
Coordinating e-Health Systems
with TuCSoN Semantic Tuple Centres

Elena Nardini Andrea Omicini Mirko Viroli
Alma Mater Studiorum – Università di Bologna, Cesena, Italy
{elena.nardini, andrea.omicini, mirko.viroli}@unibo.it

Michael I. Schumacher
University of Applied Sciences Western Switzerland (HES-SO), Sierre & Fribourg, Switzerland

michael.schumacher@hevs.ch

ABSTRACT
Open and distributed application scenarios like e-Health sys-
tems mandate for new coordination models and technologies.
In particular, they require middleware providing coordina-
tion and security services modelled with abstractions pro-
moting run-time observability and adaptation.

Along this line, in this paper we describe the architec-
ture of the TuCSoN coordination infrastructure, and show
its application to an e-Health application scenario.

1. INTRODUCTION
Healthcare supported by software systems – in short, e-

Health – is evolving quickly [7, 24]. Among the several
e-Health research activities, research on Electronic Health
Record (EHR) is particularly intensive [24, 43]. An EHR
represents a set of medical information called fragments,
which are stored in a digital format over different healthcare
institutions. The introduction of EHR offers several bene-
fits [26]: better patient safety, lower cost of health services,
and improvements in healthcare audit and research. The
main challenge in the EHR domain is to ensure interoper-
ability among EHR fragments belonging to an environment
that is distributed and open, and where the security support
represents a fundamental requirement to protect the patient
privacy [23]. Several efforts have been made in the EHR do-
main in order to cope with such requirements, in particular:

• Definition of standards for EHR-fragment format and
communication such as Health Level Seven (HL7) [11]
and Digital Imaging and Communications in Medicine
(DICOM) [21].

• Definition of standards like openEHR [13] and CEN
EN 13606 [15] promoting semantic approaches to face
heterogeneity and dynamism of fragment formats.

• Definition of specifications like the IHE (Integrating
the Healthcare Enterprise) specifications [20], to build

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

EHR coordination middleware able to coordinate EHR-
fragment providers and requesters.

• Definition of EHR coordination middleware based on
the semantic tuple-space computing [5], such as the
one promoted by Triple Space Computing (TSC) [1].

As shown by TSC, semantic tuple-space computing provides
models for EHR coordination middleware which overcome
the limits of the solutions proposed in the IHE specifica-
tions. In fact, unlike IHE, TSC provides a solution based
on semantic techniques as suggested by openEHR and CEN
EN 13606, and models for building applications that sup-
port more complex dynamics than the mere exchange of
EHR fragments. On the other hand, like IHE, TSC pro-
vides coordination media that cannot be tailored to the spe-
cific application needs. Thus, any coordination law not di-
rectly supported by the model has typically to be charged
upon coordinated entities, thus increasing their complexity,
especially in open scenarios. Moreover, TSC cannot cope
with the evolution of applications over time, since it makes
it difficult to adapt the coordination middleware in case of
changes to application requirements.

Along this line, in this paper we aim at providing mod-
els and approaches extending the solutions proposed in IHE
and TSC, in order to augment their effectiveness in building
EHR services, in particular as far as interoperability is con-
cerned. To this end, we draw our inspiration from TuCSoN
[33], an open-source coordination infrastructure based on se-
mantic tuple-centres [27], and promoting online engineering
[35] through a middleware adaptable at runtime, thus coping
with the dynamism requirements.

In particular, this article is organised as follows. In Sec-
tion 2 we briefly survey the existing approaches supporting
interoperability among EHR fragments, and discuss their
benefits and drawbacks. Then, in Section 3 we present an
overview of the TuCSoN architecture. In particular, we de-
scribe the key-features of the architecture: (i) the behaviour
programmability and the semantic support of tuple centres—
the coordination abstraction exploited by TuCSoN; (ii) the
organisation and RBAC models, used respectively to model
the system structures and their relationships, and the secu-
rity aspects; and (iii) the online engineering approach, used
to support the corrective/adaptive/evolutive maintenance of
software systems. In Section 4, we show how to exploit the
key-features of the TuCSoN architecture in order to extend
the solutions proposed in IHE and TSC. Finally, Section 5
concludes, providing final remarks.

2. EHR SYSTEMS INTEROPERABILITY

2.1 Towards electronic health records
The healthcare domain has been evolving quickly over the

past decades. Nevertheless, advances are somewhat limited
in several domain [3] and obstacles are still to be overcome
[10, 36]. Most of the administrative processes have adopted
an e-Health solution so as to become computerised. How-
ever, in some hospitals and for the large majority of General
Practitioners (GPs), medical data is still acquired and ex-
changed on paper. The totally paperless hospital has yet
a way to go [38]. Besides digital storage, the computerised
acquisition of medical data also makes data accessible for
computerised decision support [42] and has the potential to
reduce the large number of adverse events, particularly in
hospitals [7, 24]. Alongside local advantages, communica-
tion of health data is another important factor in comput-
erised data acquisition to overcome limits of paper-based in-
formation exchange, which is often slow [41] and error prone
[24]. e-Health information exchange strategies and solutions
have been developed on a local regional or cross-institutional
[25] and national [34, 14] level and some already have con-
crete implementation in research projects [41].

Among the several e-Health research activities concern-
ing the health information exchange, research on Electronic
Health Record (EHR) is particularly intensive [24, 43]. A
Patient EHR-document refers to the medical record of a pa-
tient stored in a digital format. The information stored in an
EHR might include patient information such as demograph-
ics, medical history, medication, allergy list, lab results or
radiology. Medical data belonging to an EHR are called frag-
ments, and can be distributed over different EHR systems.
The introduction of EHR offers several benefits [26]:

Better patient safety — Storing and transferring patient
information electronically allows reducing clinical er-
rors caused for example by illegible handwriting, doc-
uments or images, as well as it allows clinicians to com-
municate more quickly and accurately and to identify
relevant information more easily.

Lower cost of health services — EHR technology can re-
duce administrative work to manage medical data since
it can increase medical-data search efficiency and re-
duce medical-data duplication and waste.

Better audit and research — Behind improving medical
assistance of patients, EHR technologies are also useful
for other purposes. In particular, electronic databases
of health information can be exploited for healthcare
audit and research.

In order to keep the EHR benefits, EHR systems should
ensure interoperability among EHR fragments. Interoper-
ability – that is, the ability for two or more heterogeneous
systems to communicate together – is of paramount impor-
tance in health information communication [12]. In case of
EHR systems, interoperability should satify the following
conditions [23]:

Distribution — EHR fragments should be easy to share
even if the information is widespread across multiple
EHR systems.

Openness — EHR supporting servers at different caregivers
could be heterogeneous and change dynamically.

Security — It is necessary to support security mechanisms
in order to avoid failures that can cause injury to the
patient and violations to privacy.

Accordingly, interoperability among EHR systems call for
specialised middleware able to deal with distribution, open-
ness and security requirements in a coherent and transparent
way. In the next section, we discuss standards and solutions
from the literature, which propose design principles for mid-
dleware of such a sort.

2.2 Existing approaches: a survey
In order to cope with distribution, openness and secu-

rity, the first approach to the issue of interoperability is the
definition of standards for EHR-fragment format and com-
munication. The two most representative are [23]:

• Health Level Seven (HL7): a set of open standards for
the exchange, management and integration of EHR
fragments [11]. In particular, HL7 provides Clinical
Document Architecture (CDA) – a standard for the
representation and machine processing of clinical doc-
uments – and Messaging standard—a standard cover-
ing EHR-fragment messaging aspects.

• Digital Imaging and Communications in Medicine (DI-
COM): a standard for handling and transmitting in-
formation in medical imaging. It includes a file format
definition and a network communication protocol [21].

Standards such as HL7 and DICOM are not enough to achieve
interoperable health systems. In fact, the result is that EHR
systems use different set of format and communication stan-
dards, often incompatible, incomplete or involving overlap-
ping scopes, thus breaking the interoperability requirement
[18]. As a response to these problems – and as a comple-
mentary step towards the requirements of interoperability
among EHR fragments – the following standards and initia-
tives were proposed:

• openEHR [13] and CEN EN 13606 [15]: standards
aiming at facing interoperability among EHR fragments.
In particular they propose semantic approaches based
on Archetype Definition Language (ADL) [4] – a formal
language for expressing application-domain concepts –
in order to describe semantically EHR fragments. By
exploiting such kind of semantic techniques it may be
possible to support interoperability among EHR frag-
ments with different syntactic structures depending on
the adopted standard.

• Integrating the Healthcare Enterprise (IHE) [20]: a
non-profit initiative founded in 1998 led by profession-
als of the e-Health industry. The initiative goal is not
to develop standards as such, but to select and recom-
mend an appropriate usage of existing standards (e.g.
HL7 and DICOM) in order to improve the sharing of
information among EHR systems.

In this context, openEHR, CEN EN 13606, and IHE em-
phasise two important requirements. The first is to describe
semantically EHR fragments in order to face heterogene-
ity and dynamism of fragment formats. The second is to
provide a coordination middleware able to coordinate EHR
systems and actors interacting with such systems, hiding
distributed-fragment management and security issues from

entities to be coordinated. In particular, XDS, ATNA and
XUA are central profiles for building a coordination middle-
ware that connects EHR systems.

A further important contribute in this context is repre-
sented by Triple Space Computing (TSC) [5], which pro-
vides a different solution based on the Linda tuple space
model [17]. Through the tuple space model, coordination
among system entities occurs by exchanging information in
form of tuples, in a common shared space called tuple space.
System entities to be coordinated communicate with one an-
other through out, rd and in primitives to respectively put,
read and consume associatively tuples to/from the shared
space. In particular, TSC shows the following interesting
features:

• It provides a general coordination model to manage all
kinds of interactions among system entities.

• Tuple space model is based on generative communica-
tion [17]: tuples generated by a tuple producer have
an independent existence in the tuple space leading
to time, space and name uncoupling. Uncoupling is
a requirement to satisfy in order to cope with open-
ness. Entities belonging to an open environment can
be heterogeneous and can be added, removed or modi-
fied at runtime. For this reason, an entity cannot make
a-priori assumptions about other system entities.

• It is based on semantic tuple-space computing [28]: it
adopts tuple spaces enriched semantically thus allow-
ing an exchange of data (tuples) semantically described
by means of an ontology.

• Like IHE, it provides a Web-service interface to tuple
spaces which promotes interoperability.

TSC puts together the advantages of using openEHR, CEN
EN 13606 and IHE. Moreover, it improves the IHE approach
by proposing a more general coordination model suitable for
open scenarios, and not only specialised on the storage and
retrieval of EHR fragments. In particular, through TSC it is
possible to exploit a unique coordination model – the tuple
space model – to manage all the system interactions. This
is useful in case it is needed to extend e-Health systems with
coordination functionalities concerning different kinds of in-
teractions. For example, interactions with patients, with
scientific research systems or with systems providing con-
sumers with access to medical developments and research.

However, TSC exhibits some limits, too. The first one
derives from the Linda tuple-space model: the tuple space
behaviour is set once and for all by the model and cannot
be tailored to the specific application needs [31]. Thus, any
coordination law not directly supported by the model has
typically to be charged upon coordinated components, thus
obstructing the way to open systems. A further feature that
should be supported by an EHR coordination-middleware –
and that it is not covered by either IHE or TSC – is the abil-
ity to change its configuration at runtime in order to cope
with application dynamism. In fact, during the lifetime of
an application, requirements could be changed, added or re-
moved. For example, new nodes could be added/removed
to/from the network, or, coordination algorithms could be
changed in order to improve the efficiency and effectiveness
of the overall application. If the middleware does not allow
for runtime changes, it might be necessary to shut it down in

order to update its configuration—which is definitely unde-
sirable, especially in application scenarios like e-Health that
require continuous service availability.

Figure 1: Logical levels for a coordination middle-
ware

As far as middleware for the health domain is concerned,
the current state of the art can be summarised as follows:

• IHE profiles, in particular XDS profile, do not pro-
vide a middleware model expressive enough to man-
age interactions among EHR actors. In particular,
XDS provides a coordination middleware model not
based on semantic techniques, and focused on coordi-
nating meta-data in order to store and retrieve EHR
fragments. As a consequence, it cannot be used for
e-health applications going beyond the mere fragment
coordination.

• TSC provides a solution that overcomes part of the
XDS profile drawbacks. In particular, it exploits the
Linda tuple-space model enriched with semantic tech-
niques that exhibits features particularly useful for the
realisation of an EHR middleware. On the other hand,
TSC has some limits due to the fixed behaviour of its
coordination abstractions, and to its inability to cope
with middleware evolution over time.

Accordingly, an EHR middleware should be a coordination
middleware supporting interactions among heterogeneous EHR-
fragment providers and requesters—as in Figure 1. The
middleware should be developed upon a coordination infras-
tructure giving the support for distribution of heterogeneous
EHR-fragment-stores and providers/requesters of EHR frag-
ments in a transparent way. Then, the infrastructure should
provide the API required to build a coordination and a se-
curity service. The coordination service has the task to en-
able and rule interactions among system actors. It should
exploit a general-purpose coordination model based on the
tuple-space model and on semantic techniques, in order to
cope with the openness requirement. In turn, the security
service should be able to guarantee privacy of patient EHR-
fragments, taking into account the federated nature of the
healthcare system. Finally, the coordination infrastructure

should be based on engineering approaches making it possi-
ble to build a coordination middleware whose configuration
is adaptable at runtime, in order to maintain a continuously-
available EHR-service in front of dynamic changes of the
application requirements.

3. THE TuCSoN ARCHITECTURE
TuCSoN (Tuple Centres Spread over the Network) [33] is a

coordination model & infrastructure that manages the inter-
action space of a distributed software system by means of tu-
ple centres [31]. Tuple centres are tuple spaces [16] enhanced
with the ability to define their own behaviour in response to
interaction events, according to specific application needs.
In the same way as tuple spaces, tuple centres are informa-
tion spaces structured as sets of tuples, i.e., structured and
ordered chunks of information data; system components can
interact with and through tuple centres by inserting, read-
ing, and consuming tuples—so, the tuple centre model pro-
vides the same benefits of the generative communication as
tuple spaces [16], which leads to system components un-
coupling in space, time, and components’ name. From the

Figure 2: Topology of the TuCSoN coordination space

topology point of view, tuple centres are distributed and
hosted in TuCSoN nodes, defining the TuCSoN coordination
space [6]. In particular, the topological model of TuCSoN
classifies nodes as places and gateways—as shown in Fig-
ure 2. The former represent the nodes hosting tuple centres
used for specific applications/systems need, from supporting
coordination activities to hosting information or simply en-
abling software components communication. The latter pro-
vide instead information about a the set of places belonging
to a single domain—thus avoiding a single and centralised
repository, which is unfeasible in complex and large envi-
ronments. A domain is the set of nodes composed by the
gateway and the places for which it provides information. A
place can be part of different domains and a gateway can
be a place in its turn. The overall picture of the TuCSoN
topology is provided in Figure 2.

Besides topology, the key features of the TuCSoN architec-
ture are: (i) the behaviour programmability and the seman-
tic support in tuple centres, that represent the coordination
model supported by TuCSoN—those aspects will be treated
in Section 3.1; (ii) the use of the organisation and RBAC
models: the former is exploited to describe the system struc-
tures and their relationships, the latter is exploited to model
security aspects—both models will be treated in Section 3.2;
and (iii) the online engineering approach used to support

the corrective/adaptive/evolutive maintenance of software
systems. Such an approach will be treated in Section 3.3.

3.1 Behaviour & semantics in tuple centres
The behaviour of the original tuple spaces – represented

by their state transition in response to the invocation of the
standard coordination primitives – is set once and for all by
the model, and cannot be tailored to the specific application
needs [16]. As a consequence, any coordination policy not di-
rectly supported by the standard behaviour of the coordina-
tion abstraction – the tuple space – has to be charged upon
system coordinables, which hence grow in complexity—thus
hampering the effectiveness of the coordination model es-
pecially in open scenarios [33]. Moreover, associative ac-
cess [16] to tuples – tuples are retrieved by content and not
by reference – in standard tuple spaces is based on a tuple
matching mechanism which is purely syntactic. Although
this might appear as a marginal aspect of tuple-based coor-
dination models, it however imposes to coordinated compo-
nents a design-time awareness of the structure and content of
tuples: ultimately, components coordinated through a tuple
space should be designed altogether—thus clearly working
against the basic requirements for openness [40].

In order to overcome the above limits, the semantic tu-
ple centre model adopts respectively behaviour programma-
bility and semantic support. Through the behaviour pro-
grammability it is possible to program the tuple centre be-
haviour so as to embed coordination policies within the coor-
dination media, without charging upon system coordinables.
Whereas, through the semantic support it possible to exploit
ontology languages to semantically describe information in
tuple centres. Thus, the associative access provided by tuple
centres could exploit a semantic content description with-
out requiring a design-time awareness of the structure and
content of tuples, but only of the ontology describing the
application domain.

3.1.1 Behaviour programmability
The tuple centres behaviour can be determined through

a behaviour specification, defining how a tuple centre should
react to incoming/outgoing coordination events [31]. The
behaviour specification can be expressed in terms of a reac-
tion specification language that associates any communica-
tion event possibly occurring in the tuple centre, to a set of
computational activities called reactions. Each reaction can
access and modify the current tuple centre state by adding
or removing tuples and access all the information related to
the triggering communication event such as the performing
software component, the operation required and the tuple
involved. So, differently from tuple spaces, tuple centres rep-
resents general-purpose and customisable coordination me-
dia that can be programmed with reactions tailored to the
application needs.

TuCSoN exploits ReSpecT tuple centres [31, 30]. ReSpecT
adopts a tuple language based on first-order logic, where a
tuple is a logic fact, any unitary clause is an admissible tuple
template, and unification is the tuple matching mechanism.
ReSpecT reactions are defined through logic tuples, too. A
specification tuple is of kind reaction(E,G,R). It associates
a communication event described through E, to the reaction
R. G represents a set of conditions that has to be satisfied in
order to execute a reaction R, if the incoming event matches
E. A reaction is defined as a transactional sequence of re-

action goals, which may access properties of the occurred
communication event, perform simple term operations, and
manipulate tuples in the tuple centre.

ReSpecT tuple centres provides two main advantages. They
are logic tuple centres, thus making it possible to spread in-
telligence through the system where needed, for example by
exploiting cognitive agents [45]. Also, ReSpecT is Turing-
equivalent [8], so any computable coordination law can be
encapsulated into the coordination medium. In [30], a com-
plete example of use of reaction specification is discussed.

3.1.2 Semantic support
The tuple centre model was extended in [27] in order to

provide coordination media with a semantic support, mak-
ing it possible to perform semantic reasoning over tuples—
namely, the ability of matching tuples with respect to a
template not only syntactically as usual, but also semanti-
cally. From a semantic viewpoint, a tuple space has a simple
and natural interpretation as a knowledge repository struc-
tured as a set of tuples. Tuples may be seen as represent-
ing objects – called individuals – of the application domain,
whose meaning could be described by an ontology—that is,
in terms of concepts and relations among them.

In particular, according to [27], the key features making
a semantic tuple centre are: domain ontology, semantic tu-
ples, semantic tuple templates, semantic reactions, semantic
matching mechanism and semantic primitives. Those com-
ponents were formally defined in [27] through SHOIN(D)
[19]—a Description Logic (DL) language [2] representing the
counterpart of OWL DL, that is one of the three species of
the W3C standard OWL.

Domain ontology.
An ontology describing domain concepts and relations has

to be attached to a tuple centre, so as to interpret the se-
mantic associated to the knowledge (set of tuples) stored
in a tuple centre. The ontology language exploited for Re-
SpecT tuple centres is OWL DL. The following OWL-DL
code provides an example of description of the concept Car

with the mandatory and functional relation hasMaker with
the concept Maker—i.e., each car has precisely one maker:

<owl:Class rdf:ID="Car"/>
<owl:ObjectProperty rdf:ID="hasMaker">

<rdf:type rdf:resource=
"http://www.w3.org/2002/07/owl#FunctionalProperty"/>
<rdfs:domain rdf:resource="#Car"/>
<rdfs:range rdf:resource="#Maker"/>

</owl:ObjectProperty>

Semantic tuples.
A semantic tuple represents an individual described so

that it can be semantically interpreted by means of the do-
main ontology associated to the tuple centre. In ReSpecT
tuple centres semantic tuples are, from a syntactical view-
point, logic tuples. In [27] a SHOIN(D)-like language was
defined aimed at representing semantic logic tuples like

f550:‘Car’(hasMaker:ferrari, hasMaxSpeed:285,
hasColour in (red, black))

which defines an individual named f550 that belongs to the
concept Car and that has three relations: (i) hasMaker with
the individual ferrari, (ii) hasMaxSpeed with the numeric
datatype 165, and (iii) hasColour with red and black that
are datatypes of kind string.

Semantic tuple templates.
Semantic templates are to be used to flexibly retrieve se-

mantic tuples, hence they consist in specifications of set of
domain individuals described by the domain ontology. As
for semantic tuple, in ReSpecT tuple centres semantic tu-
ple templates are logic tuples. In [27] was also defined a
SHOIN(D)-like language to represent semantic logic tem-
plates like

‘Car’(exists hasMaker : ford)

which describes the set of individuals of kind Car in hasMaker-
relation with the individual ford.

Semantic reactions.
As shown in Section 3.1.1, a ReSpecT specification reaction

is a tuple of kind reaction(E,G,R). In a semantic specification
reaction, E describes the kind of primitive which it refers
and a semantic tuple template. For example, E could be
something like out(Car) describing every out of a semantic
tuple representing an individual that has to belong to the
concept Car. Otherwise, E could be something like in(Car)

referring to every in with a semantic template describing a
concepts that has to be sub-concept of Car.

Then, the guard G represents a set of conditions that has
to be satisfied in order to execute a reaction R. Thus, in
a semantic reaction specification it may contain conditions
about the semantic tuples and templates described in E. In
other words, G can contain concept descriptions that are to
be respected by tuples or templates unifying in E.

Finally, since R can contain the use of the primitives in, out
and rd, it can semantically interact with the tuple centre, as
well as every system component.

Semantic matching mechanism.
In case of primitives, semantic matching simply amounts

at checkking whether an individual, in form of a semantic
tuple, is an instance of the concept described by a seman-
tic template. Considering semantic reactions, in case of out,
semantic matching amounts at checking whether the indi-
vidual described through the primitive is an instance of the
individual-set specification described E and G. Whereas, in
case of in or rd, semantic matching means checking whether
the concept described through the primitive is a sub-concept
of the concept described E and G.

Like every DL-based system, SHOIN(D)-based systems
provide a reasoner offering a set of reasoning services [2].
In order to implement the semantic matching mechanism
for ReSpecT tuple centres the subsumption checking and in-
stance retrieval services of the Pellet OWL-DL reasoner [39]
were exploited. The former check if a concept A is a sub-
concept of a concept B. Whereas, the latter service retrieve
a set of individuals belonging to a given concept A.

Semantic primitives.
Semantic primitives (in, out and rd) represent the lan-

guage whereby system components can read, consume and
write knowledge described by means of a domain ontology.
Since the knowledge stored in the semantic tuple centre must
be always consistent with the domain ontology, in face of
the primitive out it is required to check – by exploiting the
DL reasoner – the consistency of the semantic tuple to be
written in the tuple centre, with the domain ontology. This
means that, differently from the original tuple centre seman-
tic, the primitive out performed with a semantic tuple can

fail in case the related semantic tuple is not consistent with
the domain ontology.

According to the above description, ReSpecT semantic tu-
ple centres provide two main advantages. First, they exploit
SHOIN(D)-like languages, in particular OWL-DL as their
ontology language. OWL-DL represents a good compromise
between expressiveness and complexity [19], and fits well the
openness requirement, since it is a standard ontology lan-
guage introduced for the Semantic Web, by the W3C Con-
sortium. Moreover, while other approaches have explored
how to use tuple-based models in semantic-aware contexts
[40], the approach adopted in [27] for semantic tuple centres
aims at smoothly extending the standard tuple centre set-
ting so as to fully exploit the power of DL in coordination
of system components, independently from the application
context. In this way, all the benefits of using ReSpecT tu-
ple centres (see Section 3.1.1) are maintained along with the
semantic support.

3.2 Organisation & security
Jennings [22] refers to organisation as a tool helping soft-

ware engineers managing complexity of software system de-
velopment. Organisation allows the interrelationships be-
tween the various components of the system to be defined
and managed, by specifying and enacting organisational re-
lationships. In this way, engineers can group basic compo-
nents into higher-level unit of analysis, and suitably describe
the high-level relationship between the units themselves.

TuCSoN exploits an organisational model that is role-
based [32]. Organisation and coordination are strictly re-
lated and interdependent issues. Organisation mainly con-
cerns the structure and the structural relations of a system—
i.e. the static issues of the agent interaction space. Coordi-
nation mainly concerns the processes inside a system – i.e.
the dynamic issues of the agent interaction space –, often re-
lated to roles that usually frame agents position in the struc-
ture of the system organisation. Moreover, coordination is
strictly related to security, being both focused on the govern-
ment of interactions inside a system, however according to
two different (dual) viewpoints: normative for security, con-
structive for coordination [6]. Whereas security focuses on
preventing undesired/incorrect system behaviours – which
may result in problems like denial of services or unautho-
rised access to resources – coordination is concerned with
enabling desirable/correct system behaviours, typically the
meaningful, goal-directed interaction between different sys-
tem components. Due the relations among coordination,
organisation and security, TuCSoN exploits an unique and
coherent conceptual framework to manage the complexity
of modelling such three dimensions [32].

The TuCSoN conceptual framework is represented by an
extended version of the Role-Based Access Control (RBAC)
model [37] – as shown in Figure 3 – called RBAC-MAS [44].
The model interprets an organisation as a set of societies
composed by software components playing certain roles ac-
cording to the organisation rules, where each role has an
associated set of policies. Organisation rules define two
types of relationships among roles: (i) component-role re-
lationship, through which it is possible to specify whether
a specific component is allowed (or forbidden) to assume
and then activate a specific role inside the organisation; (ii)
role-role relationship, through which it is possible to specify

Figure 3: Logical levels in which the coordination
middleware can be structured

structural dependencies among roles, so as to further define
constraints on dynamic component role-activation.

A policy represents an admissible interaction protocol be-
tween the associated role and the rest of the organisation.
An ACC (Agent Coordination Context [29]) represents an
entity contracted by a component, on the basis of its identity,
when it enters the organisation. The ACC is then released
to components and used from components in order to in-
teract with the resources (here, the tuple centres) belonging
to a specific organisation. The interaction is enabled and
ruled by the ACC in accordance with the rules and policies
defined by the organisation.

From a topology point of view, an organisation is mapped
onto a domain (including the linked domains or sub-domains).
The description of the structures and rules characterising
the organisation are stored and managed dynamically in a
specific tuple centre, called $ORG(OrgID) – where OrgID is the
organisation identifier –, hosted in a gateway node of the do-
main. The $ORG tuple centres host then information about
societies, roles, components and the related relationships de-
fined for the domain, represented by the gateway and its
places.

3.3 Online engineering
The openness of software systems calls for keeping the

abstractions alive [35]. Alive abstractions are defined in an
explicit way in the meta-model of the system-engineering
paradigm. Moreover, they are“kept alive”through the whole
engineering process of a software system—from the analy-
sis to the corrective/adaptive/evolutive maintenance phase.
Such abstractions enable the inspection of their current state
at runtime, so as to allow dynamic monitoring of system
components that they model, and their creation and modi-
fication, so as to allow a dynamic evolution of system com-
ponents. By exploiting such kind of abstractions, software
engineers are enabled to perform online engineering [35],
that is, the capability of supporting system design, develop-
ment and test, debugging and evolution while the system is
running.

Tuple centres are modelled and built as alive abstrac-
tions. Accordingly, TuCSoN allows the runtime maintenance
of both coordination laws and organisation structure and
rules. In particular, it is possible to maintain and evolve
the coordination laws at runtime by inspecting and creating
tuple centres, and by modifying their state or behaviour.

Then, it is possible to maintain and evolve the organisation
model since the organisation structure and rules are reified
as knowledge encapsulated in the tuple centre $ORG.

By means of its “alive abstractions”, TuCSoN allows in
principle both humans and (intelligent) software components
to maintain and develop a software system. In order to sup-
port humans, TuCSoN provides the Inspector tool [9] en-
abling software engineers to first design and then observe
and act on system structures and processes at runtime, work-
ing upon abstractions adopted and exploited for the design
of a system. Besides, TuCSoN also provides intelligent agents
with the API needed to create, inspect and modify tuple
centres. In particular, since TuCSoN exploits ReSpecT tu-
ple centres – which are logic tuple centres – it is possible
to exploit agents capable of symbolic reasoning in order to
autonomously maintain the structures.

4. EXPLOITING TuCSoN IN E-HEALTH
In the following, we show how the TuCSoN approach can

be adopted in order to extend the solutions proposed by TSC
and IHE (see Section 2): the overall goal is to increase the ef-
fectiveness of TSC and IHE approaches in coordinating EHR
fragments. In particular, we discuss how such approaches
can be integrated and extended with the key features of TuC-
SoN architecture, presented in Section 3. When dealing with
IHE, we refer in particular to the following recommendations
[20]: Cross-Enterprise Document Sharing (XDS) – i.e. pro-
file describing an infrastructure for storing and registering
medical documents –, Audit Trial and Node Authentication
(ATNA) – i.e. profile describing security procedures – and
Cross-Enterprise User Assertion Profile (XUA)—i.e. profile
describing means to communicate claims about the identity
of an authenticated principal (user, application, system,. . .)
in operations that cross healthcare-enterprise boundaries.

TuCSoN topology and XDS Affinity Domains.
The e-Health environment is federated, that is, each health-

care enterprise belongs to a domain with other healthcare
enterprises, using a common set of policies ruling interac-
tions with and within a domain, and sharing common clin-
ical documents. XDS calls each domain Affinity Domain.
According to Section 3, the hierarchical topology of TuC-
SoN fits well with the sort of topology required by the EHR
scenario. In particular, an Affinity Domain could be mapped
in a TuCSoN domain whose gateway maintains the informa-
tion about the policies and the structures associated to the
domain itself. Then, each healthcare enterprise belongs to
an Affinity Domain can be mapped in a TuCSoN place.

TuCSoN semantic tuple centres as fragment coordina-
tion media.

XDS provides a model to store and retrieve EHR frag-
ments. Figure 4 shows the actor model defined by XDS. In
particular the model is composed by:

Document Source | A healthcare point of service where
clinical data is collected.

Document Consumer | A service application where care
is given and information is requested.

Document Registry | A system storing ebXML descrip-
tions of the clinical fragments to rapidly find them
back.

Figure 4: Actors for the IHE XDS profile

Document Repository | A system that stores documents
and forwards the metadata to the document registry.

Patient Identity Source |A system that manage patients
and identifiers for an Affinity Domain.

The XDS actor model has two main drawbacks. Doc-
ument Registry is exploited to store and search metadata
describing EHR fragments whereby it is possible to retrieve
the related document from the Document Repository. In
particular, XDS suggests to realise the registry through the
ebXML Registry standards.

However, the main limit of an ebXML Registry is that it
describes metadata in XML, and retrieves metadata in face
of a query written in XML and SQL format. This kind of
knowledge representation and retrieval lacks the expressive
power provided by semantic approaches exploiting ontolo-
gies. In fact, unlike an ontology, an XML schema does not
allow the description of complex taxonomies among concepts
like those exploiting subsumption relationships. Also, XML
tools does not perform powerful reasoning over metadata
like semantic reasoning, which is able instead to infer new
knowledge that is not declared in an explicit way. Thus,
ontology-based approaches are more suitable for engineer-
ing knowledge in open context where the knowledge struc-
ture can evolve and where software components only have a
partial awareness about the overall knowledge.

Another limit of the ebXML Registry is that it promotes
a pre-defined behaviour only able to store and retrieve meta-
data. As a consequence, in order to extend the behaviour
of the registry, a layer should be upon it that would enrich
the operational semantic behind its interface in order to im-
plement the new desired behaviour. This, of course, would
definitely augment the complexity of the system. In order
to cope with complexity, instead, it would be desirable to
be able to define new behaviours directly in the registry,
customising the registry with the policies associated to a
particular healthcare domain. For example, a policy would
allow the registry to be distributed over different nodes be-
longing to the domain, instead of having an unique registry
per domain, as suggested by XDS. By exploiting behaviour
programmability of the coordination media, it would be pos-
sible to coordinate a set of domain registries collaborating
with one another in order to search and distribute metadata
within the domain, in a smart way.

This is why the tuple centre model looks like a good can-
didate to build a Document Registry. On one hand, a se-
mantic tuple centre supports the semantic representation of

the stored knowledge – like TSC –, but – unlike TSC – it
also provides a tuple/template language that is independent
from the technology exploited to implement the semantic
support. Thus, each domain can choose to exploit a partic-
ular semantic technology guaranteeing interoperability with
other domains. On the other hand, since the behaviour of a
tuple centre is programmable, it is possible to tailor the reg-
istry to specific application needs. Moreover, by exploiting
logic tuple centres like ReSpecT tuple centres, it is possible
to promote cognitive processes by exploiting rational agents.

Exploiting TuCSoN RBAC model.
As shown in Section 3, TuCSoN provides the organisation

abstraction to describe the structures and rules composing
a system. In particular, an organisation in an Affinity Do-
main could be mapped in the TuCSoN $ORG tuple centre man-
aging the domain structures, like Document Registries and
the domain places where e-Health enterprises are hosted,
and defining the set of roles that can interact with the or-
ganisation along with a set of related policies to rule such
interactions.

In the context of Affinity Domains, a role represents a
class of identities that can interact with EHR fragments,
whereas policies represent the admissible interactions for a
specific role. Accordingly, the RBAC-MAS model [44] can
be suitable integrated with security recommendations de-
fined in ATNA and XUA. Such recommendations in particu-
lar require: (i) an authentication service able to authenticate
users, (ii) access control policies, (iii) a secure communica-
tion between system actors, and (iv) a security service sup-
porting cross-authentication among EHR domains. In order
to satisfy such requirements, TuCSoN can be integrated with
two technologies suggested by IHE: Kerberos authentication
service, and Web Services as interface to access to TuCSoN
organisations, so as to promote the interoperability require-
ment.

Thus, Web Services can be used to access to TuCSoN or-
ganisation in secure way by exploiting WS-Security, that is,
a secure communication protocol developed by the OASIS-
Open group. In particular, WS-Security includes both WS-
SecureConversation – which can be exploited to ensure se-
cure conversations among system actors –, and WS-Trust—
which can be exploited to support cross-authentication among
EHR domains. Through WS-Trust it is possible to establish
trust relations among domains that are exploitable to accept
requests coming from different domains without having to
authenticate users again. Finally, by integrating the authen-
tication service Kerberos with TuCSoN, user identities can
be associated to roles and policies in the $ORG tuple centre,
and be authenticated.

Online engineering for continuos e-Health system in-
teroperability.

As discussed in Section 3, TuCSoN exploits alive abstrac-
tions to model coordination, organisation and security, thus
promoting their online engineering. By exploiting seman-
tic tuple centres to model Document Registries and organi-
sation to model the structures composing an Affinity Do-
main, TuCSoN makes it possible to support the runtime
corrective/adaptive/evolutive maintenance of an e-Health
fragment system—that is, with no need to stop the sys-
tem. This is particularly useful whenever application re-
quirements are expected to change substantially over time.

For instance, it may happen that new places hosting e-
Health enterprises need to be added by reconfiguring Affin-
ity Domains dynamically, or that roles and policies have
to be added/removed/modified to cope with dynamic or-
ganisation changes. This would require to change the be-
haviour of a Document Registry to face the new application
requirements. Through online engineering as supported by
the TuCSoN architecture, the system could be evolved in a
consistent way at runtime, maintaining a continuos interop-
erability among EHR systems. We think this is a crucial
aspect to be considered in the engineering of e-Health ap-
plications, where a continuos service availability is indeed
fundamental—and this is why we promote the integration
of IHE recommendations within the TuCSoN architecture.

5. CONCLUSIONS
The most important requirement to be satisfied in EHR

fragment coordination is the interoperability among health-
care systems in a scenario in which: (i) EHR fragments
could be distributed among different healthcare systems,
(ii) healthcare systems can be heterogeneous and change
dynamically, and (iii) security mechanisms play a funda-
mental role to ensure patient privacy and safety. Several
efforts can be found in the literature trying to cope with such
requirements—like HL7, DICOM, CEN EN 13606, openEHR,
IHE and TSC.

However, such approaches exhibit two main shortcomings.
First of all, they provide special-purpose models of coordi-
nation, which increase the complexity of building an EHR
coordination middleware. This limits system interoperabil-
ity by making it difficult to integrate independent e-Health
systems. Moreover, they do not support any form of online
engineering. As a consequence, the coordination middleware
cannot be updated at runtime in order to cope with new ap-
plication requirements without stopping the system.

Along this line, in this paper we proposed a coordination
model and technology that could integrate the solutions and
standards proposed in literature while addressing the afore-
mentioned issues. In particular, we proposed TuCSoN as a
reference architecture for coordination in the e-Health sce-
nario since it provides a general-purpose model of coordina-
tion accounting for distribution and security issues in the en-
gineering of EHR systems, and promotes online engineering
for continuos service availability of e-Health applications.

6. REFERENCES
[1] Tripcom - triple space communication. Technical

report.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi,
and P. F. Patel-Schneider, editors. The Description
Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

[3] G. Barnett and H. Sukenik. Hospital Information
Systems. In J. Dickson and J. Brown, editors, Future
Goals of Engineering in Biology and Medicine.
Academic Press, 1969.

[4] T. Beale. 2001.

[5] D. Cerizza, E. Della Valle, D. Foxvog,
R. Krummenacher, and M. Murth. Towards European
Patient Summaries based on Triple Space Computing.
In ECEH 2006, 2006.

[6] M. Cremonini, A. Omicini, and F. Zambonelli.
Multi-agent systems on the Internet: Extending the
scope of coordination towards security and topology.
In F. J. Garijo and M. Boman, editors, Multi-Agent
Systems Engineering, volume 1647 of LNAI, pages
77–88. Springer, 1999.

[7] J. Denny, D. Giuse, and J. Jirjis. The Vanderbilt
Experience with Electronic Health Records. Seminars
in Colon and Rectal Surgery, 12:59–68, 2005.

[8] E. Denti, A. Natali, and A. Omicini. On the expressive
power of a language for programming coordination
media. In 1998 ACM Symposium on Applied
Computing (SAC’98), pages 169–177, Atlanta, GA,
USA, 27 Feb. – 1 Mar. 1998. ACM. Special Track on
Coordination Models, Languages and Applications.

[9] E. Denti, A. Omicini, and A. Ricci. Coordination tools
for MAS development and deployment. Applied
Artificial Intelligence, 16(9/10):721–752, Oct./Dec.
2002.

[10] R. Dick and E. Steens. The Computer-Based Patient
Record: An Essential Technology for Health Care.
Institute of Medicine, National Academic Press, 1991.

[11] R. Dolin, L. Alschuler, S. Boyer, and C. Beebe. HL7
Clinical Document Architecture, Release 2.0. 2004.

[12] Y. Ducq, D. Chen, and B. Vallespir. Interoperability
in enterprise modelling: Requirements and roadmap.
Advanced Engineering Informatics, 18:193–203, 2004.

[13] L. eHealth Media. OpenEHR Foundation launches
international standard.

[14] B. S. Elgera, J. Iavindrasana, L. Lo Iacono, H. Müller,
N. Roduit, P. Summers, and J. Wright. Strategies for
health data exchange for secondary, cross-institutional
clinical research. Computer Methods and Programs in
Biomedicine, 99:230–251, 2010.

[15] E. C. for Standardization. Health informatics
Electronic health record communication Part 1:
Reference model Draft European Standard for CEN
Enquiry prEN 13606-1. 2004.

[16] D. Gelernter. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80–112, January 1985.

[17] D. Gelernter and N. Carriero. Coordination languages
and their significance. Communications of the ACM,
35(2):97–107, Feb. 1992.

[18] W. Hasselbring and S. Pedersen. Metamodelling of
Domain-Specific Standards for Semantic
Interoperability. In J. Dickson and J. Brown, editors,
WM 2005. Academic Press, 2005.

[19] I. Horrocks, P. F. Patel-Schneider, and F. van
Harmelen. From SHIQ and RDF to OWL: The
making of a Web ontology language. Web Semantics:
Science, Services and Agents on the World Wide Web,
1(1):7–26, Dec. 2003.

[20] I. International. Integration Profiles: IHE IT
Infrastructure Technical Framework. 2009.

[21] M. James and D. Thomas. Thomas The DICOM
image formatting standard: What it means for
echocardiographers. Journal of the American Society
of Echocardiography, 8:319–327, 1995.

[22] N. R. Jennings. An agent-based approach for building
complex software systems. Commun. ACM,

44(4):35–41, 2001.

[23] D. Kalra. Electronic health record standards. IMIA
Yearbook of Medical Informatics, pages 150–161, 2006.

[24] L. Khon, J. Corrigan, and M. Donaldson. To Err is
Human: building a safer health system. National
Academy Press, 2000.

[25] C. Lovis, S. Spahni, C. Cassoni, and A. Geissbuhler.
Comprehensive management of the access to the
electronic patient record: towards trans-institutional
network. International Journal of Medical Informatics,
76:466–470, 2006.

[26] K. Malloch. The electronic health record: An essential
tool for advancing patient safety. Nursing Outlook,
55:150–161, 2007.

[27] E. Nardini, M. Viroli, and E. Panzavolta.
Coordination in open and dynamic environments with
tucson semantic tuple centres. In 25th Annual ACM
Symposium on Applied Computing (SAC 2010),
volume III, pages 2037–2044, Sierre, Switzerland,
22–26 Mar. 2010. ACM.

[28] L. j. b. Nixon, E. Simperl, R. Krummenacher, and
F. Martin-recuerda. Tuplespace-based computing for
the semantic web: A survey of the state-of-the-art.
Knowl. Eng. Rev., 23(2):181–212, 2008.

[29] A. Omicini. Towards a notion of agent coordination
context. In D. C. Marinescu and C. Lee, editors,
Process Coordination and Ubiquitous Computing,
chapter 12, pages 187–200. CRC Press, Boca Raton,
FL, USA, Oct. 2002.

[30] A. Omicini. Formal ReSpecT in the A&A perspective.
Electronic Notes in Theoretical Computer Sciences,
175(2):97–117, June 2007.

[31] A. Omicini and E. Denti. From tuple spaces to tuple
centres. Science of Computer Programming,
41(3):277–294, Nov. 2001.

[32] A. Omicini and A. Ricci. MAS organisation within a
coordination infrastructure: Experiments in TuCSoN.
In A. Omicini, P. Petta, and J. Pitt, editors,
Engineering Societies in the Agents World IV, volume
3071 of LNAI, pages 200–217. Springer-Verlag, June
2004. 4th International Workshop (ESAW 2003),
London, UK, 29–31 Oct. 2003. Revised Selected and
Invited Papers.

[33] A. Omicini and F. Zambonelli. Coordination for
Internet application development. Autonomous Agents
and Multi-Agent Systems, 2(3):251–269, Sept. 1999.

[34] J. M. Overhage, L. Evans, and J. Marchibroda.
Journal of the American Medical Informatics
Association, 12:107–112, 2005.

[35] A. Ricci and A. Omicini. Supporting coordination in
open computational systems with TuCSoN. In IEEE
12th International Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises (WET ICE 2003), pages 365–370, 1st
International Workshop “Theory and Practice of Open
Computational Systems” (TAPOCS 2003), Linz,
Austria, 9–11 June 2003. IEEE CS. Proceedings.

[36] C. Safran, D. Sands, and D. Rind. Online medical
records: a decade of experience. Methods Inf Med,
38:308–312, 2000.

[37] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. Computer,

29(2):38–47, Feb 1996.

[38] D. Sands, D. Rind, C. Vieira, and C. Safran. Can a
large institution go paperless? In MEDINFO, 1998.

[39] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and
Y. Katz. Pellet: A practical OWL-DL reasoner. Web
Semantics: Science, Services and Agents on the World
Wide Web, 5(2):51–53, 2007.

[40] R. Tolksdorf, L. J. B. Nixon, and E. P. B. Simperl.
Towards a tuplespace-based middleware for the
Semantic Web. Web Intelligence and Agent Systems,
6(3):235–251, 2008.

[41] W. van der Kam, P. W. Moormanb, and
M. Koppejan-Mulder. Effects of electronic
communication in general practice. International
Journal of Medical Informatics, 60:59–70, 2000.

[42] J. Van der Lei, M. Musen, E. van der Does,
A. Main in’t Veld, and J. van Bemmel. Review of
physician decision making using data from
computer-stored medical records. The Lancet,
338:1504–1508, 1991.

[43] U. Varshney. Pervasive Healthcare Computing.
Springer, 2009.

[44] M. Viroli, A. Omicini, and A. Ricci. Infrastructure for
RBAC-MAS: An approach based on Agent
Coordination Contexts. Applied Artificial Intelligence,
21(4–5):443–467, Apr. 2007. Special Issue: State of
Applications in AI Research from AI*IA 2005.

[45] M. Wooldridge and N. R. Jennings. Intelligent agents:
Theory and practice. Knowledge Engineering Review,
10(2):115–152, June 1995.

