Java objects, that can be queried using
the AEC, as also reported in [9].



Figure 1. The Pervasive Health System Logic Architecture. A grid of GOLEM containers is deployed and mapped on a real environment representing
a city. The disposition in a grid-like structure has been chosen to resemble the topology of a cellular network for mobile phones, as we imagine that a
system like the one described here could easily run on such an infrastructure.

III. PERVASIVE HEALTH AGENT ENVIRONMENT MODEL

Fig. 1 presents the logic architecture of our GOLEM-
based PHS. So far, we implemented the agent environment,
the cognitive agents, the objects and the patient’s mobile in-
terface, while the Web interface and database on the hospital
side are in development. Such a Web interface will allow
doctors to insert historical patient’s data that will be used
in the agents’ reasoning process. A personal caretaker agent
is associated to every avatar connected to the grid using the
mobile interface. Whenever a new set of physiological data
is produced by the avatar, the caretaker agent records them
in a database containing the patients’ physiological data.
Finally caretakers and patients are allowed to access their
data by means of a Web interface. The reason to keep the
computation within the infrastructure and not in the mobile
interface is that the data related to the patient’s history may
vary in time, requiring the mobile interface to download
the information multiple times. It is not optimal to have
patient’s data moving outside the hospital due to privacy and
legal reasons. At the same time our approach only requires
the patient to connect to the infrastructure when there is a
change in the patient’s physiological parameters, keeping the
power consumption minimal.
A. The Mobile Interface

As shown in Fig. 1 every patient in our PHS is equipped
with a mobile interface through which they can intro-
duce their physiological parameters. The interface allows
introducing blood pressure, glucose, weight and symptoms
experienced by the patient. The interface works as a client
towards the patient avatar in the agent environment. Thanks
to the fact that the users are embodied in the agent envi-
ronment as avatars, they can produce events in the agent
environment as the following one:
pressure reading:e1[avatar ⇒ avid1,caretaker agent ⇒ ag1,

systolic pressure ⇒ 120, diastolic pressure ⇒ 80].
glucose:e2[ avatar ⇒ avid1, caretaker agent ⇒ ag1, glucose level ⇒ 7].

Event e1 specified above is a pressure reading event,
produced by the avatar avid1 for the caretaker agent ag1,
and it contains a systolic pressure value of 120 and a dias-
tolic pressure value of 80. Similarly, event e2 is produced by
the avatar to publish the blood glucose levels in the container
for the personal caretaker agent.

B. The Distributed Agent Environment
The events produced by the avatars and directed to the

caretaker agents are handled using a publisher/subscriber
pattern [12]. Whenever an agent is deployed in the agent
environment, it subscribes its sensors to perceive the events
of the assigned avatar. For example, the following C-logic
term:
listener:s1[agent⇒ ag1, senses⇒ event:A[actor⇒ avatar:av1],status⇒ open]

specifies that the sensor s1, owned by agent ag1 subscribes
to the events produced by avatar av1, that will be notified
to the agent by the environment, using the subscribe/3
predicate previously presented in Section II.

Figure 2. PHS Data Model.
In particular, for events notification, we define the follow-

ing detectable/3 predicate:
detectable(event:E[actor⇒ avatar:AvID], Sensor, T)←

holds at(Sensor, owner, Agent, T), holds at(AvID, caretaker, Agent, T).

this states that an event produced by a certain avatar in
the agent environment is detectable by a sensor subscribing
to that class of events, only if the sensor owner is the
caretaker of the avatar that produced the event. The agents of
our GOLEM-based PHS, must be able to obtain historical
information about the patients, that are stored within the
hospital, or caretaker, in charge of the patient. To achieve
this, every container of the distributed agent environment is
equipped with an object that connects to the database of the
hospital, represented in C-logic as follows:
medical db:db1[

triggers ⇒ { store event trigger:tr1, historical data query trigger:tr2 }
emitter ⇒ { physilogical data emitter:em1, historical data emitter:em2 }]

The description above specifies a GOLEM object db1
of type medical db, capable of storing information about



physiological parameters through object trigger tr1, sub-
scribing to store event events, and capable of receiving
queries about patient’s historical parameters, through the
object trigger tr2, that subscribes to historical data query
events. Such medical db objects contain a link to a Web
service external to the agent environment, that allows storing
and retrieving patient data. The data model of our system is
presented in Fig. 2. Part of the data in the database of our
PHS is added off-line by healthcare professionals (historical
data, patient data and healthcare professional data), while,
as shown in Fig. 1 the physiological data of the patient will
be pushed in the database by the personal caretaker agents
through GOLEM objects of type medical db. Such objects
are connected to a Web service that in turns is connected to
the PHS to publish and retrieve data.

C. Cognitive Personal Caretaker Agents For GDM
The GOLEM caretaker agent mind is based on the Event

Calculus like the agent environment, and its architecture is
shown in Fig. 3.

Figure 3. Caretaker Agent Mind Architecture. GOLEM agents are
composed by an agent mind attached to an agent body that is equipped with
a set of sensors and effectors to perceive and act in the agent environment.

The agent mind is composed by two control threads,
one to perceive the events received by the agent body in
the agent environment (called perception cycle/1) and one
to produce actions in the agent environment (called ac-
tion cycle/1). In the PHS based agent environment agents
provide suggestions to professional caregivers, without any
planning involved, meaning that the agents do not take any
direct decision on how to proceed about a patient.
action cycle(T)← choose(Act, T), execute(Act, T),

revise(Act,T), now(Tn), action cycle(Tn).
perception cycle(T)←see(Perc,T),revise(Perc,T),now(Tn),perception cycle(Tn).

The two cycles described above, utilise then the Treat-
ment Adjustment Deductive Rules and the Abductive
Logic Rules to produce indicators for the medical doctors in
charge of the patients. The choose/2 predicate is specified
below:
choose(Action, T)← instance of(PID, patient, T),

findall(S, holds at(PID,symptom,S,T), Symptoms),
findall(A, select(Symptoms,A,T), Acts), higher priority(Acts, Action, T).

higher priority(ActList, Act, T)← member(Act, ActList), priority(Act, P, T),
not (member(ActX, ActList), not ActX = Act, priority(ActX, PX,T), PX > P).

Such a predicate finds all the symptoms that the patient is
experiencing and selects, amongst a set of actions, the best
one to perform according to its priority.

Treatment Adjustment Deductive Rules
When a patient is screened with GDM, she discusses

with a dietitian to adjust her diet in order to avoid the
consumption of insulin. The problem is that patients develop
a stronger insulin resistance with the progression of the
pregnancy, consequently the introduction of slow and fast
insulin may still become necessary. At the beginning of the
treatment it is usual to perform four glucose checks per
day: one before breakfast (at fasting) and one after two
hours of having breakfast, one post-prandial (after eating)
at lunch and one post-prandial at dinner. If poor glycemic
control occurs, then two further pre-prandial (before eating)
observations are introduced (one before lunch and one before
dinner). Given these assumptions we derived the following
set of rules to adjust the treatment. In the following rules
the glycemia values are assumed to be in mmol/l (millimoles
per liter), slow insulin is an insulin in tablets that has a long
lasting effect during the day and fast insulin is an insulin that
acts almost immediately. To express our rules, we used the
AEC initiates/4 and terminates/4 predicates to deal with
the evolution of the state of the patient in time.

R1) terminates(glucose observation:Ev, ID, observations, ).
R2) initiates(glucose observation:Ev,ID,observations,[Ev|Tail])←

patient of(Ev,ID), time(Ev,T), holds at(ID,observations, Tail, T).
R3) initiates(glucose observation:Ev,ID,hypoglycemia risk, true)←

patient of(Ev, ID), time(Ev,T), holds at(ID,observations, List, T),
size(List, 20),not (member(M, List), glycemia(M,Gl), Gl >4).

R4) initiates(glucose observation:Ev, ID, hypoglycemia risk, true)←
patient of(Ev, ID),glycemia(Ev, Gl),time(Ev,T),
holds at(ID,observations, [Head|Tail], T), time(Head,T∗),
T - T∗ < 1, glycemia(Head, Gl2), Gl < 3, Gl2 < 3.

R5) initiates(glucose observation:Ev,ID,postprandial observation,[Ev|Tail])←
is postprandial(Ev),time(Ev,T),patient of(Ev, ID),
holds at(ID,postprandial observation, Tail, T).

R6) initiates(glucose observation:Ev,ID,introduce preprandial,true)←
is postprandial(Ev),time(Ev,T),patient of(Ev,ID),
holds at(ID,postprandial observation, List, T),
sublist(Sub,List), size(Sub,6),foreach(Obs,Sub,(glycemia(Obs,G),G>8)).

select( ,A,T)←instance of(P, patient,T),holds at(P,introduce slow insuline,true,T),
myID(ID),A=store event:a1[actor⇒ID,recommendation:p1[

timestamp ⇒ T, value ⇒ introduce slow insulin]].

Rules R1)-R4) handle the case when the glucose readings
of the patient indicate the possibility of hypoglycaemia. R1)
terminates the old observation list value from the moment
the event has happened, while R2) creates assigns to the
observations list a new observation. R3) and R) deal with the
case when the patient could have an hypoglycemic attack:
R3) considers the last 20 observations and if they are all
below 4 mmol/l, the patient is considered to be at a risk
of hypoglycemia; R4) considers the last two observations, if
the patient has two consecutive observations below 3 mmol/l,
the patient is also considered at risk of hypoglycaemia. R5)
and R6) specify how the additional pre-prandial observations
are introduced: if there are a total of 6 values that are
above 8 mmol/l in the post-prandial observations of the last
five days, then two additional observations are introduced.
Further rules are defined for the introduction of slow and
fast insulin, but we leave these as they are very similar to
the ones already illustrated. The flags that are initiated to



be true by the rules specified above, are constantly checked
by the agent action cycle, through the choose/2 predicate.
If one of the flags is triggered then the agents produced an
action to store the change of state of the patient and provide
a recommendation to the doctors in charge of the patient.
For example the select/3 rule above specifies a treatment
adjustment recommendation about slow insulin.

Gestational Diabetes Abductive Model
Abductive logic programming (ALP) [13] is a knowledge-

representation framework that can be used to solve problems
declaratively based on the idea that a set of seemingly
unrelated observed facts, are connected according to well
known laws, offering an explanation of what might be
true. Given a background theory T , and an observation G,
the task of ALP is to compute a set of ground atoms ∆
called explanation, and a ground substitution θ such that
∆ ∪ T |= Gθ, where the set of atoms in ∆ can belong to
a set of predicates A, called abducibles that are predicates
for which there is not complete information. Using ALP we
formalised the medical knowledge associated to conditions
related to GDM to a set of rules that given the symptoms
provide a possible explanation of the current condition of
the patient:

DomainKnowledge :
previous macrosomia ← macrosomia.
week of gestation(W )← W >= 34, macrosomia; W >= 20, preeclampsia.
glucose observation(A = [Gl1,Gl2, . . . Gl20]) ←

∃ Glk ,Glj ∈ A, j 6= i, Glk >5, Glj >5, macrosomia.
previous preeclampsia; blurred vision; severe headache;

lower leg oedema← preeclampsia; severe preeclampsia.
kidney disease; oliguria; protenuria;nausea; epigastric pain ←

preeclampsia; severe preeclampsia.
blood pressure(Systolic,Diastolic)←

preeclampsia,protenuria, Systolic >= 140, Diastolic >= 90;
not protenuria,severe hypertension,Systolic>=160,Diastolic>=110;
Systolic>=140,Diastolic>=90,protenuria,week of gestation(W),W < 35,
(severe headache;blurred vision;nausea;vomiting),severe preeclampsia.

IC :
← preeclampsia, (not protenuria;week of gestation(W), W < 20).
← protenuria, severe hypertension.
← preeclampsia, blood pressure(S,D),S < 140, D < 90.

select(Symptoms, A, T)←
demo(Symptoms, Explanation),instance of(ID,patient,T),myID(AID),
member([preeclampsia], Explanation),full piers(ID,Probability,T),
A= store event:act2[actor⇒ AID,physiological data:ph2[type⇒observation,

timestamp ⇒ T, value ⇒ Probability:preeclampsia]].

full piers(ID,Probability,T)←holds at(ID,platelet,PLA,T),holds at(ID,spo2,SPO2,T),
holds at(ID,creatinine, CRE, T),holds at(ID,aspartate, AST,T),
holds at(ID,gestational age, Age,T),holds at(ID,chestpain, Pain,T),
Coeff = 2.68 + (-5.41*10−2*Age) + 1.23*Pain + (-2.71*10−2*CRE) +
(2.07*10−1*Plat) + (4*10−5*Plat2) + (1.01*10−2*AST) +
(-3.05*10−6*AST2) + (2.50*10−4*CRE*PLA)+ (-6.99*10−5*PLA*AST) +
(-2.56*10−3*PLA*SPO2), Probability is exp(Coeff)/1+exp(Coeff).

The rules above use a Prolog-like syntax where the
head of the rules in the domain knowledge represents the
observations on the current patient’s state, while the body
represents the abducible predicates that are part of the ex-
planation associated to the observations or constraints on the
observation itself. We considered the patient physiological
signals (blood pressure, glucose levels, body mass index),
her symptoms, her current and previous history (presence

of protenuria, previous preeclampsia, previous macrosomia)
and her current week of gestation. In our model we con-
sider the existing guidelines defining preeclampsia [3] when
systolic blood pressure is 140 and diastolic blood pressure
is 90. The integrity constraints specify explanations that
are not possible. For example, in the above definition it
is impossible to give as an explanation preeclampsia if
there is not protenuria as an observation. Then, we define
select/3 rules to choose the best action to take given a
diagnosis produced by a demo/2 predicate, that queries the
abductive module. The implementation of demo/2 predicate
is based on an adbuctive reasoner adapted from [14], which
takes the symptoms, corresponding to the observations set G
in ALP, to find an explanation, that corresponds to ∆ in ALP.
The knowledge base T of ALP is implicitly represented by
the domain knowledge and the integrity constraints queried
by the demo/2 predicate. As shown above we can define a
select/3 rule for the case when preeclampsia is diagnosed
with very high blood pressure. Such a rule specifies that,
given a diagnosis of preeclampsia, the action performed by
the agent is to store a physiological observation in the PHS
database, holding the probability, according to the fullPiers
model [3], that the woman has preeclampsia, so that the
caregivers in charge of the patient can take an informed deci-
sion. The fullPiers model, whose equation is reported above
in the full piers/3 predicate, utilises a set of physiological
parameters (collected offline by caregivers and available to
the agents through the medical db objects) to calculate
the probability of adverse outcome of the pregnancy in the
case that the woman presents preeclampsia symptoms. For
macrosomia on the other hand, no model like the fullPiers
has been developed yet. As a consequence, our system only
provides an indication that macrosomia may be occurring,
that alone is not conclusive to identify the condition, but that
allows the caregivers to perform further checks.

IV. LABORATORY EVALUATION

We evaluated our system with 10 laboratory test scenarios
taking 10 distinct patients’ physiological data sets: 1) the
physiological values are in range; 2) the patient experiences
repetitive hypoglycemia; 3) the patient experiences hyper-
glycemia in the morning every two days in one week; 4) the
patient takes too much weight with poor glycemic control;
5) the patient experiences hypoglicemia during the day and
hyperglycemia at fasting; 6) the patient experiences blood
pressure outside the threshold values for preeclampsia, and
her blood test exams also are out of the range, triggering
a preeclampsia alert with related probability of adverse
outcome above 75%; 7) the patient experiences oedema,
epigastric pain, and had previous preeclampsia, but the blood
tests values are within range, triggering a preeclampsia
alert with related probability of adverse outcome around
60%; 8) the patient has a set of post-prandial observations
in the last week that are above 8mmol/l; 9) the patient



experiences two consecutive values of glycemia below the 3
mmol/l; 10) the patient had policistic ovaric syndrome and
poor glicemic control at the 30th week of pregnancy. The
preeclampsia predictions (scenarios 6-7) respected the scores
obtained applying the fullPiers model [3]. The problem at
this stage is that the probability threshold to perform a
decision about whether to hospitalise or not a patient varies
with the population of the patients and with the place where
the study is conducted as reported in [3]. The definition
of such a threshold requires a study with a large amount
of patients and such a study has not been performed in
Switzerland at the current time. For this reason, we assumed
that the decision on whether or not to hospitalise the patient
is responsibility of the caregivers of the patient, using the
probability calculated by the agents as a further information
on which to take a decision. The alerts of hypoglicemia
and treatment adjustment (scenarios 2-3-5-8-9), respond and
identify correctly the situation, triggering the right alerts. Fi-
nally, the agents identified macrosomia correctly (scenarios
4-10), producing an alert for the doctors. One limitation of
the system is that it is based on guidelines used by doctors,
but the effectiveness of the deductive cognitive model needs
to be tested with real patients as these may experience
borderline values (i.e. rather than having above 8 mmol/l,
the patient experiences 7.9 mmol/l). Since the guidelines are
very generic, these situations are handled case by case by
the caregivers, and at the current stage there is the necessity
to refine the current deductive rules to a more realistic set
of values.

V. CONCLUSION AND FUTURE WORKS

In this paper we presented a pervasive healthcare in-
frastructure based on abductive and deductive reasoning
agents to monitor patients affected by GDM in their day-
to-day activities. The prototype is defined in terms of a
mobile application that allows the patients to insert their
physiological values. Such values are then sent for treatment
adjustment evaluation and for abductive diagnosis to the
personal agents of the patients. Such personal agents reside
in an agent environment that deals with the notification
of the events to the agents and with the storage of the
information produced by the mobile platform and by the
agents recommendations for the doctors. To define the rules
for the cognitive model of the patients, we relied on existing
medical knowledge about gestational diabetes mellitus. We
tested our infrastructure with models of patients proposed by
medical doctors of the Lausanne University Hospital and we
assessed that the system is capable to recognise these models
and propose the correct indications for treatment adjustment
and diagnosis purposes. Future work implies testing our
system with real patients within a prolonged period of time,
to assess the effectiveness of the platform in real settings. A
future direction in this sense is to conduct a trial like the one
proposed in [3] and define, by using our PHS, an equation

for macrosomia to predict its occurrence probability. Finally,
security concerns are also matter of future publications.
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