
Modeling and Design

of an Agent-based Micro-simulation
of the Swiss Highway Network

Michael Schumacher1, Laurent Grangier2, and Radu Jurca2

1 University of Applied Sciences Western Switzerland
Institute of Business Information Systems

CH-3960 Sierre
2 Ecole Polytechnique Fédérale de Lausanne (EPFL)

Artificial Intelligence Laboratory
CH-1015 Lausanne, Switzerland

Abstract. Multiagent simulations can be elegantly modeled and de-
signed by enhancing the role of the environment in which agents evolve.
In particular, the environment may have the role of a governing in-
frastructure that regulates with laws or norms the actions taken by the
agents. The focus of modeling and design is thus shifted from a subjective
view of agents towards a more objective view of the whole multiagent
system. In this paper, we apply the idea of a governing environment to
model and design a multi-agent system that micro-simulates the Swiss
highway network. The goal of the simulation is to show how traffic jams
and accordion phenomena may be handled with appropriate local reg-
ulations on speed limits. A natural modeling would give segments the
capacity to regulate the speed based on observed local events. We devel-
oped the simulation platform from scratch in order to accommodate our
design choices and a realistic complexity. This paper presents in details
our modeling and design choices, and first experimental results.

1 Introduction

Agent-based micro-simulations are becoming a popular application area of mul-
tiagent systems (MAS), in areas such as social sciences, traffic management,
biology, geography, or environmental sciences. Agent technology has opened a
whole new methodology for studying real-world complex systems by simulating
every individual through an autonomous agent. Individual behavior can thus be
easily modeled, and the MAS captures the aggregated behavior of the collective.
These agent-based micro-simulations help understanding better an emergent re-
ality or allows trying virtually some settings that would be very costly to test in
reality. Traffic management is a typical example. For instance, a micro-simulation
may help to visualize the effect of constructing new roads on the overall traffic.

Some multiagent systems (and a fortiori agent-based micro simulations) may
be elegantly modeled and designed by enhancing the role of the environment
in which agents evolve. In particular, the environment may have the role of a

governing infrastructure that regulates with laws or norms any action within the
system. This has the strong advantage of a flexible modeling and design, where
the focus is shifted from a subjective view of agents towards a more objective
view of the whole multiagent system.

In this paper, we show first experiments on how we apply the governing envi-
ronment to the modeling and design of a micro-simulation of the Swiss highway
network. The goal of the simulation is to show how accordion phenomena and
traffic jams may be handled with appropriate local regulations on the speed
limit. For example, adaptive speed limitations my be implemented in order to
maximize the throughput of the network.

A natural model gives segments the capacity to regulate the speed based
on locally observed events. Therefore, regulating highway segments perfectly
captures the design of a governing environment. Because of the complexity of
the simulation and our choice in the above described modeling, we developed a
simulation platform from scratch. This paper presents in details our modeling
choices for the simulation platform. First experimental results of our implemen-
tation are also eluded. The adaptive distributed speed regulation will however
be the subject of another paper, as it is still under development.

The paper is organized as follows. Section 2 introduces and explains the
notion of governing environment. Sec. 3 explains our problematic of traffic sim-
ulation in Switzerland. After discussing our global modeling in Sec. 4 following
the governing idea, we describe how we model the agent behaviors in Sec. 5.
Sec. 6 presents our platform design. In Sec. 7, we discuss experiments. Section 8
concludes the paper.

2 The Governing Environment

Most research in multiagent systems (MAS) has focused on the internal capac-
ities of agents, and not on the medium in which they evolve. This vision is
however changing towards enhancing the function of the environment in MAS
(see for instance [12,1]). Actually, such a vision was already implicit in the early
days of software agent research. This is shown by a definition of an autonomous
agent as a system situated within and a part of an environment that senses that
environment and acts on it, over time, in pursuit of its own agenda and so as to
effect what it senses in the future [3]. This description stresses the importance of
the environment as the living medium, the condition for an agent to live, or the
first entity an agent interacts with. Thus an agent is part of the environment.
But it remains autonomous, so that the environment may not “force” the agent’s
integrity. It is in this environment that an agent (autonomously) senses and acts.
The acting of the agent on the environment directly influences its future sensing,
because the environment is changed by the agent actions.

Even if the notion of environment was stressed as a main component of MAS,
most approaches have viewed it as something being modelled in the “minds” of
the agents, thus using a minimal and implicit environment that is not a first-
order abstraction, but rather the sum of all data structures within agents that

represent an environment. This is a typical subjective view of the multiagent
system inherited from distributed artificial intelligence, which contrasts with
an objective view that deals with the system from an external point of view
of the agents [9]. This objective point of view sees the environment as a central
component for the modeling and design of MASs. Multiagent simulations belong
to the type of systems that most explicitly model the environment.

Whenever a multiagent system is to be implemented and deployed, an under-
lying infrastructure becomes essential [7]. It offers to the MAS basic services to
be used by the agents. Example functionalities are agent communication, nam-
ing or life-cycle management. The abstractions provided by such infrastructures
are essential for agent-oriented software engineering, as they should be as close
as possible to the concepts used for analysis and design. Today’s infrastructures
primarily offer agent-related abstractions for the programming of agent archi-
tectures using for instance libraries for BDI agents [4], thus supporting subjec-
tive coordination. They only offer implicit support for objective coordination, as
they establish the conditions necessary for running agent programs (e.g. life-cycle
management) and for setting the basic interaction means (e.g. message-enabled
middleware between agents).

An appealing way to exert the necessary level of control out of agents is the
use of a governing infrastructure to structure and shape the space of actions
within a MAS [7]. This governing perspective mainly allows managing agent in-
teractions from an external point-of-view. This has the strong advantage that
agents may be defined independently, and that some control is overtaken ex-
ternally. In the area of virtual organizations, the Electronic Institutions (EI)
approach [6] does this by defining so-called governors which are middle agents
that mediate all (communicative) actions within a MAS 3. This solution has,
however, important disadvantages. Providing each agent with a governor puts
a heavy computational burden on the infrastructure. But, more importantly,
middle agents do not capture a natural modeling for the functionality they are
expected to fulfill, i.e. mediation of communication. The governing or regulating
responsibility should be transferred from specialized middle agents to the envi-
ronment of a MAS, calling for the environment as a governing infrastructure [10].
This can be done with the idea of a programmable coordination medium [2],
which essentially defines reactions to events happening in a shared dataspace.
This schema has the strong advantage to allow the definition of laws that not
only regulate agent interactions, but also any happening within an environment.
Overall, we expect that viewing the environment as a governing infrastructure
simplifies the design of multiagent systems. We will show this in the area of
agent-based micro-simulation applied to traffic management.

3 Micro-Simulation of the Swiss Highway Network

We modeled, designed and implemented an agent-based micro-simulation that
captures the ideas of governing environment. The application area is the simu-
3 All actions that the EI approach accounts for are communicative by nature.

Fig. 1. Swiss national roads with limits of the cantons, as displayed in our simulation
platform

lation of the whole highway traffic in Switzerland of about 1700 km (see Fig. 1).
We extended the platform also to the national roads, which are roads of national
importance (e.g. the Gotthard pass).

The highways are split into segments. This segmentation is given by the real
data received from the Federal Office for Spatial Development4. Each segment
has an arbitrary length, its own speed limit and can have multiple lanes (from
one to a maximum of four). On a segment, cars can only drive in one predefined
direction. This means that a standard highway part is composed of two segments:
one for each direction.

The platform is bound to a geographical information system5 that allows
zooming from the global country view to the local view of each vehicle. We did
not develop over an existing platform for agent-based simulation, because the
complexity of the problem is much too big. Furthermore, it would be difficult to
capture our modeling. We therefore built a new platform from scratch.

Our final goal is to study adaptive and decentralized speed limitation to
have an optimal car throughput. Actually, there are some settings in which
modern highways perform very poorly. First, the accordion is a transient mode
in which cars accelerate to a given speed S, only to brake to almost a full stop
immediately after reaching the speed S. Secondly, traffic jams usually occur
in highway segments preceding a bottleneck (e.g. tunnels or accidents). Our
goal of the simulation is to show that adaptive distributed speed limitations
on the highway segments preceding (and including) the one where problems
might appear will drastically decrease the negative effects previously discussed.
Therefore we want to investigate whether speeding restrictions can increase the
efficiency of highways, and to determine automatic speeding restrictions that
optimize highway utilization. As a methodology we decided to develop an agent-
based micro-simulation to investigate the above hypothesis and to determine
optimal speeding policies. A distributed speed regulation needs to split highways
into segments with constant length so that on each segment one speed limitation

4 http://www.are.admin.ch
5 http://www.geotools.org

can be imposed. Constraints between the speed limit on neighboring segments
have to ensure that the vehicles do not have to break too abruptly.

An adequate modeling of a micro-simulation allowing distributed decision
making on segments can elegantly use the paradigm of a governing environ-
ment. Actually, the segment naturally build the environment of the MAS. Each
segment has a set of rules that regulate the state of the highway segment (num-
ber of cars, average speed, etc) and can decide on the speed limitation for that
segment. Neighboring segments can propagate events to one another. Each vehi-
cle is modeled by one agent which takes decisions based on a local view: a driver
wants to get to the destination as fast as possible and guides her action de-
pending on the traffic in her immediate vicinity. We further assume that drivers
respect the speed limits (within certain bounds).

This paper reports the modeling and design of our simulation platform, and
not the distributed adaptive decision process for optimal speed regulation. Ac-
tually, we are currently working on this with the DPOP [8] algorithms for dis-
tributed constraint satisfaction. This will be reported in a future paper.

4 Modeling

We describe in this section the modeling of the MAS of the micro-simulation.
According to the governing environment paradigm [10], laws are defined within
the environment. The environment reacts to raised events according to the rules
that we define. Unlike the agents, the environment has no behavior and does not
act itself: it can just react to events which are intercepted.

Static Model We identified two types of agents that are organized around
highway segments that represent the environment (see Fig. 2). The Vehicle class6

has three state attributes : its position (relative to its current segment), its speed

and its lane position. Each vehicle has : a Plan which is an ordered collection of
HighwaySegment telling it which way to take; a Behavior which describes its ac-
celeration, deceleration and lane changing behavior. VehicleCreator is a dedicated
agent which takes care of creating new agents in the system.

The highway is divided in segments. Each Vehicle lives in a HighwaySegment

which can be considered as a continuous space. Each one is connected to its next

following segments and its previous preceding segments. Vehicles can only move
from their current segment to one of the next segments. HighwaySegment has a few
constant attributes (length, numberOfLanes, maxLawSpeedLimit, nationalRoad, slope,
curve) and a few variable attributes (currentSpeedLimit, flow, density, meanSpeed).
All these attributes are part of the environment and can be perceived by agents.

The choice for a continuous space is given by the better precision and the light
implementation that follows, but one could consider a discrete space. Nagel [5]
shows how to build a cellular automata simulation with discrete space. It should
be easily transposed to our agent-based simulation.

6 We use the UML profile described in [11], where rounded rectangles are agents

Vehicle

− position : double

− speed : double

− lane : int

Plan

Behavior

HighwaySegment

− length : double

− numberOfLanes : int

− currentSpeedLimit : int

− maxLawSpeedLimit : int

− nationalRoad : boolean

− slope : double:

− curve : double

− flow : double

− density : double

− meanSpeed : double

previous+

*

next+

*

segments+
1..*

{ ordered }vehicles+ *

segment+

VehicleCreator

− nbAliveVehicles : int

Policy

segment+

Fig. 2. Agent diagram of the system

Dynamic Description The time of the simulation is discrete. We send a time
step message to every agent at each step of the simulation, and they return an ac-
tion depending on their perception and their internal behavior. The environment
has a governor role and can react to some events.

The environment generates events. SpeedPolicyChangedEvent is generated by a
segment each time the speed restriction is changed in a segment. The governing
environment will tell the neighbor segments to reconsider their current speed
limit. StepBeginEvent is an internal event which is generated by the environment
itself to warn the segment that a time step has begun. StepEndEvent is the same
type of event as StepBeginEvent, but it warns the segment against the end of a
time step event. VehicleDestructedEvent is raised by the environment each time a
vehicle finished its planning and should die. VehicleDensityChangedEvent is raised
by a segment each time the density of the segment has changed. It tells the
environment to reconsider its speed limit.

Agent actions generate events. VehicleCreatedEvent is launched by VehicleCre-

ator each time it creates a new vehicle. VehicleChangedLaneEvent is posted by Ve-
hicle every time it changes its lane position. VehicleChangedSegmentEvent is posted
by Vehicle every time it leaves a segment and enters a new one.

5 Behavior Models

Vehicle behaviors are described by two different but connected models: i) the
car following model describes how a car speeds up and brakes, and the ii) the
lane changing model describes how a driver decides to change lane.

Car Following Model Our model is inspired by the Intelligent-Driver Model
(IDM) from Martin Treiber7, which makes the vehicle accelerate to its speed
objective (see Alg. 1). it does not have a constant acceleration. It decreases from
the initial acceleration (a) to zero when approaching the speed objective (so).
The deceleration value increases from b and is not limited in the theoretical
model. Because of this, the vehicles can have unrealistic deceleration, but the
system is collision free.

Algorithm 1 IDM car following model (acceleration computation)
Require: v, vf , s, T , vlimit, a, b, smin

1: vo ← humanizeSpeed(vlimit)
2: ∆v ← vf − v
3: s∗ ← max{smin, smin + vT + v∆v

2
√

ab
}

4: ac ← a

�
1− �

v
vo

�4
+
�

s∗
s

�2
�

5: return max{−3b, min{ac, a}}

In Alg. 1, T is a the safety time with the ahead vehicle, values can be from
0.8 to 2 seconds. Here we use a normal distribution (µ = 1.5, σ = 0.5) for this
value. a is the maximum acceleration (0.8 m/s2 for cars, 1.5 m/s2 for trucks). b
is the minimum deceleration (−2.5 m/s2 for cars and trucks).

This model has interesting advantages since it is not based on the fact that
vehicles will always keep a safe distance with the vehicle ahead. On the other
hand, deceleration can be high and this can lead to bizarre behaviors, like when
cars drive at a high speed and suddenly brake down with a high deceleration
because of a traffic slow-down or a slowest car.

Lane Changing Model Each vehicle must at each iteration consider changing
lane or not. This decision is based on two main criterions for the agent : is it
safe to go on the other lane? (safety criterion) and do I get a reward to go on
the other lane? (incentive criterion). In our model, the safety criterion just says
that the car behind would be able to brake in order to avoid a collision. We also
check that the car ahead is not to close and that if it brakes, we will have the
time to avoid a collision. The incentive criterion is quite simple. Vehicles change
lane every time they can increase their speed on the other lane. Furthermore we

7 http://www.traffic-simulation.de

c2

c1

Fig. 3. Problem with +3 lanes highways

add a few biases to make vehicles go to the right lane whenever the highway is
going to change from a N lanes to N-1 lanes. Informally, this gives algorithm 2.

Algorithm 2 Basic lane changing model (incentive criterion)
1: if lane will end soon and already on the correct lane then
2: ← do not change lane
3: end if
4: if lane will end soon AND not on the correct lane then
5: ← go to right lane with an increasing probability when approaching to the end

of the lane
6: end if
7: if already changed lane in the last 10 seconds then
8: ← do not change lane
9: end if

10: if distance to car ahead is more than 200 meters then
11: ← do not change lane
12: end if
13: ← change lane if we can increase speed on the other lane

The two first conditions make the vehicle go to the right lane if its lane will
end soon. The third condition (line 8) avoids an oscillation movement from a
lane to another. Imagine five vehicles on the right lane, and no vehicles on the
left lane. They all have an incentive to go the left lane, once they changed, there
is no vehicles on the right lane, so they all have an incentive to change for the
right, and so on. They will all change at each step to the other lane. Condition
at line 10 tries to avoid cars going to the left lane when they have no other car
in front of them.

Combining the Car Following and the Lane Changing Models Alg. 3
presents how to execute the car following and the lane changing models together.
It ensures that all agents will have the same information when taking the deci-
sions. A problem can occur when two vehicles compete for the same lane and
think it is safe. They both will have an incentive to change for the target lane
and both think that it is safe. Figure 3 shows an example of this. To avoid it, we
only change to the right at odd time steps and change to the left at even time
steps.

Algorithm 3 Vehicle state update loop
1: for all the vehicles do
2: state← current state of the environment
3: decide to change lane or not according to state
4: end for
5: for all the vehicles do
6: change lane if decided
7: end for
8: for all the vehicles do
9: newState← current state of the environment

10: acceleration← compute the new acceleration according to newState
11: end for
12: for all the vehicles do
13: update the speed
14: update the position
15: end for

Generation of Vehicles and plans For the generation of vehicles, we used
the number of registered vehicles in the canton (swiss regions) where the segment
is. We put a defined percentage of vehicles (N) on highways. We also generate
trucks on the basis of country statistics. Concerning the starting place, vehicles
are created uniformly in the canton. Therefore every canton generates a prede-
fined flow of vehicles in respect to its registered car population. Because official
data from the Swiss Federal Roads Authority8 were not of sufficient granularity,
we decided to create cars continuously. A realistic simulation should take into
account different timing.

Each generated vehicle immediately has a deterministic assigned route plan,
which can not change. This plan is however generated randomly. In future work,
we will use demographic statistics and short-path algorithms to generate more
realistic plans.

6 Platform Design

We describe in this section the design of our agent-based micro-simulation plat-
form. After presenting the simulation engine interfaces, we discuss the simulation
core.

6.1 Simulation Engine Interfaces

Figure 4 shows the class diagrams of the ch.epfl.lia.simengine package. This package
intends to provide useful interfaces or classes in order to implement a simulation
core with a governing environment. Most of the types are abstract or even just
interfaces:

8 http://www.verkehrsdaten.ch/downloads/AVZ-StandorteStand012005.pdf

DefaultSimulationEvent

source :Object

<< create >>+DefaultSimulationEvent () :DefaultSimulationEvent
<< create >>+DefaultSimulationEvent (source :Object):DefaultSimulationEvent
+getSource ():Object

<< interface >>

Agent

+step():StepAction

<< interface >>

CreationDestructionListener

+agentCreation (agent:Agent):void

+agentDestruction (agent:Agent):void

<< interface >>
Governor

+postEvent (event:SimulationEvent):void

ch::epfl::lia::simengine::gui

<< interface >>

SimulationEngine

+begin():void

+step():void

+reset ():void

<< interface >>

SimulationEvent

+getSource ():Object

<< interface >>

SimulationInfoProvider

+getTick ():long

+getNumberOfAgents ():int

+getNumberOfActions ():int

<< interface >>

StepAction

+preExecute ():void

+execute ():void

+postExecute ():void

StepActionAdapter

+preExecute ():void

+execute ():void

+postExecute ():void

Fig. 4. Class diagram of the ch.epfl.lia.simengine package

StepAction represents an action made by an agent at one step of the simulation.
A StepAction provides a way to execute a first piece of code (preExecute()),
then execute a second piece of code (execute()) and finally execute a third
piece of code (postExecute). preExecute() will be called on every agent before
the call to execute(), and execute on every agent before postExecute..

StepActionAdapter is just an empty StepAction provided for convenience.
Agent each agent should implement this interface. step() method is called at each

step of the simulation and should return a StepAction instance.
Governor must be implemented by the governing environment classes, and pro-

vides a way to post events.
SimulationEngine must be implemented by the core class of the simulation engine.
SimulationInfoProvider is generally implemented by the same class as Simulatio-

nEngine. It helps other parts of the software to get a few basic informations
about the simulation.

SimulationEvent represents a synchronous event of our event-based simulation
engine.

DefaultSimulationEvent is a generic implementation of the SimulationEvent inter-
face.

CreationDestructionListener should be implemented by classes which want to be
warned about agent creations and destructions.

6.2 Simulation Core

Static Description Figure 5 presents an elided and simplified class diagram of
the simulation’s core. Interfaces which are not part of the ch.epfl.lia.ih.sim package
(or one of its subpackage) are represented as provided interface (a circle) as the
UML specification lets us do it.

IHSimulationEngine gathers the logic of the simulation engine. We find in this
class references to all the agents, space objects and the method which exe-
cutes a step of the simulation.

HighwaySegment and HighwaySegmentImpl are the interface and the default im-
plementation of our space. Each one is connected to a list of previous and
next segments, and contains also a list of Vehicle.

SegmentGovernor contains the governing rules and reactions to events posted by
other entities. Note that each segment is also a governor, so there are many
governors.

Vehicle and VehicleImpl are the interface and the default implementation of the
vehicle agent. Each vehicle keeps a reference to its creator and to its current
segment.

VehicleCreator and VehicleCreatorImpl are the interface and the default imple-
mentation of the vehicle creator agent. Each one keeps a reference to the
segment where it creates new vehicles.

Here are some other comments about this diagram :

HighwaySegmentImpl VehicleImpl

segment−

VehicleCreatorImplcreator−

segment−

IHSimulationEngine

SegmentGoverner

HighwaySegmentData

parameters−

Territory territory−

<< interface >>
HighwaySegment

<< interface >>
Vehicle

Displayable

PropertyDisplayable

Highlightable

DisplayProvider

Agent

Governor

SimulationEngine

<< interface >>
VehicleCreator

Visitor

<< interface >>
Behavior

<< interface >>
Policy

policy−

− behavior

<< interface >>
Planplan−

VehicleParameters
− parameters

TerritoryData
data−

next−
*

previous−
*

*

*

Fig. 5. Elided class diagram of the ch.epfl.lia.ih.sim

– HighwaySegmentImpl, VehicleImpl and VehicleCreatorImpl classes contain our de-
fault implementation of the agent’s logic.

– HighwaySegment, Vehicle and VehicleCreator interfaces define the method their
implementation must follow. We designed it this way in order to let someone
change completely the implementation without a huge change elsewhere in
the software.

– HighwaySegmentImpl and VehicleImpl externalize a large part of their code. This
is done in order to make a very clear separation between the logic of the
agent and their intrinsic model or their constant parameters. For instance,
VehicleImpl updates at each step of the simulation its speed according to
the new acceleration which is computed by an instance of Behavior. This
separation has a great advantage since it provides an easy way to change
the behavior model or the plan computation of a vehicle. One can even have
multiple instance of VehicleImpl with different types of behavior.

Dynamic Description The core of the simulation is the class IHSimulatio-

nEngine. This class keeps references to every agent and space. At each step of
the simulation, method step() is executed. Figure 6 shows a simplified activity
diagram of this method.

actions = new Collection()

post(StepBeginEvent) to all HighwaySegment

execute step() on every VehicleCreator

execute step() on every Vehicle

call preExecute() on every StepAction of actions

step() method returns a
StepAction which is added
to the actions collection.

call execute() on every StepAction of actions

call postExecute() on every StepAction of actions

post(StepEndEvent) to every HighwaySegment

Fig. 6. The IHSimulationEngine.step() method activity diagram

Environment State As we said in Sec. 5, we first need to execute some code
on all agents and then execute another piece of code, and so on. This is easily
done with StepAction facilities.

We also need to save the state of an agent. We can not simply perceive
properties of the agent whenever we want. Even if the step method is theoretically
executed simultaneously on every agent. In reality a few agents will change their
state before others. Therefore agents need a way to correct state when taking
decisions. To do this, we use VehicleState and LaneState which help to keep agent
or environment state.

6.3 The Events

Static Description Figure 7 presents the static description of the events system
and Fig. 8 shows the attributes of every event.

We use here a visitor design pattern to make the implementation and ex-
tensibility easier. We could even imagine a way to generate automatically code
of the SimulationEventVisited subclasses and the Visitor. It would be useful for a
project with a huge amount of different events. The SimulationEventFactory is used
here for performance reason.

Dynamic Behavior Events are launched and treated synchronously (one would
need to make a few design changes to make the system asynchronous). Events

SimulationEventVisited

<< create >>+SimulationEventVisited (): SimulationEventVisited
<< create >>+SimulationEventVisited (source :Object): SimulationEventVisited
+accept (v:Visitor):void

<< Singleton >>
SimulationEventFactory

instance−

SegmentGoverner

−creationDestructionListeners :Collection= new HashSet()

<< create >>+SegmentGoverner (): SegmentGoverner
+addCreationDestructionListener (listener :CreationDestructionListener): void
+removeCreationDestructionListener(listener :CreationDestructionListener): void

<< interface >>
SimulationEvent

+getSource (): Object

<< interface >>
Governor

+postEvent(event:SimulationEvent): void

DefaultSimulationEvent

#source :Object

<< create >>+DefaultSimulationEvent (): DefaultSimulationEvent
<< create >>+DefaultSimulationEvent (source :Object): DefaultSimulationEvent
+getSource (): Object

Visitor

Fig. 7. Class diagram of types related with the event system

SimulationEventVisite d

VehicleLaneChangedEvent

−oldLane:byte
−newLane :byte

−segment :HighwaySegment
−vehicle: Vehicl e

VehicleDensityChangedEvent

−segment :HighwaySegment

StepEndEvent

−segment :HighwaySegment

VehicleChangedSegmentEvent

−oldSegment:HighwaySegment
−newSegment :HighwaySegment
−vehicle: Vehicl e

SpeedPolicyChangedEvent

−segment :HighwaySegment

VehicleDestructedEvent

−segment :HighwaySegment
−vehicle: Vehicl e
−creator :VehicleCreator

VehicleCreatedEvent

−segment :HighwaySegment
−vehicle: Vehicl e
−creator :VehicleCreator

StepBeginEvent

−segment :HighwaySegment

Fig. 8. Class diagram of all the events

v:VehicleImpl :SimulationEventFactory

1 : getInstance()

2 : e := getVehicleChangedSegment(v, v, s, ns)

s :SegmentGoverner

3 : postEvent(e)

e:VehicleChangedSegmentEvent
3.1 : accept(s)

3.2 : perform(e)

Fig. 9. An event launch example collaboration diagram

are launched each time it is needed. For instance, when a vehicle wants to move
from one segment to the next one, it launches a VehicleChangedSegment by posting
it to its current governor. Figure 9 shows how this event is posted and treated.

7 Experiments

Vehicle Generation As said in Sec. 5, we can calibrate the simulation to
generate a percentage of the registered vehicles. This is difficult since knowing
how many vehicles can drive simultaneously on Swiss highways is not obvious.

Swiss highways are composed of 1’855 km of roads. Since these roads have
two possible directions and can have multiple lanes, the total length of lanes
is about 7’550 km. Supposing a high congestion of 40 vehicles/km everywhere
(this means one car each 25 meters on every lane and every highway segment),
this leads to an estimation of 302’000 vehicles. It means that N = 6% of the
Swiss vehicles would be on the highways. It can seem very low but, we should
not forget that all the cars are never used at the same time and that there is
a lot of other roads than highways in Switzerland. And of course, in reality at
some place there is much more vehicles than at others, 40 vehicles/km is just an
overestimated value of what could be a maximal congestion level.

We have made tests with different values of N (the maximal percentage
of alive vehicles at a precise time). Table 1 shows how many vehicles can be
simultaneously alive and how much time it costs to simulate a certain time. The
first remark is about the theoretical value which is not equal to the practical
one. It comes from the way of generating vehicles. Each creator segment has a
physical maximum flow of vehicles and depending of the local conditions (i.e. a
traffic jam on this segment), it can be lower that what it should be to ensure
the theoretical production of cars. Thus it is absolutely normal to have a lower
value.

9 Tests made on a 4 x 3 Ghz 64-bits processors computer with 4 Gb RAM.

N Theoretical Practical Simulated time [h] Real time [h]9

10 % 492’230 249’000 1:30 24:00
5 % 246’115 192’000 2:35 60:00
2 % 98’445 95’000 1:00 8:00

Table 1. Maximum number of vehicles with respect to N

Tests of the Models We ran the simulation with different values of N and
looked at some randomly chosen place to see if the flow of vehicles we simulate
is near reality or not. Vehicles were not always perceiving the current reality
and were basing their decision on a partial future state. This was leading to
many collisions, but since they are automatically cleared10, the simulation was
realistic. Table 2 shows the measures we found depending on the N value. The
simulated time is the value given in table 1.

Place Real flow N = 10% N = 5%

Muttenz 10700 4140 4551
Wuennewil 2342 3318 3533
Grandvaux 5662 3941 3798

Monte Ceneri 3243 3432 3732
Giessbachtunnel 983 2053 2103

Erstfeld 2192 2143 1366
Bardonnex 3656 1834 1783
Oftringen 5928 3304 3625

Table 2. Mean flow measurements with respect to N

Values are very far from reality. However we remark that where there is a
high mean flow value in reality, there is also a relative high mean flow in the
simulation. This lets us think that even if our vehicle generation method is not
realistic, it does not give arbitrary values.

8 Conclusion

We developed a micro-simulation of the Swiss highway network in order to show
that the governing environment can be useful for the modeling and design of
agent-based micro-simulations. In our simulation platform, the design has shown
to be very flexible. Future work will consist in improving the vehicle behavior
modeling and the performance of the platform, and in actually implementing the
adaptive and distributed speed limit regulations in order to achieve an optimal
car throughput. We shortly explain hereafter those points.

The model of a vehicle should become more realistic. Collisions should be
avoided when two segments merge in one, including highway entries. We think
10 The vehicle which causes the collision (the vehicle at the back) is deleted and every-

thing continues as if nothing happened.

this is very tricky to solve since road granularity information is not detailed
enough to let us have finer grained models. The lane changing model should also
be improved, especially at the end of lanes (when N ways merge to N-1 ways).
Our model is not yet very good and produces unrealistic traffic jams.

Running a simulation with hundreds of thousands of agents is not costless.
To simulate a real scenario with many vehicles in a reasonable time, we have
to make deeper changes in the architecture. A way to do it is to distribute the
computation on several computers. We estimate that our architecture should be
easily transformable into a distributed one, for instance with segment distribu-
tion and asynchronous events.

However, the most important remains the realization and testing of an in-
telligent distributed speed restriction policy. We are currently working on this
using a family of distributed constraint optimization algorithm [8].

References

1. D. Weyns and H. Van Dyke Parunak and F. Michel and T. Holvoet and J. Ferber.
Environments for Multiagent Systems, State-of-the-art and Research Challenges.
In D. Weyns, H. Parunak, and F. Michel, editors, Environment for Multi-Agent
Systems - Post-proceedings of E4MAS’04, volume 3374 of LNCS. Springer, 2005.

2. E. Denti, A. Natali, and A. Omicini. Programmable Coordination Media. In
D. Garlan and D. Le Metayer, editors, Proceedings of the Second International Con-
ference on Coordination Models, Languages and Applications (Coordination’97),
number 1282 in LNCS, pages 274–288. Springer Verlag, September 1997.

3. S. Franklin and A. Graesser. Is it an Agent or just a Program? A Taxonomy for
Autonomous Agents. In J.P. Muller, M.J. Wooldridge, and N.R. Jennings, editors,
Proceedings of ECAI’96 Workshop (ATAL). Intelligent Agents III. Agent Theories,
Architectures, and Languages, number 1193 in LNAI, pages 21–35, August 1996.

4. M. P. Georgeff and A. S. Rao. The Semantics of Intention Maintenance for Ra-
tional Agents. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), number 1202 in LNAI, pages 704–710, 1995.

5. Kai Nagel. Multi-agent transportation simulation (draft). http://www.vsp.

tu-berlin.de/archive/sim-archive/papers/book/book.pdf, 2004.
6. P. Noriega and C. Sierra. Electronic institutions: Future trends and challenges. In

M. Klusch, S. Ossowski, and O. Shehory, editors, Cooperative Information Agents
VI, volume 2446 of LNCS. Springer Verlag, 2002. 6th International Workshop
(CIA 2002), Madrid, Spain, September 18-20, 2002. Proceedings.

7. A. Omicini, S. Ossowski, and A. Ricci. Coordination infrastructures in the engi-
neering of multiagent systems. In F. Bergenti, M.-P. Gleizes, and F. Zambonelli,
editors, Methodologies and Software Engineering for Agent Systems: The Agent-
Oriented Software Engineering Handbook, chapter 14, pages 273–296. Kluwer Aca-
demic Publishers, June 2004.

8. Adrian Petcu and Boi Faltings. Dpop: A scalable method for multiagent constraint
optimization. In IJCAI 05, pages 266–271, Edinburgh, Scotland, Aug 2005.

9. M. Schumacher. Objective Coordination in Multi-Agent System Engineering - De-
sign and Implementation. Number 2039 in LNAI. Springer Verlag, 2001.

10. M. Schumacher and S. Ossowski. The governing environment. In D. Weyns,
H. Van Dyke Parunak, and F. Michel, editors, E4MAS, volume 3830 of Lecture
Notes in Computer Science, pages 88–104. Springer, 2005.

11. A UML Profile for Agent-Oriented Modeling. Proceedings of Third International
Workshop on Agent-Oriented Software Engineering (AOSE-2002), July 2002.

12. D. Weyns, M. Schumacher, A. Ricci, M. Viroli, and T. Holvoet. Environments in
multiagent systems. Knowledge Engineering Revue, 20(2):127–141, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

