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ABSTRACT

Fractures are common injuries, and some more complicated fractures require a surgical intervention. When
such an operation is planned it can be beneficial to have access to similar past cases including follow ups to
compare, which method might be the most adapted one in a particular situation. In the surgery department of
the University hospitals of Geneva a database of past cases including pre– and post–operative images and case
descriptions has been created over the past years with the goal to support clinical decision making.

Images play an important role in the decision making and the judgment of a fracture, but image content is
currently not directly accessible for search. At the moment, search is mainly via a classification system of the
fractures or in the patient record itself only by patient ID. In this paper we propose a solution that combines
visual information from the images in a case to calculate similarity between cases and allow thus an access to
visually similar cases. Such a system can complement the text– or classification–based search that has been used
so far.

In a preliminary study, we used pixel–grid–based salient–point features to build a first prototype of case–based
visual retrieval of fracture cases. Cases belonging to different fracture classes were beforehand often confused
due to the similar bone structures in the various images. In this article, a multi–scale approach is used in
order to perform similarity measures at both large and small scales. When compared to the first prototype, the
introduction of scale and spatial information allowed improving the performance of the system. Cases containing
similar bone structures but with dissimilar fractures are generally ranked lower whereas more relevant cases are
returned. The system can thus be expected to perform sufficiently well for use in clinical practice and particularly
for teaching.
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1. INTRODUCTION

Fractures are a common medical condition, and for most fractures no surgical intervention is necessary. More
complicated fractures sometimes require surgical interventions where images play an important role in planning
the intervention. For classifying fractures the AO/OTA Classification classification was developed.1 This allows
classifying fractures by the bone, the exact place of the fracture in the bone and the complexity of the fracture.

Several databases such as teaching files exist that include fractures. For example, the University hospitals
of Geneva have stored cases of fractures requiring an operation in a teaching file called Casimage∗ since several
years.2 In general, cases are stored with images before the operation, immediately after an operation and then
whenever the patient comes for a follow up or control visit. Subsets of these data have been made available for
example in the form of teaching CDs and books.3 Access to these cases is usually via a structure of the fracture
classification. In the patient record, access to cases can also be by the patient identification.
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In terms of image processing regarding fracture images several applications have been proposed in the past.
Automatic detection of bone fractures, for example, has been proposed several times.4, 5 Leow et al.4, 6, 7 worked
on automatic femur fracture detection in X–ray images and Donnelley et al.8–10 on long bone fracture detec-
tion.4, 6, 7 A common approach is to perform a contour–based bone segmentation and then to use a gradient–
map–based texture analysis to localize the fracture. The performance of this approach relies mainly on the bone
contour modeling. Ideally, the modeling should be flexible enough to cover fractures of all types of bones, though.

Image retrieval on fracture images has been proposed in the past as well but to our knowledge only quite
rarely.11 In general, there are different types of image retrieval systems, mainly those using textual information
and those using directly the visual information of the images.12 Systems using the visual information of images
directly are also called content–based image retrieval (CBIR) systems. Such CBIR systems have been proposed
for general images many times and hundreds of articles have been published on this with a large variety of
approaches.13, 14 In the medical domain content–based image retrieval has also been proposed several times15–17

and some concrete systems exist.18 Typical application domains are the retrieval of articles form the medical
literature or the analysis of the texture in lung CTs.19, 20

To evaluate image retrieval algorithms for visual and textual retrieval systems the ImageCLEF† benchmark
(part of CLEF‡, the Cross–Language Evaluation Forum) was started in 2003. Since 2004, a medical retrieval
task was added, first working with teaching files and then later with images from the medical literature.21 This
benchmark has been run every year since and has led to a variety of interesting observations regarding the
techniques employed. Tasks for images classification as well as for retrieval were evaluated in separate tasks
in the competition.21, 22 Most often, for the purely visual tasks multi–scale salient point–based approaches
were used23, 24 and outperformed the other visual techniques.21, 25, 26 The combination of SIFT (Scale–Invariant
Feature Transform)27 features and the BoF (Bags of Features) image representation28 is commonly used in the
benchmark. As this representation does not take into account spatial distribution Nowak et al.29 proposed to
keep the SIFT descriptor but replace the multi–scale salient point detector by random sampling, which in some
experiments gave equal or better results.23, 24

Goal of the visual retrieval of fractures is to supply to the clinician cases of the past of which the images are
visually similar to cases stored in the database. The approach is similar to the well know case–based reasoning
technique.30 Such cases of the past can help to decide on the potential techniques for an intervention taking into
account the choices of other clinicians and also based on the long–term outcome on particular patients.

Challenges include difference in the basic data recorded for each case as the exact views and absolute grey–
scale of the x–ray images can vary quite strongly. Some cases might also have more images than others so
incomplete information needs to be taken into account. The retrieval also needs to be on a case basis and not
on an image basis, so similarity values of image in a case need to be combined for a similarity score of cases.
As x–rays are often taken under standardized conditions, images of the same bone but at difference places often
contain very similar views and only differ in very small parts of the image. Differences in anatomy between the
persons thus are often more important than the difference due to a small fracture in a slightly different region.
As some cases contain many CT images whereas others do not, there also needs to be a normalization at this
level to avoid unwanted influences.

The prototype of bone fracture retrieval described in this paper is based on a pixel–grid sampling using a SIFT
descriptor followed by BoF representation. As SIFT has been combined successfully with image representations
such as spatial pyramids,31 sparse flexible models32 and cluster co–occurrence matrices,33 in this article we
implement a multi–scale SIFT detector and compare several case representation models.

This article is structured as follows: Section 2 describes the material and methods of the article, namely
the database used and the basic techniques reused. Chapter 3 then describes the performance results obtained
before the article analyzes the obtained results critically. The article then finishes with a conclusion.

2. METHODS

This section describes the basic methods used for the work described

†http://www.imageclef.org
‡http://www.clef-campaign.org/
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Figure 1. Number of cases with the respective number of images per case.

2.1. Data set used

At the surgery department of the University Hospitals of Geneva, cases of fractures including images and textual
descriptions have been collected over the past more than ten years. In this article, a sub set of 23’970 images was
extracted for the demonstration system. Each case in the database has images before and after the operation and
wherever possible follow up visits even several years after the operation are added to the cases to see the evolution
of the operation The 23’970 images used in this study are part of 2’690 fracture cases associated with 43 different
fracture types based on AO/OTA classification. For malleolar (ankle) fractures, Danis–Weber classification34, 35

is used. Each case contains from 1 to 73 images of various modalities, mainly x–ray images. In Figure 1 the
distribution of the cases based on the number of images is given.

Table 1 shows the number of cases, the total number of images and their average for each. Fracture classes
are available as textual labels that correspond to particular classes in the AO classification.

Around 90% of the images are x–ray images. Other image modalities include CT (Computed Tomography),
MRI (Magnetic Resonance Imaging), Angiography, Scintigraphy, 3D reconstruction images, hand–drawn surgery
plans and photos of injuries. X–ray images can be taken from different views and have a varying size. Normally,
at least 2 x–rays are contained in a case (one antero–posterior view and one lateral view). Sometimes a third
view, oblique or external rotation is given. Several cases also included a magnification of the region of interest.

2.2. Techniques

CBIR usually includes an offline image processing part to pre–process the data and then online query processing
that includes calculating the similarity of a query case with past cases. In our case, offline image processing
is composed of pre–processing, visual feature extraction, feature clustering to create a visual vocabulary and
finally image/case modeling. The online query processing step is composed of feature extraction if a new case is
treated, similarity calculation for each image in the query and then a case–based fusion to calculate similarity
values on a per case and not per image basis.

Contrast normalization is performed as a pre–processing step based on histogram equalization. Multi–scale
image analysis is performed by using SIFT.27 SIFT features were extracted from 9 levels (3 octaves with 3 layers
for each). The clustering algorithm is a griddified version of hierarchical KMeans quantizer, which was presented
in.36 Image representation is based on the BOF.28

Two distance functions were used for similarity calculation:

• the SSD(Sum of Squared Difference) distance (also known as Euclidean distance or 2nd order Minkowski
distance);

• the HI(Histogram Intersection).



Table 1. Number of cases and images of each fracture class.

fracture class nb of cases nb of images average nb of images per case
Acetabulum 31 433 13.97

Ankle 8 60 7.50
Ankle Weber A 44 270 6.14
Ankle Weber B 244 1784 7.31
Ankle Weber C 156 1222 7.83

Calcaneus 33 340 10.30
Carpal–Other 1 5 5.00

Clavicle 40 232 5.80
Elbow 4 21 5.25

Femur–Subtrochanteric 132 1342 10.17
Femur Diaphysis 169 1960 11.60

Femur Distal–Extraarti 55 614 11.16
Femur Distal–Intraarti 50 673 13.46
Femur Proximal–Head 2 18 9.00
Femur Proximal–Intertr 54 406 7.52
Femur Proximal–Neck 72 499 6.93

Femur Proximal–Pertroc 419 2132 5.09
Foot 3 36 12.00
Hip 3 25 8.33

Humerus Diaphysis 119 1146 9.63
Humerus Distal–Extraar 30 325 10.83
Humerus Distal–Intraar 61 590 9.67

Humerus Proximal 172 1522 8.85
Knee 7 34 4.86

Metacarpal-Phalanx hand 10 30 3.00
Metatarsal-Phalanx foot 62 476 7.68

Patella 34 198 5.82
Pelvic Ring Fracture 43 438 10.19

Radius/Ulna Diaphysis 46 262 5.70
Radius/Ulna Distal 14 68 4.86

Radius/Ulna Proximal 58 357 6.16
Scapula 10 131 13.10
Shoulder 16 73 4.56

Spine Cervical 1 1 1.00
Spine Lumbar 2 8 4.00
Spine Thoracic 1 3 3.00

Talus 32 497 15.53
Tarsal–Other 17 244 14.35

Tibia/Fibula Diaphysis 205 2160 10.54
Tibia/Fibula Distal–Ex 52 737 14.17
Tibia/Fibula Distal–In 57 599 10.51

Tibia/Fibula Proximal–Ex 23 310 13.48
Tibia/Fibula Proximal–In 98 1689 17.23

total 2690 23970 8.94



Distances D are calculated between a pair of models. Let C be the set of cases and Ci represents a single case
i. To calculate the similarity, Ci is represented by a set of models, named M(i). Using M(i) as a query, each
model M(i)k of M(i) will generate a list of models Msimilar(k) ranked by the distance, among which several
models can refer to the same case Cj . Fusion of first level is performed to convert the list of similar models
Msimilar(k) into a list of similar cases Csimilar(k). As M(i) can contain more than one model, more than one
list of similar cases are produced. Fusion of second level will combine all lists into one.

Fusion strategies are based on classical fusion strategies combMAX, combMIN, combSUM, combMNZ pro-
posed in37 and and combSUM(n)MAX proposed in.38

The equations are listed to make the various combination rules explicit:

DcombMAX(m) = arg max
l=1:N

D(m)l, (1)

DcombMIN(m) = arg min
l=1:N

D(m)l, (2)

DcombSUM(m) =

N∑

l=1

D(m)l, (3)

DcombMNZ(m) = DcombSUM(m) ∗ F (m), (4)

DcombANZ(m) = DcombSUM(m)/F (m), (5)

DcombDANZ(m) = DcombANZ(m)/F (m). (6)

where m is one returned model, D(m) is its distance to query model, l is one list of returned model and F (m)
is the number of times that m appeared in all lists. combSUM(n)MAX is proposed have a trade–off between
combMAX and combSUM.

VcombSUM(n )MAX(i) =

N∑

l=1

arg max
k∈EN\El

(D(m)l), (7)

Here n is a parameter. When n = 1, only 1 maximum is taken, combSUM(n)MAX is equivalent to combMAX. When
n = N , combSUM(n)MAX is equivalent to combMAX. In this article n = 2 is chosen as proposed in.38

Similarity is represented by small SSD value or large HI value. En consequence, combMIN + combDANZ are
used to combine SSD distances, and combMAX + combMNZ for HI distances.

2.3. Evaluation methodology

Results presented previously using similar techniques in39 were produced by a random selection of only 10 cases
from each class as query examples. Only early precision P10 and P30 were presented, and cases with less than
10 images were automatically discarded. In this article, every case was taken to query the database. MAP
(Mean Average Precision) was calculated retrieving the most similar 1000 cases. Both, MAP and a class–based
geometric MAP are presented. Early precision P10 and P30 are also shown, as early precision might be what
most end users are actually interested in.

3. RESULTS

This section details the main results of the article and a performance evaluation.



Figure 2. Images clustering in one large example case: Case Acetabulum #5

3.1. Novel techniques developed

Fracture classification is based upon the fracture location and morphology. Not all the images in one case
represent location and morphology well. Images of antero–posterior view or lateral view usually show very well
the bone architecture as well as the fracture location. Other images such as CT present a intersectional view,
which is less relevant for fracture classification. Less relevant views can provide useful information, but in case
that one case contains more irrelevant views than relevent ones, the system will return low quality results.

We tried to improve the performance by emphasizing the representation models of relevant images should be
highly weighted whereas the number of less relevant views should be reduced. One simple way is to separate
images by thumbnails, as the thumbnails of images taken from same view are usually very similar. To reduce the
computation time, images are converted into 16x16 thumbnails. Separation is performed by KMean clustering
algorithm is used, number of clusters k varies from 10 to 100. In Figure 2, one example case containing various
types of images is shown. k = 70 is used in this example. The same color meaning that images are of the same
cluster. Almost all the images of antero–posterior view are associated to red, which is the largest cluster of the
database. As this phenomena is widespread in Acetabulum, Femur, Humerus and Ankle fracture cases, which



Table 2. Minimum, maximum and average numbers of images assigned to clusters

k min average median max
10 406 2402.3 1883.5 7747
20 175 1201.2 1068.5 6995
30 1 800.8 640.5 6760
40 68 600.6 455 6092
50 17 480.5 385 6211
60 48 400.4 290.5 6182
70 34 343.2 264.5 5583
80 37 300.3 239 5428
90 34 266.9 204.5 5485
100 23 240.2 192 5001

are 80% of the whole database. Emphasizing antero–posterior view images can be approximated to emphasizing
the images associated to the largest cluster. One way is to reduce the numbers of representation vectors for other
type of images by aggregating their BoF vectors into one. The reason of choosing this approach is also due to
the fact that BoF model has better performance when the number of features is larger.

Let I(i) be the set of images of case Ci, and each image I(i)j associated to cluster s (1 <= s <= k) is noted
I(i)− > s. By using BoF+SIFT feature extraction, I(i)j is represented by a vector Vj . The dimension of vector
V depends on the number of keywords pre–defined. In23 1000 keywords was proved to be a stable choice and is
used in our experiments. For images I(i)− > s where s is not the largest cluster, BoF vectors are aggregated
into one vector V− > s by calculate the average value for each bin. Therefore, case Ci is represented by Ns(i) +
K

s(i)
representation vectors, where Ns(i) is the number of images associated to s in Ci, and Ks is the number

of clusters appeared in Ci. This case model is named BoF(cluster) in the rest of the article.

The second novelty is to develop a tree–based image representation to replace BoF. BoF is often critised due
to the lack of spatial information of local features, and it is argued that the most important spatial information
for one feature comes from its nearest–neighbors.31, 32 We propose to structure each SIFT feature as a descendant
of the nearest–neighbor feature in neighbor scale, which forms a tree structure that takes into account the spatial
information as well as the multiscale information. Let F be the set of SIFT feature extracted from one image.
Let { be a single feature. Fσ is the subset of features extracted at scale σ. σ0 is the bottom level and σ8 is
the top level. As feature extraction is always extracted from bottom to top, when {σi

is extracted, all features
of Fσj

(j < i) are already known. The location information of Fσj
can be used to find out the lower scale

nearest–neighbors. Level by level a tree of SIFT features is established, where low scale level features are always
linked to the nearest higher scale level features.

As KMeans clustering is performed both on SIFT descriptor vectors (k = 1000) and thumbnail vectors
(k = 70), each node of the tree is then replace by the cluster index. The classical TED (Tree Edit Distance)
function40 is used as distance function. Two trees are considered as similar if only small nubmer of nodes need
to be moved to two trees identical. This approach is named MultiScaleTree(image) in the rest of the article.

3.2. Performance evaluation

In thumbnails clustering step, k is the parameter to be defined. From 10 and 100 clusters were tested. Table 2
shows per cluster how many images on average are contained in each cluster as well as the maximum and
minimum size in the clusters. The largest cluster contains 20–30% of the images of the database depending on
the number of clusters. In Figure 3 early precision as well as MAP obtained by BoF(cluster) with two distance
methods (SSD and HI) and various numbers of clusters k is given. MAP is little influenced by the value of k,
especially using SSD distance function. HI gave better results then SSD distance fucntions. The best results are
obtained for k = 30 for HI distance, and k = 70 for SSD distance.



Figure 3. Performance obtained by SIFT+BoF(cluster) with various number of k.

Table 3. Performance comparison using various sampling strategies, representation models, distance measure and fusion
approaches are shown (HI = Histogram Intersection; SSD is Sum of Squared Difference; TED is Tree Edit Distance.)

Sampling Models Distance Fusion MAP P10 P30
PixelGrid BoF(image) HI combMAX+combMNZ 0.094 0.117 0.110
SIFT detector BoF(cluster) HI combMAX+combMNZ 0.110 0.141 0.113
PixelGrid BoF(image) HI combSUM(2)MAX+combMNZ 0.099 0.105 0.106
SIFT detector BoF(cluster) HI combSUM(2)MAX+combMNZ 0.102 0.133 0.096
PixelGrid BoF(image) SSD combMIN+combDANZ 0.076 0.099 0.053
SIFT detector BoF(cluster) SSD combMIN+combDANZ 0.087 0.097 0.083
SIFT detector MultiScaleTree(image) TED combMIN+combDANZ 0.106 0.165 0.097

Evaluation of BoF(cluster) model and MultiScaleTree(image) model is performed and classical BoF image
representation is used as a baseline, noted BoF(image). For MultiScaleTree(image) model, the number of thumb-
nail clusters does not have important impact as it only influence one node. In Table 3, early precision and MAP
obtained by three representation models with associated distance functions and fusion strategies are shown. The
best overall MAP is obtained by using BoF(cluster) with histogram intersection and combMAX+combMNZ for
fusion. For all approaches, BoF(cluster) outperforms the classical BoF model. In terms of distance functions
and fusion strategies, histogram intersection produce always better results than SSD distance. It can be that the
combMIN+combDANZ fusion strategies are not effective for SSD distance. Using the combSUM(2)MAX oper-
ator for score fusion reduced the early precision and sometimes also MAP. CombMAX together with combMNZ
remains the most stable choice for the fusion of histogram intersection. Using a nearest–neighbor tree structure
for SIFT produced the best early precision (P10).



Table 4. Performance comparison per class

fracture class BoF (image) BoF (cluster) MultiScaleTree (image)
Acetabulum 0.012 0.048 0.116
Ankle 0.023 0.172 0.052
Ankle Weber A 0.068 0.040 0.044
Ankle Weber B 0.184 0.116 0.098
Ankle Weber C 0.072 0.100 0.094
Calcaneus 0.052 0.056 0.067
Clavicle 0.056 0.149 0.077
Elbow 0.010 0.005 0.021
Femur Diaphysis 0.140 0.147 0.159
Femur Distal–Extraarti 0.036 0.034 0.063
Femur Distal–Intraarti 0.056 0.019 0.022
Femur Proximal–Head 0.028 0.022 0.016
Femur Proximal–Intertr 0.016 0.020 0.026
Femur Proximal–Neck 0.040 0.076 0.103
Femur Proximal–Pertroc 0.236 0.251 0.217
Femur Subtrochanteric 0.062 0.101 0.060
Foot 0.134 0.219 0.175
Hip 0.120 0.435 0.151
Humerus Diaphysis 0.072 0.035 0.111
Humerus Distal–Extraar 0.024 0.033 0.038
Humerus Distal–Intraar 0.028 0.133 0.032
Humerus Proximal 0.152 0.200 0.146
Knee 0.012 0.186 0.033
Metacarpal-Phalanx hand 0.099 0.261 0.212
Metatarsal-Phalanx foot 0.108 0.114 0.104
Patella 0.052 0.008 0.004
Pelvic Ring Fracture 0.056 0.056 0.033
Radius/Ulna Diaphysis 0.052 0.038 0.032
Radius/Ulna Distal 0.020 0.010 0.021
Radius/Ulna Proximal 0.044 0.019 0.016
Scapula 0.011 0.028 0.021
Shoulder 0.008 0.014 0.004
Talus 0.052 0.030 0.061
Tarsal–Other 0.020 0.025 0.031
Tibia/Fibula Diaphysis 0.176 0.179 0.162
Tibia/Fibula Distal–Ex 0.072 0.047 0.110
Tibia/Fibula Distal–In 0.064 0.030 0.083
Tibia/Fibula Proximal–Ex 0.115 0.051 0.126
Tibia/Fibula Proximal–In 0.132 0.166 0.172
Geometric average 0.072 0.092 0.0798

In Table 4, an additional analysis is given for each fracture class. The 6 largest classes contain half the
images of the database. The majority classes usually work well in classification problems. As a consequence, the
geometric mean is lower than the overall MAP. Using BoF (cluster) obtained the best results also in this case.
Using the tree structure obtained the second place, but the MAP for each class is more uniform than for the
other two methods, which shows that a multi–scale tree structure is more resistant to varying size of classes.



4. CONCLUSIONS

In this article two new SIFT feature–based representation models are proposed. The goal is to improve the
performance of visual information retrieval for fracture cases. Classical BoF model was used as a baseline
for evaluation. The BoF vector aggregation based on thumbnail clustering improved the performance of all
approaches. Retrieval of femur fractures remains challenging as several classes contain the exact bone structures
and differences between these images and cases are very small. The performance of retrieval using BoF model
is dependant to the size of the class. The multi–scale representation, however, increased the performance and
allowed a better separation of the cases and more particularly of the images of the cases, thus obtain more
uniform performance for all the classes.
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