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ABSTRACT
This paper proposes a way to enable approximate queries in
a peer-to-peer network by using a special encoding function
and error correcting codes. The encoding function maintains
neighborhood relationships so that two similar inputs will
result in two similar outputs. The error correcting code is
then used to group the similar encoded values around special
codewords. In this manner, similar content is located as
close as possible in the network. The algorithm is tested in
a simulated environment on a HyperCube network overlay.

1. INTRODUCTION
When searching for information on internet, it often hap-

pens that the searcher does not know the correct spelling of
an authors name or simply mistypes a word in the search
query. In most P2P systems, this will often lead to erro-
neous or no results being returned by the system. Approxi-
mate queries extend the notion of normal queries by allowing
entries that only partially match the initial query to be re-
trieved. We call the c-neighborhood of u all possible items
in Σn that differ from u by at most c bits. The idea is that
when searching for u in the network, we extend the search
to all of its c-neighborhood.

Peer-to-peer (P2P) networks can be classified into three
categories depending on how they index and search items
in their network. Systems with local or central indices can
implement approximate search easily. However, their search
function is not as efficient as in distributed hash table (DHT)
where. In DHTs, each peer is responsible for indexing a
certain range of files. All files and peers are attributed an
identifier that represents it in the network. The peers then
index the files that have an ID closely related to their own.
The problem arises when giving the ID to the different files.
Indeed, in most networks, a hashing mechanism is used. The
problem is that this destroys any information about the files
and thus approximate search is made impossible.

In this paper we propose a new hashing (or encoding)
function that preserves locality while trying to maintain an
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even distribution of hash values1. The particularity of our
hashing function is that it will not map a query to one single
bucket, instead it will return a range of buckets that contain
the query and its c-neighborhood. Thus the hashing function
will be: hAQ : Σn → {B1, ..., Bp} × ... × {B1, ..., Bp}. In
addition to this encoding function, the perfect Golay error
correcting code is used to group similar content and queries
in the network, thus allowing a certain degree of approxima-
tion in the search algorithm.

2. ERROR CORRECTING CODE
The error correcting code (ECC) used for our approach

is the Golay code. It is a (23, 212, 7) code, meaning that
there are 4096 codewords and the length of a received vector
is 23 bits. A received vector (RV) is a vector or string of bits
that is received by the destination during a transmission on
a noisy channel. The Golay code is additionally a perfect
code, in the sense that each RV is mapped to one and only
one codeword. In this way, the code can correct up to 3 er-
roneous bits. We can imagine this as each codeword being a
point in a hyperspace surrounded by a ball of radius 3. The
set of all codewords are disjoint and cover the whole hyper-
space. A received vector can thus be positioned anywhere
and will always be contained in one of the balls (Fig. 2).

In this paper, the ECC is used after the encoding of the
query. The encoding creates a 23 bit vector and the Golay
code then computes the corresponding codeword. As we will
see, the encoding function is neighborhood-sensitive. Simi-
lar queries are mapped to similar received vectors. This is
when the ECC comes into play. As long as two RVs differ
by at most 3 bits, the Golay code will map them to the
same codeword. This way they will be indexed at the same
location in the network (see Fig. 1).

Figure 1: Sequence of modules transforming two
similar queries into a single codeword

Alone, this system is not powerful enough to correct queries
that contain many errors. Only 3 bits can be corrected, so

1The work presented in this paper was partly supported by the
Swiss National Research Foundation grant Nr. PI0I2–115015 / 1
and by the Swiss National Funding Agency OFES as part of the
European project NEPOMUK No FP6-027705



to enhance the results, the ECC does not only search for
the codeword to which the RV is mapped to, but also the
codewords that can be reached by all the vectors within the
c-neighborhood of the original one. What happens for exam-
ple if c = 1, is that an error is artificially introduced into the
RV to create a new vector. Then this new vector is mapped
to a Golay codeword. This is done for all of the 23 bits of
the initial RV. Obviously the higher c is, the better the cor-
rection algorithm, since the desired codeword can be found
with many errors in the vector. However we will see later
on that for practical reasons, the value of c can’t really be
increased much higher because the number of neighboring
codewords rapidly increases with respect to c.

Figure 2: Representation of codewords and a re-
ceived vector

A problem with the Golay code when used for our purpose
is that 4096 codewords remains a relatively small number
when compared to the number of documents that can be
stored in a P2P network. This fact means that several doc-
uments will necessarily be mapped to the same codeword.
It is not desirable to have several objects mapped to the
same hashed value. This would result in a very poor accu-
racy during a search in the network, because all documents
stored under the same codeword would be retrieved while
they might have little in common.

Figure 3: Storing a document ”Intelligence” at dif-
ferent locations (storesize = 2 and Nbchunks = 4)

To avoid this problem, we decided to map each document
not to one single codeword, but to a sequence of codewords.
By concatenating two codewords together and using these
’double codewords’ to index a document, there are 224 > 16
million possible different locations in the network. To help
the error correcting process and also to increase the size
of the received vector, more than the two chunks used to
index a document are created by the encoding functions.
By adding more chunks to the vector, there is an increased

possibility that some chunks of the RV will have very few
errors. The resulting process of the encoding function is
shown in Fig. 3. The outputs of this function are used to
index the input document in the network.

The values used for most of the research are of 2 for the
Storesize, because it allows for over 16 million different ’dou-
ble codewords’, and 3 for the number of chunks. It means
that the received vector will be 23 ∗ 3 = 69 bits long. The
number of chunks present in the received vector must be
chosen carefully. If there are not enough, the error correct-
ing process will suffer, whereas if there are too many, the
network load increases. Choosing 3 chunks is a good com-
promise between the two.

The values cDisto and cDistq determine the number of
codewords that will be used to respectively store and search
items, i.e the values of c used while computing the c-neighborhood
of a received vector. They greatly influence the error cor-
recting process by determining how many artificial errors are
added to a received vector in order to find the neighboring
codewords. These two settings are critical and determine
exactly how much of an approximation will be made on the
documents and queries. We now look at how the received
vectors are created.

3. COUNT ENCODING
The idea behind the Count encoding function is to select

arbitrarily x ’counting’ functions that will simply count the
number of occurrences of certain characters in the input be-
ing processed. Each one of these functions outputs a value
between 0 and Size(RV ) = NbChunks × 23. This value is
taken by adding together an initial value that is independent
to the counting function and the number of occurrences of
the characters it is responsible for (Fig. 4). An interesting
feature of this encoding function is that if you swap the po-
sition of two letters in a word, the encoded received vector
will still be the same. Very often when people type some-
thing quickly, some letters can get mixed up. This is not a
problem anymore with this encoding function. But it also
means that unrelated words that contain the same letters
only in a different order will be found together all the time.

Figure 4: Count encoding technique

If two strings differing by only one character are encoded,
two bits in the RV are modified. E.g., if the first word is
”Hello” and the second ”Helo”, the only count function that
will not output twice the same value is the one responsible
for the letter ’l’. Say in the first case it outputs 27, for the
second word it will output 26, thus bits 26 and 27 of the
received vector will be different. In order to help the error
correction process as much as possible, it is best to scatter
the differences between two similar words on the different



”chunks” of our received vector. Since the ECC can correct
up to 3 error bits in each chunk, if we have 1 error in each
chunk it is better than having 2 errors in the same chunk. To
do this, the outputted value of the count function is simply
multiplied by : NbChunks×23

2
. This will make sure the two

different bits are in two different chunks of the RV. This also
helps in keeping the distribution as uniform as possible.

We see here another reason for using 3 as the number of
chunks and not just 2. Since the encoding of two different
characters creates two mistakes in the received vector, by
using 3 chunks, there will be one chunk that is not affected
by the change and thus the error correcting process has an
increased chance of finding the correct codewords.

The distribution of codewords highly depends on how the
different characters are distributed to the count functions.
If the most frequent characters are all counted by the same
functions, then most of the others will always return the
same result, thus highly biasing the resulting RV.

4. RESULTS
Codeword Distribution In order to test the functioning
of the system, a list of movie titles from the Internet Movie
Database (IMDb) is used. As mentioned previously the uni-
formity of the distribution of codewords is a very important
factor. To test this distribution, the first 10’000 movie titles
are taken from the list and encoded.

Figure 5 shows the distribution. The horizontal axis rep-
resents the different codewords, while the vertical axis is
the number of times a movie title is mapped to the corre-
sponding codeword. We can rate the encoding function by
computing the variance of the distribution The lower the
variance, the better the distribution, since it means that
each codeword is hit nearly the same number of times. The
variance obtained with the encoding function for the first
10’000 movies in the list is 0.779, meaning that on aver-
age two codewords will have a difference of less than 1 in
their number of hits. A hit being the fact a file is mapped
to a given codeword. By tweaking the count functions and
studying the frequency of all characters within this list it
would still be possible to obtain a better distribution than
the one shown here.

Figure 5: Ordered distribution of codewords for the
Count encoding

Error Correction Rate To measure the effectiveness of
the error correcting algorithm, several movie titles of differ-
ent length were selected from the IMDb list. We measure
the percentage of times a result is returned while iteratively
inserting errors in the query such as removing or adding

random characters to the string. In Fig. 6, the results with
different values of cDist are shown. We see that the curves
are grouped along the different values of (cDisto + cDistq).
It means that the error correction works just as well whether
a document is indexed at a higher number of peers, or if the
search process looks for the document at more locations.
The values used for cDisto and cDistq should therefore be
selected depending on the network usage. If the number of
resources on the network highly exceeds the expected num-
ber of queries, it would be wise to keep cDisto low and in-
crease cDistq. On the other hand if there are few resources,
but a large amount of expected queries, cDistq should re-
main low in order to reduce the amount of messages sent
on the network during a search process. In this case, cDisto

could be increased since a low number of document shouldn’t
exceed the peers indexing capacity.

Figure 6: Error correction rate for the Count en-
coding

The graphic presents the percentage of chance a movie will
be found depending on the number of errors introduced. For
example if there is a 90% probability of finding the movie
’Matrix: Reloaded’ with one error, it means that 9 times
out of ten the algorithm will find the movie if one character
is randomly removed or added. Bare in mind that changing
one character by another is counted as two errors, since one
character is removed and another inserted.

The parameters used for encoding the titles (the num-
ber of chunks and the storesize) greatly influence the error
correcting results. The higher they are the better the re-
sults. The downside being that they create more network
traffic and the resulting codeword distribution is also worse.
The values used here are of 3 for the Nbchunks and 2 for
storesize.
Network Performance We now present the results ob-
tained from a simulated network using a hypercube struc-
ture. The goal of the simulation is to measure the network
activity created by a query. The encoding functions pro-
posed in this paper create keys (or received vectors) of length
Nbchunks ∗23 bits. As in most Distributed Hash Tables, the
peers in our network are also represented by a key in the
same domain as the documents, so IDpeer ∈ ΣNbchunks∗23

where Σ = {0, 1}. Each peer is thus responsible for the key-
words that are similar to its ID. In the case of a network



with 212 peers and Nbchunks = 1, each peer is responsible
for one single codeword that is equal to its ID.

When the number of peers is smaller than the number
of codewords, one peer is responsible for several codewords.
The way this is done in the simulation is that the peers ID is
truncated to the x most significant bits, where x is the num-
ber of dimensions (log(Nbpeers)). The peer is then responsi-
ble for all codewords starting with the same x first bits as its
ID. E.g., for Nbchunks = 1 and 210 peers, each peer will have
a 10 bit ID. The first peer might have ID ”0000000000” and
thus it will be responsible for indexing the documents related
to codewords ”000000000000”, ”000000000001”, ”000000000010”

and ”000000000011”.
Each peer maintains a list of neighbors that contains d

entries, where d is the dimension of the hypercube. So a
peer has one neighbor for each dimension. In the simulation,
the neighbor of peer ”0000” (if d = 4) on link 0 is the peer
that has the same ID as peer A, apart from bit 0 which is
inverted, thus peer ”1000”.

A hypercube network of dimension 3 is shown in Fig. 7.
Each peer has one neighbor in each dimension and the way
those neighbors are chosen is done as described.

Figure 7: Hypercube network of dimension 3

When a search request is initiated at peer A, the following
sequence of actions takes place: I. Create received vector
from query; II. Compute corresponding codewords. III.
Compute diff = IDpeer xor Codeword. IV. Select x as the
smallest index of diff that is equal to 1. V. Route search
request to the peer on xth link.

At step III, a bitwise xor between the codeword and the
peers ID is made to find on which link the search request
must be forwarded. If the search request is already at the
correct peer B, then x will be null since there will be no
difference between the id and the codeword. If this is the
case, peer B will search its list of indices and see if it has
anything stored under the given codeword. In case of a
match, it will send the results back to peer A.

Once the peer responsible for the codeword is reached, if
cDistq > 0, peer B initiates the error correcting process.
This means peer B computes all cDistq-neighbors of the
received vector and initiates a separate search process for
each one of them. In the same way as the initial request,
the search is forwarded to the peers corresponding to the
new codewords and the results are returned to peer A.

The search process is presented in Fig. 8. The routing
part corresponds steps III, IV and V in the list above. The
number of messages transiting from peer to peer during a
query are measured and displayed in Fig. 9. This number
of messages is governed by the following equation :

Messagessent = (Nbchunks−Storesize+1)∗Avg(Nbc−neighbors)∗X
(1)

This represents the maximum number of messages that
will be sent for a search request in the case there is one node

Figure 8: Routing mechanism with approximate
queries

Figure 9: Number of messages sent in the network
with cDistq = 1 and cDistq = 2

corresponding to each codeword (ie. a peer is not responsible
for multiple codewords). Avg(Nbcneghbors) corresponds to
the number of neighbors of a codeword given the c-distance.
X is the estimated number of messages that need to be sent
from a peer to the peer that is responsible for the neigh-
boring codeword. The closer together the Golay neighbors
are, the lower this value is. In this simulation, it is usu-
ally somewhere between 1 and 3 for cDistq = 1. In Fig. 9,
the solid lines represent the number of messages sent by the
first step of the search process. The dashed one on the other
hand represents the number of messages sent for the error
correction process. This number increases greatly with the
value of c. Indeed the number of Golay neighbors increases
dramatically as we can see below. Unfortunately this limits
the use of this algorithm to smaller values of cDist.

cDisto Number of effective codewords
0 1
1 11
2 68
3 324
4 1300



5. RELATED WORK
Approximate queries are still a recent development in P2P

research. In [2], Ahmed and Boutaba propose a partially
decentralized architecture that also uses the Golay code to
enable approximate search. They use a two-level network
overlay with peers and superpeers. To represent a file in the
network, they pass all the trigrams in the file names through
k hash functions to generate a Bloom filter. The superpeers
in the network are responsible for the different Golay code-
words, while the peers within a subnet contain the actual
information. They use special routing mechanisms to route
a query from its originating peer to its destination. In a
following work, the same authors wrote an article on a Dis-
tributed Pattern Matching System (DPMS) [3]. Similarly
to their previous work, they use bloom filters as indices for
the documents in the network. The q-grams of a query or
document description are hashed k times to fill the filter.
The bloom filter is then used for subset matching and very
effectively enables wildcard searching. Their network over-
lay is more complicated however and is arranged in several
layers taking into account node heterogeneity. The Golay
code is not used any more.

Squid [6] proposes to use Space-filling curves (SFC) to
preserve data locality when indexing documents. This al-
lows for flexible queries. SFCs are a special mathematical
function that transform a multi-dimensional dataset into a
value along one single dimension. This replaces the encoding
functions presented in this paper. However, data in the net-
work have to be represented by a certain number of terms in
d different dimensions so it can be mapped correctly. The
advantage of the method proposed in this paper with re-
spect to Squid is that there are no constraints on how the
query is formulated. Any given string can be used and the
routing hops required to execute the query are stable. Be-
cause SFCs do not map the items uniformly, they propose
different load-balancing techniques to improve network sta-
tistics. Similar enhancements could be applied to our work.
[5] presents results for different types of queries.

In [4], Karnstedt et al. propose a way of effecting ad-
vanced similarity queries using their Vertical Query Lan-
guage. The concept is to store an item at all of its defining
attributes, usually the q-grams present in the file name.

In E-llama [7], the queries are unconstrained, similarly to
our work. The difference is in the way the documents and
queries are encoded. Instead of using the different characters
in the words, queries and documents are transformed into
a point in a high dimensional hyperspace. Each dimension
corresponds to a given string and an items coordinate in
that dimension corresponds to the edit distance between the
query or document and the dimensions assigned string. This
means that similar strings will receive similar coordinates,
thus regrouping them in the hyperspace. The system is then
able to retrieve the k-closest elements to a search query. The
node that responds to the query iteratively asks its near
neighbors to return the closest documents to the query until
k items are returned.

[1] employs the soundex algorithm to encode documents
and queries. This technique uses the different phonemes of a
word to create its encoded value. This means that two words
that sound the same will share the same encoded value.

All the papers referring to approximate queries on P2P
systems try to adapt the DHT hashing mechanism in order
to keep similar documents close together. None seems to

stand out more than others. All solutions present varied
ways of connecting the peers, whether it be in a totally or
partially distributed fashion. Again no solution seems to top
the others in terms of network usage.

6. CONCLUSIONS AND FUTURE WORK
This paper explains a new algorithm for approximate queries

on a totally distributed P2P environment. The initial results
are encouraging and further research should be applied to
the creation of the network and tuning of the parameters.
The way the peers are interconnected highly influences the
network load a query creates, and the different parameters
drastically change the results of the error correction. It is
expected that some fine tuning will result in interesting im-
provements in the results.

The Golay code might not be the most appropriate error
correcting code for this application however. Because of its
number of codewords being a little low, the concatenation of
several of them is required. It might be more interesting to
find a code that has more codewords, and if possible a higher
number of bits that can be corrected. This would greatly
enhance the error correcting process and thus the results of
the algorithm proposed in this paper. The Reed-Solomon
(R-S) code for example can be created with arbitrary values
for n and k, which are respectively the length and dimension
of the code. The minimum distance is then n− k + 1 which
allows the code to correct up to n−k

2
erroneous bits.

In a next step it could be interesting to encode separately
each word in a query instead of encoding the search string as
a whole. This would allow to search for parts of a movie title
thus including a second type of approximation. This would
come at a cost since it would induce much more network
activity since each word will require a new search process
to be run. Also, because single words are shorter than the
search queries used in this paper, the encoding algorithm
would have to be adapted so that the distribution stays us-
able. Shorter received vectors would have to be used. Again,
another ECC might help.
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