
REGISTERING AND DISCOVERING SEMANTIC WEB
SERVICES IN A FEDERATED DIRECTORY SYSTEM

Michael Schumacher
University of Applied Sciences Western Switzerland, CH-3960 Sierre, Switzerland

michael.schumacher@hevs.ch

Alexandre de Oliveira e Sousa, Ion Constantinescu, Tim van Pelt and Boi Faltings
Ecole Polytechnique F́ed́erale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

firstname.lastname@epfl.ch

Abstract

This paper presents a federated directory system, which allows registration and discovery of semantic web
services. The typical use of this directory system is in a context where pervasive ubiquitous business applica-
tion services should be flexibly coordinated and pervasively provided to the mobile user by intelligent agents in
dynamically changing environments. The system has been modeled, designed and implemented as a backbone
directory system to be searched by an infrastructure made up by such kind of agents coordinating semantic web
services. The system is modeled as a federation: directory services form its atomic units, and the federation
emerges from the registration of directory services in other directory services. Directories are virtual clusters of
service entries stored in one or more directory services. To create the topology, policies are defined on all possi-
ble operations to be called on directories. For instance, they allow for routed registration and selective access to
directories. WSDir has been applied as a backbone in the trials of an ehealth emergency application.

Keywords: Semantic Web services, federated directories, mobile computing, intelligent agents

1 INTRODUCTION

This paper1 presents a new federated directory (or reg-
istry) system called WSDir2[8], which allows registra-
tion and discovery of OWL-S semantic web services [6].
Its main functionality is to let heterogeneous semantical
service descriptions be registered and searched, includ-
ing using a semantic matchmaker.

The basic vision is that ubiquitous application ser-
vices are flexibly coordinated and pervasively provided
to the mobile users by intelligent agents in dynamically
changing contexts of open, large-scale, pervasive envi-
ronments. In such dynamical pervasive context, a direc-
tory system is a key component to locate and discover
specific application services.

Our directory system is used in the CASCOM plat-
form3. Its essential approach is the innovative combi-
nation of intelligent agent technology, semantic Web
services, distributed directories, peer-to-peer, and mo-
bile computing for intelligent peer-to-peer (IP2P) ser-
vice environments. The services are provided by soft-

ware agents exploiting the co-ordination infrastructure
to efficiently operate in highly dynamic environments.

We modeled, designed and implemented WSDir as
a backbone directory system to be searched by an in-
frastructure made up by such kind of agents coordinat-
ing web services. This agent infrastructure therefore is
deployed on mobile users: it queries our directory sys-
tem for OWL-S service descriptions, composes them to
achieve a target higher functionality and executes them.
WSDir has also been used in the trials of an ehealth
emergency application.

We followed specific requirements for designing
WSDir: i) it should have itself a Web service interface
to be universally invoked; ii) it should be distributed;
iii) the construction of the network should induce mini-
mal overhead and should be scalable; also, the network
should be robust to changes in topology and the number
of interactions with the system; iv) the directory should
allow services to be registered in a very dynamic way,
including lease times.

These requirements lead us to model WSDir as a
1This work has been supported in part by the European Commission under the project grant FP6-IST-511632-CASCOM.
2This paper is an extended version of [8]. Furthermore, the source code and the documentation of WSDir are available on wsdir.epfl.ch.
3http://www.ist-cascom.org

Ubiquitous Computing and Communication Journal 1



federation: directory services form its atomic units, and
the federation emerges from the registration of direc-
tory services in other directory services. Directories are
virtual clusters of service entries stored in one or more
directory services. To create the topology, policies are
defined on all possible operations to be called on direc-
tories. For instance, they allow for routed registration
and selective access to directories.

The paper is organized as follows. Sec. 2 sets the
context of directory services in pervasive environments.
In Sec. 3, we explain the service entries of semantic web
services that can be stored in WSDir. Sections 4 to 7
explain WSDir by presentingdirectories, directory ser-
vices, directory operations, andpolicies. In Sec. 8, we
give a concrete network architecture example based on
our federated directory system. Sections 9, 10 and 11
discuss respectively usability, vulnerability and perfor-
mance issues of WSDir. After referring related work in
Sec. 12, we conclude the paper in Sec. 13.

2 SERVICE COORDINATION IN
MOBILE COMPUTING ENVI-
RONMENTS

In this section, we explain the context and the motiva-
tion of the use of our distributed directory system. As
stated in the introduction, our driving vision is that of
the CASCOM infrastructure, where ubiquitous business
application services are flexibly coordinated and perva-
sively provided to mobile workers and users by intelli-
gent agents in dynamically changing contexts of open,
large-scale, and pervasive environments.

Its approach is a combination of agent technology,
Semantic Web service coordination, P2P, and mobile
computing for intelligent peer-to-peer (IP2P) mobile
service environments. IP2P environments are exten-
sions to conventional P2P architectures with compo-
nents for mobile and ad hoc computing, wireless com-
munications, and a broad range of pervasive devices.
Basic IP2P facilities come as web services, while their
reliable, task-oriented, resource-bounded, and adaptive
co-ordination-on-the-fly characteristics call for agent-
based software technology. One has to guarantee a se-
cure spread of service requests across multiple trans-
mission infrastructures and ensure the trustworthiness of
services that may involve a variety of providers. The ser-
vices of the infrastructure are provided by peer software
agents exploiting the co-ordination infrastructure to ef-
ficiently operate in dynamic environments. The IP2P
infrastructure includes efficient communication means,
support for context-aware adaptation techniques, as well
as dynamic and secure service discovery and composi-

tion planning.
Given that pervasive IP2P environments assume that

users are providing services to other users, it is essen-
tial to have an efficient and dynamic mean to store and
search those application services. WSDir fulfills ex-
actly this functionality with a distributed infrastructure
for storing and searching service descriptions.

3 SERVICE ENTRIES

We describe services using the Web Ontology Language
for web services, OWL-S [6]. The directory system
stores all descriptions translating from the OWL-S de-
scription towards a representation described in FIPA
SL0 [4] that will include the original service descrip-
tion. Additional fields contain information that is taken
from the service description in OWL-S.

Internally, WSDir stores service entries in the FIPA
SL0 description language. The use of SL0 has a very
important advantage: it allows to store any kind of ser-
vice descriptions, and not only OWL-S. To add a new
kind of services, we only have to define a new translator
towards our SL0 description.

The internal service representation contains a subset
of the information provided in the original description.
This information can be used to find matching services
in the directory. In addition, the original service descrip-
tion in OWL-S is stored in a separate slot. This field is
used to retrieve the original description, e.g., to retrieve
the grounding(s) of a service at service execution.

A service entry in WSDir contains the following in-
formation: i)ServiceCategories, and entry in some on-
tology or taxonomy of services; ii)ServiceProfileURIs,
a set of profile URIs that point to an externally stored,
but (web-)retrievable service profile; iii)ServiceProces-
sURI, a process URI defined in the service description
(can be empty); iv)ServiceGroundings, a set of full-text
service groundings (can be empty); v) andOWLSSer-
viceDescription, an original OWL-S service description
as a full-text entry.

4 DIRECTORIES

A directory comprises a set of service entries which are
managed by a collection of one or more directory ser-
vices. All service entries, including directory service
entries, are registered at a directory service as belong-
ing to a specific directory. Such, directory services can
form an arbitrary organizational structure (peer-to-peer,
hierarchy etc.). A directory can contain other directo-
ries, and a directory is supported by one or more direc-
tory services. This is used to characterize directories by

Ubiquitous Computing and Communication Journal 2



two different types of interactions. InClient-Directory
interactions, clients are registering, deregistering, and
querying the directory interact with directory services
supporting the directory. They may or may not have any
idea about the internals of the directory. InDirector-
Directory interactions, directory services supporting the
directories interact with one another to perform the in-
ternal management of the directory (data propagation,
federated queries, managing the membership of the di-
rectory service group managing the directory).

The first interaction style (Client-Directory) is part
of the base for the creation and maintenance of ado-
main directory. The second interaction style (Directory-
Directory) is the base for the creation and maintenance
of a network directory. As directories can be used to
support other directories they are seen as organizational
structures. These concepts will be elaborated and exem-
plified in Sec. 8.1 on network topology.

5 DIRECTORY SERVICES

Directory services provide a Web service interface to a
repository that holds service entries. The service entries
in this store are all registered as belonging to a certain
directory. The directory service forms the atomic unit of
the directory federation.

. (dot)

Body

Directory Service

Hospitals Insurers

Regular service entry

Directory

Directory service

name

Directory service entry

Figure 1: Directory system concepts

The directory service allows clients to register,
deregister, modify and search registrations in its reposi-
tory. These registrations include service descriptions of
services offered by clients as well as profiles of other
directory service. By registering directory services in
other directory service stores, the system becomes fed-
erated. Figure 1 visually summarizes the relationship

between service entries, directories and directory ser-
vices. In the illustration, the directory service holds reg-
ular service entries and a directory service entry belong-
ing to a Hospitals directory as well as entries belonging
to an Insurers directory. Both directories are contained
in the Body directory, which in turn is contained in the
all-encompassing ”.” directory.

6 DIRECTORY OPERATIONS

The directory is able to handle five types of operations.
The registeroperation enables a client to register a ser-
vice description entry into adirectory for a time period
given by alease-time. Thedirectory-servicecan return
a redirect message pointing to another directory where
the client could try to register its object. Thederegis-
ter operation de-registers a service that previously has
been registered identified. Themodifyoperation allows
modifying a registered service. Theget-profilerequests
meta-information on a directory service such as its name
and the policies governing the operations.

Thesearchoperation looks in the directory for ser-
vices that match a template. The request can possibly
be forwarded to supporting directories, depending on
the implemented search policy at the directory. As the
internal service descriptions are expressed as SL0 ex-
pressions, the structured element used in the operation
is also an SL0 expression.Search-constraintscan be
specified in order to restrain the search.

There are three types of search requests:abstract
(search by abstract services),grounding(search by ser-
vice groundings) andmatchmaker(search by using a se-
mantic matchmaker). The matchmaker type is highly
dependent on the matchmaker module used by WSDir
(OWLS-MX [5] for the CASCOM project).

A max-timespecifies a deadline by which the con-
strained search should return the results. Amax-depth
specifies the maximum depth of propagation of the
search to federated directories. Amax-resultselement
specifies the maximum number of results to be returned.

7 POLICIES

Directory services employdirectory policiesto regulate
the operation of directories. Policies are defined per di-
rectory service in thedirectory service profileand deter-
mine the behaviour of a specific directory. Two types
of policies can be distinguished.Pro-active policiesare
typically used for internal management of the directo-
ries. A policy may be attached to a directory to establish
the number of times per hour data is propagated within
the directory, how often old entries are removed etc.Re-

Ubiquitous Computing and Communication Journal 3



active policiesassign a behaviour to combinations of
directories and operations. The policies are executed
whenever a bound operation is called. They are defined
as a triple:(directory name, operation, policy). Policies
can also be applied to the default directory named ”*”
which matches all directories that don’t have a policy
explicitly assigned.

From the consequent application of policies, the net-
work topology emerges. Policies can for example define
how much entries can be registered per directory, which
directories can be searched by which clients, and which
types of services will be accepted. Each directory ser-
vice can define its own policies or use one of the pre-
defined policies. The only requirement on the part of a
policy is that it can be executed.

A straightforward example of a pre-defined policy
is thechild/sibling policy: this policy forwards all op-
erations to both the known children (directory services
registered in the service store) as well as its known sib-
lings. The list of siblings is obtained by querying the
parent directory service at which it has registered itself.

Figure 2 shows an example of the reactive policies
that are assigned to the various directories this directory
service supports. In the illustration, when a client calls
the search operation on the ”Hospitals” directory, a pol-
icy called ”secauth” will be applied. Such a policy could
for example require the client to authenticate itself be-
fore it is allowed to query the directory.

. (dot)

Body

Hospitals Insurers

Directory Service

register

modify

search

deregister

get-profile

Directory Service policies

(directory, operation, policy)

Hospitals : search : secauth

Body : register : child

Body : search : policy-3

* (default) : register : policy-4 

Figure 2: Example use of policies

8 AN EXAMPLE OF A NET-
WORK ARCHITECTURE

WSDir allows to setup flexible distributed directory sys-
tems, especially thanks to the mechanism of policies.

We present here a specific application of WSDir to build
a network of directory services which are modelled as a
virtual tree with multiple roots. This topology has been
applied in the trial of a medical emergency usecase sce-
nario in the CASCOM project.

8.1 Network Topology

The nodes of the tree are made up by the individ-
ual directory services. This hierarchical structure with
multiple entry points effectuates no replication or data
caching within the directory: each directory service
is responsible for registrations made in its local store.
Since there is no replication, directory services will for-
ward queries to other directory services. Query mes-
sages are checked for duplication: a given directory ser-
vice will handle only the first of several identical query
messages from several sources and discard the others
while returning the appropriate failure message. Fur-
thermore, dentical results may be returned by one or
more directory services for a single query. This en-
hances the robustness of the federation at the cost of
shifting the burden of filtering the results to the client.

We distinguish two types of directories: network di-
rectories and domain directories.Network directories
are a reserved set of directories that are used for the
construction of the network. In a directory federation,
we can distinguish three different network directories:

• Hidden network directory: the directory service
that forms the root of the federation by registering
the top-level nodes of the network. Neither the di-
rectory service nor its registered services will be
visible to the other nodes in the federation.

• Top network directory: visible to the network as
being one of the roots of the federation multi-
rooted tree. A directory service with this role
could typically serve as a bootstrap service to leaf
directory services. These services constitute the
Top network directory.

• Body network directory: regular directory ser-
vices that form the body of the multi-rooted tree.
These directory services provide the interface to
the directories that will contain most of the ser-
vice registrations in the network.

Domain directoriesemerge from the registrations of
service descriptions at the directory services that make
up the directory system. By definition, domain directo-
ries are contained in the ”Body Members” directory.

Hereafter, we explain the network directories in
more detail. The above-mentioned roles and their place
in a WSDir federation topology are depicted in Fig. 3.

Ubiquitous Computing and Communication Journal 4



Hidden

Body-1 Body-2

Top-1 Top-2

Hid
de
n

To
p

Bo
dy

Body-5 Body-6

Domain-1

Body-4Body-3

Service entry

Network directory

Domain directory

Directory service

Body-7

Figure 3: Network Topology

8.1.1 Hidden network directory

The Hidden directory service node responds only to
requests coming from Top directory services and ex-
clusively regarding the ”Top Members” directory. For
that it holds authentication information regarding a pre-
configured list of possible top-level nodes and uses this
information together with information in the identifica-
tion information field of the requests. Search queries are
not propagated to other directory services. The location
of the hidden directory service node is pre-defined.

The existence of this domain ensures that direc-
tory services belonging to the ”Top Members” directory
know of their respective existence and such makes sure
that every node in the network can be reached if needed.
The hidden directory service is only used for bootstrap-
ping of the top member directory services. After the
system has been initialized, the hidden directory service
will only be used by the top member directory services
to poll to see whether new directory services have been
added to the ”Top” network directory. Thus, queries,
registrations and other requests do not go through the
hidden directory service, but will be directed at a top or
body member directory service.

8.1.2 Top network directory

Upon start-up the Top directory services join the net-
work by registering their directory-service-profiles in-
side the ”Top Members” directory of the Hidden direc-
tory service. Also they keep track of other Top direc-
tory services currently members of the ”Top Members”
directory by continuously polling the ”Top Members”

directory of the Hidden directory service for directory-
service-profiles entries. In the case that the Hidden di-
rectory service fails the Top directory services should
continue to use the last retrieved membership informa-
tion until the Hidden directory service will be back on-
line. In terms of response to registration requests from
clients, a Top directory service allows only for the reg-
istration of directory-service-profile entries inside the
”Body Members” directory. Once the number of reg-
istrations that are hold locally goes over a given thresh-
old, the Top directory service returns redirect messages
pointing requestors. Normal directory services directly
registered with the current directory service. For any
other kind of registration requests, the Top directory ser-
vices will issue redirect responses pointing at Normal
directory services registered with the current directory
services or other Top directory services that might be
more appropriate for use. Top directory services will re-
spond to all search requests by first trying to fulfil them
locally and in the case that more results can be returned
(the value of the max-results parameter in the search-
constraints object has not been reached yet) it will for-
ward the query to all other Top directory services mem-
bers of the ”Top Members” network directory. For de-
termining the other Top directory services members of
the ”Top Members” directory, the information from the
last successful polling of the Hidden directory service
will be used. Top directory services will respond with a
failure to all other kinds of requests.

8.1.3 Body network directory

At start-up, a Body directory service will try to register
its directory-service-profile in the ”Body Members” di-
rectory of a Top directory service randomly picked from
a pre-configured list of Top directory services. If the
Top directory service cannot be reached another one is
randomly picked until either the joining procedure (see
next) succeeds or the list is exhausted. In the latter case
the directory service will report a join failure. The di-
rectory service will follow redirect responses until the
entry is successfully registered with a directory service
(either Top or Body). Upon failure of the directory ser-
vice used for registration the current directory service
will sleep for a random time period and after than will
re-initiate the initial join procedure.

For other Body directory services that try to register
directory-service-profile entries inside the ”Body Mem-
bers” directory a Body directory service will act as a Top
directory service: once the number of registrations that
are hold locally goes over a given threshold the Body
directory service will return redirect messages pointing
requestors to child Body directory services directly reg-
istered with the current directory service.

Ubiquitous Computing and Communication Journal 5



A Body directory service will respond positively to
all other requests. In particular it will forward search
queries for which it could return more results than lo-
cally available to directory services locally registered in
the ”Body Members” directory.

8.2 Network Construction

At boot time, the directory makes use of a pre-defined
network configuration to create a network topology. The
configuration specifies management and data relations
between members of the network.

Some of the network nodes might have fixed well-
known addresses in order to serve as bootstrap hosts for
other directory services. Depending on their role, dif-
ferent parts of the network are visible to bootstrapping
directory services.

As mentioned before, in a typical setting, the node
at the highest level will be hidden to all nodes not be-
longing to the ”Top Members” directory.

The process of directory service registration is
equivalent to the process of registering regular service
entries. Directory services are registered invoking the
same register method as is used for registering regular
services.

WSDir employs a set of pre-defined pro-active poli-
cies that will allow to construct topologies. Figure 4
gives an overview of the pre-defined policies and their
hierarchy. We do not present here the details of each
policy. However, Fig. 5 shows the policies applied to
construct the basic network topology . Per network di-
rectory, the set of policies in place is listed.

RegisterPolicyRegisterPolicy

DefaultRegister
Policy

DefaultRegister
Policy

ChildRegister
Policy

ChildRegister
Policy

ModifyPolicyModifyPolicy

ChildModify
Policy

ChildModify
Policy

SiblingChildRegister
Policy

SiblingChildRegister
Policy

DefaultModify
Policy

DefaultModify
Policy

DeregisterPolicyDeregisterPolicy

DefaultDeregister
Policy

DefaultDeregister
Policy

ChildDeregister
Policy

ChildDeregister
Policy

SearchPolicySearchPolicy AbstractSearch
Policy

AbstractSearch
Policy

DefaultSearch
Policy

DefaultSearch
Policy

ChildSiblingSearch
Policy

ChildSiblingSearch
Policy

DefaultGetProfile
Policy

DefaultGetProfile
Policy

GetProfilePolicyGetProfilePolicy

GenericPolicyGenericPolicy

Figure 4: Predefined Policy Tree

For example, a registration request directed at a di-
rectory belonging to the ”Hidden” network directory

triggers the application of theChildRegisterPolicy. The
service registration request is forwarded to its known
children, which themselves apply (by default) theChild-
SiblingRegisterPolicy. This in turn selects the least
loaded directory service among its children and among
its siblings to put the service entry in its store.

The procedure for asearchoperation is similar. Re-
quests directed at a directory service either belonging to
the ”Hidden” network directory or to the ”Top” network
directory will forward the search request to its registered
children and its known siblings. The directory service
instances belonging to the ”Body” network directory ap-
ply the DefaultSearchPolicy, only searching their local
store.

For themodify, deregisterandget-profileoperation,
the policies that are assigned to the operations also de-
pend on the network directory the directory service in-
stance belongs to.

Hidden

Body-1 Body-2

Top-1 Top-2

Hid
de
n

To
p

Bo
dy

Body-5 Body-6

Body-4Body-3

* :
 se

arch
 : 

DefaultS
iblin

gS
earch

Polic
y

* :
 re

gis
te

r :
 DefaultR

egis
te

rP
olic

y

* :
 m

odify
 : 

DefaultM
odify

Polic
y

* :
 deregis

te
r :

 DefaultD
eregis

te
rP

olic
y

* :
 ge

t-p
rofil

e : 
DefaultG

etP
rofil

ePolic
y

* :
 se

arch
 : 

Child
Sib

lin
gS

earch
Polic

y

* :
 re

gis
te

r :
 Si

blin
gC

hild
Regis

te
rP

olic
y

* :
 m

odify
 : 

Child
Modify

Polic
y

* :
 deregis

te
r :

 Child
Deregis

te
rP

olic
y

* :
 ge

t-p
rofil

e : 
DefaultG

etP
rofil

ePolic
y

* :
 se

arch
 : 

DefaultS
earch

Polic
y

* :
 re

gis
te

r :
 Child

Regis
te

rP
olic

y

* :
 m

odify
 : 

Child
Modify

Polic
y

* :
 deregis

te
r :

 Child
Deregis

te
rP

olic
y

* :
 ge

t-p
rofil

e : 
DefaultG

etP
rofil

ePolic
y

Body-7

Figure 5: Policies in the Network Topology

8.3 Examples of Network Interactions

The following section describes one example of the
policy-governed query operation of the network of di-
rectories as presented previously. The visible network is
formed from a number of ”well-known” top nodes (Top-
1, Top-2, Top-3) with a fixed name and transport address
(but which can possibly fail) and an arbitrary number of
leaf nodes which are organized in a tree topology with
one of the top nodes as root.

Query resolution is illustrated in Fig. 6: a client

Ubiquitous Computing and Communication Journal 6



issues a search request for service profiles matching a
template in theHospital domain directory. i) First, the
client issuing the query randomly selects one of the top
level nodes (Top-1, Top-2, Top-3) (in this example,Top-
2 is picked). ii) TheTop-2directory service forwards
then the query to its siblings. iii) This allows direc-
tory services that have an entry for theHospital do-
main directory in their service profile to propagate the
query down. iv) Then, to guarantee full query resolu-
tion, the query is forwarded to all directory services that
are known to store entries for theHospitaldomain direc-
tory. v) Finally, upon finding results, the nodes holding
the results will send a message back (depicted by ”R=x”
in the figure, where x denotes the number of matched
services) to the directory service it was queried by, until
it reaches the original requester. In this case, the match-
ing service profiles in the directory services supporting
theHospitaldomain directory will be returned.

Figure 6: Query Resolution

9 USABILITY

For every instance of a WSDir’s Directory Service, the
user must write its own configuration file. This configu-

ration file is accessed and read by the Directory Service
during its starting procedure. The name of this file must
be explicitly written in a file web.xml of the Directory
Service.

The syntax of this file is based on FIPA SLO. It con-
tains all the neccessary information for the Directory
Service to create its directories, associate the policies
and start building a predefined network topology with
other Directory Services. The user must specify the fol-
lowing information: i) name and address of the Direc-
tory Service; ii) name(s), address(es) and credentials of
the Directory Services it should register in; iii) name of
the directories it manages; iv) name of the policies that
applies to directories for each operation.

Another issue regarding the WSDir’s usability is
monitoring its’s run time activity. There are currently
two ways to do this. The first one is to use a Java client
which enables a human user to browse through the Di-
rectory Services and their directories. Directories and
services entries are displayed in a visual tree. The user
can fold/unfold directories and check which services are
currently registered in a Directory Service. The second
way to monitor WSDir’s activity is to deploy a servlet
on the same server where an instance of a Directory Ser-
vice is running. Depending on this Directory Service’s
configuration, a user will be able to access a web page
that displays a set of logs of registration requests made
on it. Thus, the user can check whether his requests
(registration, modification or remove) were successfully
executed.

In either way, no performance information nor dis-
function messages are being displayed to the user moni-
toring WSDir’s activity. The user is then leaded to check
the logs files if something wrong happened. Monitoring
Directory Services performance at run time as well as
errors would be a major contribution to WSDIR’s us-
ability.

On the other hand, once a topology has been decided
and the configuration files have been written correctly,
it is very easy to launch a federation. There exists a
Java class (Startservices) that takes an ordered list of Di-
rectory Service addresses and automatically launch all
of them. The user can also take advantage of another
graphical tool that enables him to directly send a request
to a specific Directory Service.

10 VULNERABILITY

In this section, we discuss two major issues in WSDir’s
vulnerability. The first one concerns server failures and
breakdowns. The second one concerns more the secu-
rity restrictions and users rights. In both cases, WSDir
copes with those issues by using specific mechanisms.

Ubiquitous Computing and Communication Journal 7



WSDir uses its loosely coupled directories and a data
backup system to efficiently handle breakdowns. It im-
plements an authentication mechanisms to identify the
clients sending incoming requests.

10.1 Breakdowns

In the CASCOM project, we have used the network
topology presented in 8.1, where the federation is struc-
tured in three Network layers: the Hidden layer, the
Top layer and the Body layer. Although all Directory
Services, regardless from which Network they belong
to, can operate all requests, only those situated in the
Top layer are accessed by the CASCOM’s Discovery
Agents. As each Network layer plays a specific role in
WSDir’s Federation, three breakdown scenario are dis-
cussed. Figure 7 illustrates the accessible Service De-
scriptions stored in a WSDir’s Federation when all the
Directory Services are running correctly. All descrip-
tions can be accessed by a Client (the group of accessi-
ble Directory Services is defined by the quadratic bor-
der).

Hidden

Body-1 Body-2

Top-1 Top-2

Hid
de

n

To
p

Bo
dy

Body-5 Body-6

Body-4Body-3

Body-7

Service entry

Network directory

Directory service

Figure 7: A WSDir Federation with all the Directory Services from
each Network layer is working correctly. The quadratic border defines
the group of currently accessible Service Descriptions stored in the Fed-
eration.

In a first failure scenario, a Directory Service located
in the Body Network layer fails (see Fig. 8). This failing
Directory Service does not affect the rest of the Feder-
ation. However, the local set of stored Service Descrip-
tions becomes unaccessible for any clients. The rest of
the Descriptions stored in the other Directory Services
are still available for the Clients, enabling them to con-
tinue working with a restricted number of Service De-
scriptions. The Federation still processes all five opera-
tions (search, register, deregister, modify and get Meta

Data). There exists a mechanism allowing Directory
Services to recover after a breakdown. This is explained
in the recovery section below.

Hidden

Body-1 Body-2

Top-1 Top-2

Hid
de

n

To
p

Bo
dy

Body-5 Body-6

Body-4Body-3

Body-7

Service entry

Network directory

Directory service

Figure 8: A WSDir Federation with one Directory Service from the
Body Network layer is failing. The quadratic border defines the group
of currently accessible Service Descriptions stored in the Federation.

In a second failure scenario, it is a Directory Ser-
vice located in the Top Network layer that fails (see
Fig. 9). The Federation is ’amputated’ by the failing
Directory Service’s branch. In this case also, the rest
of the Federation remains operational but all the Service
Descriptions stored under the failing Directory Service
become unavailable. Thus, several actions can be trig-
gered while the Directory Service is down:

1. The clients (Discovery Agents) have a pre-
configured list of addresses of Directory Services
that are operating on the Top Layer Network.
Thanks to this list, the clients can still access the
Federation by picking up a new address from the
list and simply contacting another Directory Ser-
vice in the Top layer Network.

2. Directory Services in the Body layer Network that
are operating under the failing Directory Services
can also have a list of addresses of Directory Ser-
vices in the Top layer Network. Being notified
that the current Directory Service in which they
registered fails, they can register themselves in
another Directory Service operating in the Top
layer Network. Most of the Service Descriptions
stored in the Federation would then be accessible
again.

These two mechanisms enable the clients to continue
working with the Federation as well as providing the
maximum number of Service Descriptions available to
those Clients. The failing Directory Service can recover

Ubiquitous Computing and Communication Journal 8



using the recovering mechanism described in the fol-
lowing section.

Hidden

Body-1 Body-2

Top-1 Top-2

Hid
de
n

To
p

Bo
dy

Body-5 Body-6

Body-4Body-3

Body-7

Service entry

Network directory

Directory service

Figure 9: A WSDir Federation with one Directory Service from the
Top Network layer is failing. The quadratic border defines the group of
currently accessible Service Descriptions stored in the Federation.

Hidden

Body-1 Body-2

Top-1 Top-2

Hid
de
n

To
p

Bo
dy

Body-5 Body-6

Body-4Body-3

Body-7

Service entry

Network directory

Directory service

Figure 10: A WSDir Federation with the Directory Services from the
hidden Network layer is failing. The quadratic borders define several
groups of currently accessible Service Descriptions stored in the Feder-
ation.

In a third failure scenario, it is the Directory Service
in the Hidden layer that breaks down (see Fig. 10). In
this case, the Directory Services in the Top layer can-
not communicate with each other anymore. This has the
effect of creating groups of available Service Descrip-
tions. A Client requesting a Directory Service from the
top layer will only receive a restricted number of Ser-

vice Description. Although the Federation is still oper-
ational, it would be better for Clients to access all Ser-
vice Descriptions. Thus, to cope with that, Top Network
layer’s Directory Services use the same mechanism as
those in the Body Network layer. They can be set with
a list of addresses of Directory Services operating in the
Hidden Network layer and registered in them when the
regular one fails. In this case, several backup Directory
Services must be ready. The failing Directory Service
can recover using the recovering mechanism described
in the following section.

10.2 Recovery

WSDir has been designed to cope with breakdowns
by always keeping some parts of the Federation oper-
ational. When a Directory Service is down, the Ser-
vice Descriptions stored in its memory are not acces-
sible. Once the server works fine again, the Directory
Service can be restarted4. When it restarts, it searches
for a specific internal database that has been specified
in the Directory Service’s configuration file. Directory
Services use this database to log all insert and modi-
fication requests coming from outside clients. Delete
requests erase a specific entry in the database. It con-
tains the following columns: i) the directory token of
the Service Description; ii) the lease time during which
the Service Description is supposed to stay stored in the
Directory Service; iii) the full registration/modification
request as sent by the Client.

The directory token is the primary key of the table. It
is a unique identifier for each Service Description. The
lease time is also stored to ensure that when a Directory
Service restarts, the elapsed time of the failure is taken
into consideration. Finally, the registration/modification
request is stored in the database for the following rea-
son: rather than creating a fixed and structured schema
in the database to support a specific semantic language
(such as OWLS), the full request is stored as a block and
then decoded by the Directory Service during recovery.
By doing so, WSDir can be easily adapted to store other
types of Web service semantic languages.

10.3 Security

Regarding WSDir’s vulnerability, there is an important
issue about client authentication. For several applica-
tions, it is crucial to restrict access and interaction to
trustful clients, avoiding requests from malicious enti-
ties. WSDir copes with this issue at two levels. First,
clients have to provide in their requests both a sender
and a receiver identification5. Furthermore, they may be

4The starting procedure is done by invoking a start method on the particular Directory Service
5This is part of the mandatory fields in the SL0 messages the Clients creates for each request

Ubiquitous Computing and Communication Journal 9



asked to provide an encrypted password and/or a K.509
certificate. The Directory Service serving the request
can then decide if the client trustful or not. On the sec-
ond level, WSDir uses policies, binding operations to
directories. Depending on the policies, some of the au-
thentication information will be used to grant or deny
access to a specific clients. On the other hand, as WSDir
runs as a Web service itself and uses the HTTP protocol,
it may also take advantage of the HTTPS protocol. This
mechanism ensures a client that it is contacting a trustful
Directory Service.

11 PERFORMANCE RESULTS
AND DISCUSSION

WSDir has been tested within the CASCOM project.
During this testing process, WSDir proved to operate
correctly all functions regarding requests. In the follow-
ing sections, we discuss the quantitative performances
of WSDir alone.

The objective is to compare the response time of a
given WSDir Federation towards multiple simultaneous
abstract6 search requests sent by an increasing number
of Clients7.

We have decomposed the testing of WSDir into
three scenarios. The difference between each scenario
is the number of Directory Service units operating in
the Federation.

For every single simulation, a set of Service De-
scriptions is stored8 in the Federation and a given set of
clients starts sending requests to the Federation, logging
elapsed time of each request.

The Directory Services were partially distributed
(some were running on the same servers) in a secured
network. The Clients were all running at the same time
in threads on the same computer. Each Client performed
three random search requests to produce different re-
sults.

In CASCOM, the WSDir’s Federation is composed
of three network layers9: a Hidden Layer, a Top Layer
and a Body Layer. Clients only access the Directory
Services located in the Top Layer. Each scenario has a
specific number of Directory Services in the Top Layer
and the Body Layer (the Hidden Layer always contains
one Directory Service). Our test scenarios are the fol-
lowing: i) scenario 1has three Directory Services in the
Top Layer and six in the Body Layer; ii)scenario 2has

six Directory Services in the Top Layer and six in the
Body Layer; and iii)scenario 3has ten Directory Ser-
vices in the Top Layer and twenty in the Body Layer.

Figures 11 to 13 show the average response time in
milliseconds per number of stored services. Each line
corresponds to a given number of simultaneous clients
requesting the federation.

The important observation to make is that Scenario
2 (see Fig. 12) shows the best performance time. This
implies that the Top Layer’s Directory Services play an
essential role in the scalability of the system. For a given
number of Clients, we see that the time increases lin-
early. The abstract search algorithm is in O(n) complex-
ity. The variations on the lines are due to run time per-
formance clean up of the Directory Services and random
queries (a query that matches a lot of Service Descrip-
tions takes more time to be processed).

Figure 11: WSDir average search request processing time per number
of services for scenario 1

Figure 12: WSDir average search request processing time per number
of services for scenario 2

6There are three types of search requests: abstract, grounding and matchmaker. The abstract and grounding types share the same complexity
(O(n)). The matchmaker type is highly dependent on the matchmaker module used by WSDir (OWLS-MX for the CASCOM project).

7The Clients are Threads that create appropriate SOAP messages, send them to a predefined target address and log the response time in
millisecond. In CASCOM, those clients are Discovery Agents

8These Service Descriptions are evenly distributed over the Directory Service units of the Federation.
9Network layers are used to model the network topology

Ubiquitous Computing and Communication Journal 10



Figure 13: WSDir average search request processing time per number
of services for scenario 3

12 RELATED WORK

In this section, we discuss related research in semantic
web services discovery. We are considering only sys-
tems that have been fully implemented, as it is the case
for WSDir.

The METEOR-S discovery framework [9] copes
with the problem of discovering services in a scenario
where service providers and requesters may use terms
from different ontologies. Based on user’s ontology,
METEOR-S’s Web Service Discovery Infrastructure or-
ganizes multiple registries10, enabling semantic classi-
fication of all Web services based on domains. Their
approach relies on annotating semantically service reg-
istries (for a particular domain) and exploiting such an-
notations during discovery. This system can be de-
ployed in a Peer-to-Peer network, relying on the JXTA11

project, making it scalable. Two algorithms have been
implemented. One for semantic publication of Web ser-
vices and the second one for discovery of those Web
services.

This project differs from WSDir by allowing mul-
tiple ontologies to be used at the same time. This
approach solves an interoperability issue that WSDir
doesn’t treat, although WSDir has an open architecture
for any types of ontologies. In contrast to METEOR-S
which implements a dedicated algorithm for discovery,
WSDir can use many matchmaking modules for discov-
ery. This thus allows WSDir to be more flexible for spe-
cific use cases.

GLUE [3] is a WSMO12 compliant discovery engine

that aims at developing an efficient system for the man-
agement of semantically described Web Services and
their discovery. GLUE is built around an open source
f-logic inference engine called Flora-213 that runs over
XSB14. The basis of the GLUE infrastructure is a set of
facilities for registering and looking up WSMO compo-
nents (ontologies, goals, Web Service descriptions and
mediators). With the use of these components, GLUE
implements a matching mechanism that relies on wg-
Mediators. Requester entities register a class of goals.
Discovery is then performed by submitting goals. Sim-
ilarly, providers register first a class of Web service de-
scriptions and then publish Web service descriptions.
The link between a class of Web services and a class of
goals is embedded in a dedicated wgMediator, that uses
a set of f-logic rules to assert similarities. In contrast
to the GLUE approach where a central storage unit is
used with a single inference engine, WSDir avoids bot-
tle neck problems by distributing its Directory Services;
therefore, all requests are splitted between several Di-
rectory Services.

The WSPDS system [1] is also a peer-to-peer dis-
covery system that is enabled with semantic matchmak-
ing. In WSPDS, WSDL files need to be semantically
annotated in order to be available for discovery. This
is done by using the WSDL-S framework15. By do-
ing so, the WSDL-S file doesn’t have to know anything
about the ontology being used by a Web service descrip-
tion file such as OWL-S or WSMO. The system is built
around a peer-to-peer architecture, where peers act as
servants (acting both as clients and servers). Discovery
queries can be sent to any servant, that will forward the
query to its neighbors. All the communication is done
via SOAP messages. WSDir aligns itself very closely to
the WSPDS service. They use both a Web service in-
terface and they rely on a peer-to-peer architecture. The
main difference is in the work to be done for new ontolo-
gies. In WSPDS, each WSDL file needs to be re-written
using the WSDL-S framework. In contrast, WSDir sim-
ply needs to add the appropriate matchmaking module.

[7] describes a framework for semantic Web service
discovery. This framework is based on context specific
mappings from a user ontology to a specific domain on-
tology. Using these mappings, the user queries are then
transformed into a specific form of query. These queries
can be processed by a match making engine that takes in
consideration the domain ontologies and the stored Web
services. In the prototype implementation, the match

10Web service registries for publishing Web services
11See https://jxta.dev.java.net/
12WSMO - Web Service Modeling Ontology, see http://www.wsmo.org/
13See http://flora.sourceforge.net/
14XSB is an open source implementation of tabled-prolog and deductive database system. See http://xsb.sourceforge.net/
15see http://www.w3.org/Submission/WSDL-S/

Ubiquitous Computing and Communication Journal 11



making engine is based on JESS and JENA, that uses
a JESS knowledge base. When service providers store
their services, the Service Registery API parses and con-
verts the OWL ontology into a collection of JESS facts,
and stores them in a knowledge base. This project uni-
fies multiple ontologies and copes with interoperability
issues, making them transparent for the user. But like
the GLUE project, it has a bottle neck architecture be-
cause of its central storing unit. In contrast, WSDir uses
a distributed architecture.

13 CONCLUSION

WSDir has been tested thoroughly in a real distributed
setting spread over different countries. The system has
proven to be scalable and very stable. We have inte-
grated the system in a use case scenario in the perva-
sive eHealth domain that uses WSDir as its backbone.
Among others, future work could enhance the following
aspects.

From the security and privacy-awareness point of
view, we currently employ standard security mecha-
nisms for accessing the directory services. In particu-
lar, if a directory service requires protecting messaging
from overhearing or if it would require privacy sensible
data as parameters, the access to this web service will
be based on HTTPS. In cases where no HTTPS is avail-
able, we could couple WSDir with Guarantor agents [2]
spread in the architecture in order to provide a secure
tunneling between agent messages and HTTPS.

Another improvement could define security mea-
sures directly within the directory system by defining
specific policies. A policy can be employed to restrict
the right to perform a certain operation on a directory
to only those clients that can provide the right creden-
tials. Using this method, registration of services to a
directory and search operations on directories can be re-
stricted. For example, a directory service that does not
forward any queries pertaining to a ”Hospital” domain
directory will simply return its entries for the domain
and nothing more. This would be completely transpar-
ent to the requestor, as its view of the network topology
is determined by the application of policies of the direc-
tory services underneath it.

As mentioned in the usability section 9, administrat-
ing and monitoring WSDir was not a major priority dur-
ing its development. Although several tools have been
developed to cope with testing issues, the system lacks
consistency. Some of these tools should be enhanced

and packaged into a single administration package. Be-
yond that, a complete WSDir editor should be developed
to help administrators setting up easily networks of Di-
rectory Services.

References
[1] F. Banaei-Kashani, C.-C. Chen, and C. Shahabi. Wspds:

Web services peer-to-peer discovery service. InProceed-
ings of the International Symposium on Web Services and
Applications(ISWS’04), Nevada, June 2004.

[2] R. Bianchi, A. Fontana, and F. Bergenti. A real-world ap-
proach to secure and trusted negotiation in mass. InAA-
MAS ’05: Proceedings of the fourth international joint
conference on Autonomous agents and multiagent sys-
tems, pages 1163–1164, New York, NY, USA, 2005.
ACM Press.

[3] E. Della Valle, D. Cerizza, and I. Celino. The mediators
centric approach to automatic web service discovery of
glue. InProceedings of the First International Workshop
on Mediation in Semantic Web Services: MEDIATE 2005,
Amsterdam, Netherlands, December 2005.

[4] Foundation for Intelligent Physical Agents. Fipa sl con-
tent language specification, December 2002.

[5] M. Klusch, B. Fries, and M. Khalid. Owls-mx: Hybrid
semantic web service retrieval. InProceedings 1st Intl.
AAAI Fall Symposium on Agents and the Semantic Web,
Arlington VA, USA, 2005.

[6] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. Mc-
Dermott, D. McGuinness, B. Parsia, T. Payne, M. Sabou,
M. Solanki, N. Srinivasan, and K. Sycara. Bringing se-
mantics to web services: The owl-s approach. InProceed-
ings of the First International Workshop on Semantic Web
Services and Web Process Composition (SWSWPC 2004),
2004.

[7] J. Pathak, N. Koul, D. Caragea, and H. V. A framework
for semantic web services discovery. In ACM, editor,Pro-
ceedings of the ACM 7th Intl. workshop on Web Informa-
tion and Data Management (WIDM-2005), 2005.

[8] M. Schumacher, T. van Pelt, I. Constantinescu,
A. de Oliveira e Sousa, and B. Faltings. Wsdir: a
federated directory system of semantic web services. In
IEEE, editor,Proceedings of the16th IEEE International
Workshops on Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE 2007), 2007.

[9] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil,
S. Oundhakar, and J. Miller. METEOR-S WSDI: A Scal-
able Infrastructure of Registries for Semantic Publication
and Discovery of Web Services.Journal of Information
Technology and Management, 2004.

Ubiquitous Computing and Communication Journal 12


