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ABSTRACT

The interpretation of high–resolution computed tomography (HRCT) images of the chest showing disorders of the
lung tissue associated with interstitial lung diseases (ILDs) is time–consuming and requires experience. Whereas
automatic detection and quantification of the lung tissue patterns showed promising results in several studies, its
aid for the clinicians is limited to the challenge of image interpretation, letting the radiologists with the problem
of the final histological diagnosis. Complementary to lung tissue categorization, providing visually similar cases
using content–based image retrieval (CBIR) is in line with the clinical workflow of the radiologists.

In a preliminary study, a Euclidean distance based on volume percentages of five lung tissue types was used
as inter–case distance for CBIR. The latter showed the feasibility of retrieving similar histological diagnoses
of ILD based on visual content, although no localization information was used for CBIR. However, to retrieve
and show similar images with pathology appearing at a particular lung position was not possible. In this work,
a 3D localization system based on lung anatomy is used to localize low–level features used for CBIR. When
compared to our previous study, the introduction of localization features allows improving early precision for
some histological diagnoses, especially when the region of appearance of lung tissue disorders is important.

Keywords: Content–based medical image retrieval, 3D lung atlas, texture analysis, chest high–resolution CT,
localized features, interstitial lung diseases.

1. INTRODUCTION

Interstitial lung diseases (ILD) group more than 150 disorders of the lung tissue from various causes leading
to breathing dysfunction. Many of them are rare and present unspecific symptoms such as altered pulmonary
functions and cough. Diagnosing ILDs is a difficult task for non–specialists and is based on observations of clinical,
physiologic, pathologic manifestations as well as radiologic findings.1 The latter occupy an important role as they
allow assessing the appearance of the lung parenchyma, which is often representative of a particular histological
diagnostic of ILDs.2 The most employed imaging technique is the chest X–ray due to its low cost and limited
radiation dose. However, it allows limited diagnosing specificity for ILDs as the lung tissue is superimposed with
ribs and other organs. When the clinical and physiological presentations arouse suspicions towards an ILD, the
HRCT imaging protocol is favored as it enables accurate visual assessment of the lung parenchyma by providing
three–dimensional images at a sub–millimetric resolution in axial slices. The interpretation of high–resolution
computed tomography (HRCT) images of the chest showing disorders of the lung tissue associated with ILDs
is time–consuming and requires experience as the various diagnoses of ILDs are can be differentiated only by
subtle changes in the lung parenchyma, with characteristic distribution within the lung anatomy.

Image–based computerized diagnosis aid tools were proposed to assist the radiologists in the HRCT interpre-
tation tasks. Automatic detection and quantification of the lung tissue patterns in HRCT image series have the
advantage to reduce the risk of omission of important lesions and provide a three–dimensional map of the catego-
rized lung tissue to serve as a second opinion to the radiologist. Whereas automatic detection and quantification
of the lung tissue patterns showed promising results in several studies,3–5 its aid for the clinicians is limited to
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the challenge of image interpretation, letting the radiologists down with the problem of the final histological
diagnosis. Complementary to lung tissue categorization, providing visually similar cases using content–based
image retrieval (CBIR) is in accordance with the clinical workflow of the radiologists. CBIR of HRCT of the
chest provides valuable information from cases with confirmed diagnoses and corresponds to the approach of the
clinician with little experience who compares the image under investigation with typical cases listed in textbooks
or contained in personal collections.6, 7 CBIR of chest CT has rarely been proposed in the literature and the
existing studies8–11 have presented systems for retrieving similar lung tissue types, which are of limited use in
clinical practice. Moreover, all proposed systems require delineating query regions, which does not allow global
inter–case similarity assessment including information from the whole lung. Retrieving similar cases in terms of
histological diagnoses is closer to the needs of radiologists. The latter is however more challenging to implement
as the content of the HRCT scans need to be analyzed as a whole. Each histological diagnosis of ILD is character-
ized by proportions and predominance of a given set of abnormal lung tissue patterns. In a previous study,12 3D
case–based retrieval was introduced and evaluated based on the histological diagnoses. The inter–case distance
was based on the differences of percentages of five lung tissue patterns within the whole lung, along with selected
clinical parameters. The retrieval performances obtained suggest the feasibility of retrieving similar cases in
terms of final histological diagnosis using CBIR. However, although known as being very discriminative for the
differential diagnosis of ILDs,13 the localization of the diseased tissue was discarded by this approach. The goal
of the work described in this article is to evaluate the benefits from using localized features for content–based
image retrieval of HRCT images of the lung with ILDs. The retrieval performance is compared with the previous
approach using the volume percent ages of five types of lung tissue as visual attributes without localization.12

1.1. Histological diagnoses and associated abnormal tissue locations

To identify the key locations of tissue disorders associated with ILDs, the most important lung tissue patterns
and their corresponding localizations are detailed in Table 1 for seven frequent ILDs.13 As observed in Table 1,
ground glass patterns are encountered in most of the ILDs and are thus non–specific. Therefore, its location as
well as the clinical context and other HRCT findings are required to interpret the presence of ground glass.

• Pulmonary fibrosis (PF) means scarring throughout the lungs. The term fibrosis is used in this work to
describe HRCT findings that are associated with the histological diagnosis PF and includes reticulation,
traction bronchiectasis, architecture distortion and honeycombing. The characteristic basal and peripheral
predominance of the abnormalities on HRCT scans is an important clue to the diagnosis of PF.14 Among
the most common appearance reported in13 is lower lung zone with posterior predominance.

• Tuberculosis (TB) is an infectious disease caused by the inhalation of air–borne organisms (bacterias).
Typically, the upper lobes are most affected. In patients with active TB signs include focal consolidation
and cavitation.13 In miliary TB, a fine nodular pattern shows random distribution within the lung.13

• Pneumocystis pneumonia or Pneumocystis carinii pneumonia (PCP) is an opportunistic fungal infection,
most common in human immunodeficiency virus (HIV) infected patients. Findings include patchy/diffuse
ground glass, crazy–paving, cysts, pneumothorax and a central, perihilar or upper lobe distribution.

• Hypersensitivity pneumonitis (HP) is an allergic lung disease caused by breathing in a foreign substance.
HRCT findings show patchy distribution of fibrosis, ground glass opacities or centri–lobular nodules.

• Acute interstitial pneumonia (AIP) is a disease causing rapid onset of respiratory failure. HRCT finings
consist of patchy bilateral areas of ground glass opacities and diffuse or patchy consolidation.13

• Cryptogenic organizing pneumonia (COP), also known as Bronchiolitis obliterans organizing pneumonia, is
a inflammatory process with presence of “granulation tissue polyps within the respiratory bronchioles and
alveolar duct”.13 HRCT scans of the lung reveal patchy air–space consolidation, ground glass opacities,
small nodular opacities, as well as bronchial wall thickening and dilation. These patchy opacities occur
more frequently in the periphery of the lung and are often in the lower lung zone.15



Table 1. 7 common histological diagnoses of ILDs and associated HRCT findings according to.13

histological diagnosis
HRCT lung

tissue patterns
predominance

Pulmonary fibrosis
(PF)

fibrosis, bronchiectasis,
ground glass

peripheral,
sub–pleural,

basal, posterior

Tuberculosis (TB)
micronodules (miliary),

tree–in–bud, consolidation

diffuse, apical
(cavitary)

Pneumocystis
pneumonia (PCP)

ground glass, crazy–paving, cysts,
pneumothorax

central, perihilar

Hypersensitivity
pneumonitis (HP)

ground glass, emphysema, fibrosis diffuse

Acute interstitial
pneumonia (AIP)

ground glass, consolidation basal, diffuse

Cryptogenic organizing
pneumonia (COPa)

aBronchiolitis obliterans
organizing pneumonia was
formerly used and replaced
by COP

ground glass,
consolidation (patchy),

macronodules, bronchial wall
thickening, crazy–paving

peripheral, basal,
peribronchovascular,

subpleural

Sarcoidosis (SA)
micronodules, consolidation,
macronodules, ground glass,

fibrosis (end–stage)

apical,
peribronchovascular,
subpleural, peripheral

• Sarcoidosis (SA) is a systemic disorder of unknown origin. It is characterised by non–caseating granulomas
that may resolve spontaneously or progress to fibrosis.13 The most characteristic findings are small nodules
in a perilymphatic distribution. Common HRCT findings for SA are upper lobes and peribronchovascular
predominance of confluent nodules or masses and fibrotic tissue in patients with end–stage disease.

1.2. Atlas–based localization of the features in CBIR

Localization is important for CBIR as the similarity between two images perceived by human observers strongly
depends on the layout of the image as well as the spatial relations among depicted objects.16 Several approaches
were proposed for localizing features for CBIR:17

• partitioning, which consists in extracting features at regularly sampled points,18

• salient points, where features are extracted at locations found by detectors (e.g. high–gradient, corner),16

• weak segmentation, features are extracted for each locally homogeneous region,19

• strong segmentation (or altas–based), dividing the image into real world objects with prior knowledge.

In the context of content–based medical image retrieval, the variations among patients in terms of organ
size, shape and location renders the localization tasks even more challenging. Moreover, similarity of medical
images is often defined based on the type and extent of the disease as well as age and gender of the patient. The
localizations of the features must be in accordance with the targeted diseases and the anatomy of the diseased
organ. The use of regularly or randomly sampled points is hardly applicable to texture retrieval of the lung
parenchyma as comparing lung tissue at locations that are not dermined by the lung anatomy does not make



sense. The use of keypoint detectors is not adapted for texture analysis as the detectors are based on shape
properties by placing salient points on edges or regions with high gradient values,16 whereas few detectors are
based on texture properties.20

The use of atlases including anatomical knowledge for feature localization is in accordance with the approach
of radiologists with image interpretation. Moreover, ILDs have clearly defined predominances of appearance of
the diseased lung tissue that are typical to each histological diagnosis (see Table 1), which suggests that an atlas–
based localization of the features is appropriate. In,21 low–level features (e.g. shape, size, texture) are extracted
in automatically segmented objects of interest for image retrieval. The objects are learned in a preliminary step.
The system can then be tailored to a specific application (e.g. retrieval of brain lesions in magnetic resonance
imaging (MRI) images). No quantitative evaluation of the system is carried out and the success of the proposed
approach strongly depends on the segmentation performance, related to the complexity of the seeked objects
and thus to the medical application.

Concepts of using an indexed atlas to localize lesions for further CBIR of mammograms are detailed in.22

However the selection of the locations of the lesions within the atlas are manual, which does not enable auto-
matic indexation of large image collections. In,23 altas–based localizations of the endoscope in upper digestive
endoscopy is used for similar case retrieval. However, the retrieval is not based on the numerical content of
images but on standardized descriptions of the studied case carried out by the physician.

Another imaging modality where atlas based localization is required is Positron emission tomography (PET).
CBIR of brain PET images is not possible without using feature localization as most information is contained
in the anatomic location of the activated region. CBIR of multi–dimensional dynamic PET images (3D and
time) of the brain is investigated in.24 The localization of volumes of interests within a standardized 3D anatom-
ical atlas25 is used as an additional feature for retrieval. Unfortunately, neither quantitative analysis of the
retrieval performance nor systematic evaluation of the importance of the localization feature is carried out. In
another study,26 CBIR of neurological PET images based on Gabor wavelets and mean activity levels of specific
anatomical regions is carried out. Again, no quantitative analysis of the retrieval performance is carried out.

1.2.1. Local features for CBIR of HRCT images of the chest

Atlas–based indexation of chest CTs has been little investigated. In,27 similarity searching for chest CT images
based on object features and spatial relation maps. In a first step, the lung lobes and the mediastinium are
segmented using a tailored watershed algorithm. Then, shape–based features are extracted from the mediastinium
region and texture attributes for the lung parenchyma as well as spatial relationships between the lung lobes and
the mediastinium. The system uses a Euclidean distance in the feature space without feature weighting, which
does not allow evaluating the contribution of the localization features in the retrieval performance.

Local versus global characterization of HRCT images for CBIR is invesigated in.9 The ASSERT (Automatic
Search and Selection Engine with Retrieval Tools) system uses low–level features either from hand–drawn regions
in axial slices or from the whole lung. The distance from the centroid of the marked region and the nearest lung
boundary point is also used as an additional feature. The empirical evaluation shows that using localized features
significantly improves performance over using only global features. This study however shows several limitations.
The localization information is only provided by the location of the delineated region and thus does not enable a
systematic regional comparison among cases. Due to the requirement of delineating regions, the system can not
be fully automatic and requires significant amount of work for annotating regions in all image series. At last,
the low–level features are averaged over the whole lung which cannot be relevant information for indexing. For
instance, severely injured lungs containing equal proportions of emphysema and consolidated tissue may have
identical averaged grey–level value over the whole lungs as perfectly healthy lungs.

CBIR based on localized 2D features was reported in.28 However, CBIR based on texture features localized
in a three–dimensional referential has rarely been rarely attempted in the literature, and never to our knowledge
on HRCT images of the chest, where the appearance of the diseased patterns is very important for establishing
the diagnosis of ILDs.29 In a preliminary study,12 we used a Euclidean distance based on the percentages of
automatically segmented volumes of five lung tissue types as inter–case distance for CBIR. The latter showed
feasibility of retrieving similar histological diagnoses based on image content although no localization information
was used for visual indexation. However, to retrieve and show similar images with pathology, appearing at a



particular lung position was not possible. In this work, a 3D referential based on lung anatomy is utilized to
localize features used for CBIR. The hypothesis under inverstigation is to test whether a systematic regional
comparison of the percentages of five lung tissue types enables to learn the typical anatomical distribution of the
lung tissue disorders that are specific to each histological diagnosis as shown in Table 1.

2. MATERIAL AND METHODS

In this section, the methods used for both global and localized content–based retrieval of HRCT images series
with similar histological diagnosis are detailed. In Section 2.1, the database of ILD cases is described. Then, the
various CBIR steps are explained in the following sequential order:

1. semi–automatic segmentation of the lung regions (Section 2.2),

2. blockwise texture classification of the lung parenchyma to generate a 3D map of the lung tissue (Section 2.3),

3. generation of the lung atlas from the lung masks segmented by step 1 (Section 2.4),

4. inter–case distance being either global or local (Section 2.5).

The validation strategy for retrieval performance estimation is described in Section 2.6.

2.1. Dataset

The dataset used is part of a database of ILD cases containing HRCT images with a slice thickness of 1mm and
annotated regions performed by two radiologists at the Universtity Hospitals of Geneva (HUG).30 HRCT image
series of 85 patients are used to evaluate the performance of the proposed approach. The diagnoses of each case
was confirmed either by pathology (biopsy, bronchoalveolar washing) or by a laboratory/specific test. Seven ILD
diagnoses were selected as being frequent and having sufficient number of cases, with a minimum of 3 cases for
COP and 30 cases for PF. The distributions of the 7 ILDs diagnoses as well as marked regions of interest (ROI)
are very unbalanced and representative of the respective prevalences in the Geneva area. Distributions of the
annotated regions and histological diagnoses can be deduced from Tables 4 and 6 respectively.

2.2. Semi–automatic segmentation of lungs

The segmentation of the lung regions is a prerequisite for both texture–based categorization of the lung tissue
and the generation of the lung atlas. Segmentation errors in the lung regions influence all further steps and a
high accuracy is required. Since the geometries and shapes of the lungs are subject to large variations among
cases due to various morphologies and extents of the disease, semi–automatic segmentation based on 3D region
growing and 3D mathematical morphology is carried out with a graphical user interface (see Figure 2). 3D region
growing mimics the propagation of air in lung volumes. The region growing routine is contained in YaDiV∗.
Starting from a seed point s(xs, ys, zs) defined by the user, each 26–connected neighbor is added to the region
Mlung if the summed value of its own neighbors differs by less than a given variance v. Mlung describes the global
lung regions well but contains many holes where the region growing algorithm was stopped by denser regions
such as vessels or consolidations of the lung parenchyma. To fill these holes, a closing operation is applied to
Mlung using a spherical structuring element. Two parameters require attention from the user: the radius r of
the structuring element in millimeters and Nop which defines the number of closing operations.

∗YaDiV: Yet Another DIcom Viewer, http://www.welfenlab.de/en/research/fields of research/yadiv/



2.3. 3D map of categorized lung tissue

The approach for categorizing lung tissue patterns associated with ILDs in HRCT relies on texture analysis. Four
types of lung tissue disorders (i.e. emphysema, ground glass, fibrosis and micronodules) as well as healthy tissue
are most common to the seven ILD diagnoses chosen. Features based on a grey–level histogram in Hounsfield
Units (HU) are used. CT scanners deliver DICOM (Digital Imaging and COmunications in Medicine) images
with pixel values in HU that can be univoquely mapped to the density of the observed tissue. Thus, essential
information is contained directly in the grey–levels. To encode this information, 22 histogram bins binj of grey–
levels in [−1050; 600[ corresponding to the interval of the lung HU values (including pathological) are used as
texture features. An additional feature pixair counts the number of air pixels which have value below −1000 HU.
All lung tissue patterns depict nonfigurative and cellularly organized areas of pixels and have specific texture
signatures. To describe texture properties, statistical measures from a tailored wavelet transform are extracted.
Multiscale analysis using wavelet transforms proved to be adequate for texture analysis31 but requires to control
the three essential affine parameters: translation, scale–progression and directionality. For lung tissue analysis,
it is assumed that lung tissues patterns in transversal slices are translation and rotation–invariant, and isotropic
mother wavelet functions are used. Moreover, a fine and initializable scale–progression is necessary to distinguish
between vessels and micronodules. The quincunx scale–progression is finer than the widely used dyadic one
with a subsampling factor of

√
2 instead of 2 and is used to oversample the wavelet filters in an overcomplete

frame transform, which provides translation invariance. Additional justifications for using the described wavelet
transform for lung tissue categorization can be found in.32

Based on the lung mask Mlung, the lung parenchyma is analyzed in overlappling 32× 32 blocks in 2D axial
slices. The distance between the center of contiguous blocks is set to 4 pixels, which leads to a granularity of
the analysis of 4× 4. For each block, the 22 histogram bins and the number of air pixels pixair are concatenated
into one hybrid feature vector v along with parameters of Gaussian mixture models for each 8 iterations of the
quincunx wavelet frame transform. A support vector machine (SVM) classifier is used to draw boundaries among
the distinct classes of lung tissue represented in the feature space and to assign each block to one of the five lung
tissue types. This step outputs a 3D map of the categorized lung tissue which can be used as a basis for both
global and local–based similar case retrieval.

2.4. 3D anatomical atlas of the lungs

An anatomical atlas of the lung is used as a 3D referential to localize the various lung tissue types. The locations
are chosen according to33 and aim at distinguishing the predominant regions of the 7 ILDs as detailed in Table 1.
The lungs are split perpendicularly to 4 axes. Vertically the lungs are divided into upper lung or apical, middle
lung and lower lung or basal lung. The lungs are divided into anterior and posterior regions based on the
intersection of the coronal and sagittal plane. The axial division results into central lung, intermediate and
peripheral lung region. The regions are depicted in Figure 2. A finer localization of the lung tissue types is
obtained using the intersection of all 10 regions, generating 36 sub–regions as depicted in Figure 1 (b) and (c).
The patient orientations are aligned using the “image orientation” DICOM tag (0020,0037). Peribronchovascular
locations, despite being relevant for several ILDs are not used as these would need more complex segmentation
of the bronchial tree,34 which is not conceivable with the high inter–slice gap imposed in the HRCT protocol.
The next paragraphs describe the rules used to split the lungs perpendicularly to the four axes.

⊥ coronal and sagittal The center of mass c0(x0, y0, z0) of Mlung is used as reference point to split the lungs.
The left and right regions are defined as being all points of Mlung with x ≤ x0 and x > x0 respectively. Similarly,
the anterior and posterior regions are defined as being all points of Mlung with y ≤ y0 and y > y0.

⊥ vertical The apical, central and basal regions are defined as z < zmax/3, zmax/3 ≤ z ≤ 2zmax/3 and
z > 2zmax/3 respectively.



(a) (b) (c)

Figure 1. (a): definition of the peripheral region. (b) and (c): the 36 sub–regions resulting from the intersections of the
10 initial regions are used as the 3D localization system.

⊥ axial The division of Mlung into peripheral, middle and central regions is performed as follows:

1. the projection of c0 is reported in each axial slice as c0,axial(x0, y0, z),

2. peripheral region is defined as all points of Mlung that are between a lung boundary and c0,axial, and that
are less distant from the lung boundary than a distance dp (see Figure 1 (a)). dp is arbitrarily chosen as
the width of one single lung divided by 5.5 at a c0 level to have aproximately same widths for the three
axial sub–regions,

(a) a 3D closing operation is applied using a spherical structural element with a radius of 5mm.

3. step 2 is repeated to the remaining voxels of Mlung to obtain the middle region,

4. the remaining voxels of Mlung are constituting the central region.

2.5. Global and local inter–case distances

Both inter–case distance measures are based on the percentages of each of the five lung tissue types. The global
distance dglobal is defined as the l2–Euclidean distance in the space of the differences δ of percentages of the
tissue types:

dglobal =
√

δ2h + δ2e + δ2g + δ2f + δ2m, (1)

where h stands for healthy, e for emphysema, g for ground glass, f for fibrosis and m for micronodules.

The inter–case distance is obtained by pairwise comparison of tissue distributions for the 36 sub–regions r:

dlocal =

36
∑

r=1

wr

√

δ2hr
+ δ2er + δ2gr + δ2fr + δ2mr

, (2)

where wr are weights of each sub–region.

2.5.1. Optimization of the regional weights for the local inter–case distance

Obviously, not all anatomical locations are relevant for the characterization of the histological diagnoses. In order
to promote the most important regions, the weights wr in (2) are optimized using an exhaustive grid search in
[0 : 50] per axis. Due to computational constraints, a global grid search requiring to run the whole experiment
3650 times is not conceivable. Thus, the optimization is carried out per axis, where the regions are compared
between each other per axis. For instance, in the vertical axis the retrieval performance is evaluated for each
combination of three weights:

dlocal = wapicaldapical + wcentraldcentral + wbasaldbasal. (3)

After obtaining optimal weights for each of the ten regions, the weight assigned to each of the 36 sub–regions
is computed as the sum of normalized weights of each region from which it belongs. For instance, the region
apical peripheral anterior left obtains the weight w = w̃apicalbest + w̃peripheralbest + w̃anteriorbest + w̃leftbest , where
(˜) denotes the per–axis normalization.



Table 2. Localization of the lung masks. The lung is split perpendicularly to 4 axes.

⊥ coronal ⊥ sagittal ⊥ vertical ⊥ axial

left, right anterior, posterior apical, central, basal peripheral, middle, central

2.6. Experimental setup

The validation scheme for evaluating the retrieval performance is described in this section. In order to mimic a
clinical use of the retrieval system, a leave–one–patient–out (LOPO) cross–validation (CV) is used, which enables
assessing the retrieval performance obtained with a query case which is completely unknown from the system.
The LOPO CV scheme is used to evaluate both lung tissue categorization and retrieval performance. For each
query case, the lung tissue is fully classified using a classifier trained with all remaining cases. Then, the retrieval
system returns the most similar cases based on either (1) or (2) from the remaining 84 cases.

3. RESULTS

The results obtained with each step of the retrieval system are presented in this section. Interpretations of the
results and associated discussions can be found in Section 4.

3.1. Lung tissue categorization

The correctness of the lung tissue categorization is verified on a voxel–basis using the ground truth provided
by the radiologists. The confusion matrix of the various tissue types is detailed in Table 3 and the associated
classification performance in Table 4. An example of the lung tissue categorization is shown in Figure 2 (b).

3.2. Lung regions and 3D atlas

An example of the semi–automatic segmentation of the lung regions is depicted in Figure 2 (a). Our experience
with the segmentation of 85 lung volumes is that the 3D region growing associated with closing allows an almost
fully–automatic segmentation. The average time required to obtain a satisfactory lung mask varied from 30
seconds to 10 minutes, with a mean time of 4 minutes, leading to a total time of 5 hours 30 minutes for obtaining



Table 3. Confusion matrix of the lung tissue categorization in % obtained with the LOPO CV.

healthy emphysema ground glass fibrosis micronodules

healthy 79 7.8 6.5 7.3 5.9

emphysema 4.4 69.2 3.9 15.8 6.7

ground glass 9.4 1.7 59.3 22.9 6.7

fibrosis 4.6 3.4 9.2 80.5 2

micronodules 9.9 2.6 3.9 13.5 70.2

Table 4. Performance measures in % associated with Table 3. Nvox and Ncases denote the number of voxels and cases
used for evaluation. Global geometric and arithmetic mean accuracies of 88.5% and 71.6% are achieved respectively.

recall precision F–measure accuracy Nvox Ncases

healthy 79 49.6 61 90.7 441’472 5

emphysema 69.2 49.7 57.8 95.7 204’536 5

ground glass 59.3 67.8 63.3 88.3 813’689 23

fibrosis 80.5 64.6 71.7 84.5 1’162’803 30

micronodules 70.2 92.8 79.9 84.1 2’157’766 14

the 85 lung masks. Manual corrections are required when the closing operation cannot fill large regions of
consolidated tissue. Given that the 3D region growing mimics the propagation of air in the lung volumes, the
trachea is naturally included in Mlung.

3.3. Case–based retrieval

The optimal weights wr obtained with the optimization strategy described in Section 2.5.1 using various targeted
performance measures are shown in Table 5. The retrieval performance using dglobal and dlocal with weights
favoring either mean P@1 or mean P@Nr are detailed in Table 6. The performance obtained using a global
Euclidean distance with each percentages of lung tissue type in each region (36× 5 dimensions) were lower than

(a)

(b)

Figure 2. (a): segmentation of the lung volumes using YaDiV. A closing tab was added to YaDiV to perform a closing
operation after the region growing. (b): an example of the color–coded lung tissue categorization. Colors are attributed
as follows: green for healthy, blue for emphysema, yellow for ground glass, red for fibrosis and pink for micronodules.



Table 5. Weights wr obtained with the optimization strategy described in Section 2.5.1. Numbers in bold are where a
medical signification was found (more details in Section 4.3). The weights obtained when targeting performance measures
of PCP, AIP and COP are not shown as being in most cases equal to 0 as discussed.

vertical axial sagittal lateral

histological
diagnosis

targeted
performance

apical central basal peripheral middle central anterior posterior left right

P@1 0 1 4 1 0 1 7 4 2 3
PF

P@(Nr = 30) 0 14 9 1 0 0 3 38 16 1

P@1 0 1 0 0 0 1 0 1 0 1
TB

P@(Nr = 12) 7 4 2 6 1 1 1 3 0 1

P@1 0 3 2 0 1 1 4 1 1 0
HP

P@(Nr = 16) 1 10 0 6 1 4 0 1 6 1

P@1 10 9 6 0 3 4 1 0 1 3
SA

P@(Nr = 16) 3 4 0 3 1 13 1 0 1 3

P@1 0 4 15 3 0 4 5 1 12 19global mean
(case–based) P@Nr 8 11 25 16 0 1 41 3 11 13.5

Table 6. Retrieval performance with the LOPO CV for dglobal and dlocal using weights favoring either P@1 or P@Nr.
Bold numbers show best performance.

dglobal as defined in (1)
dlocal as defined in (2),

with weights favoring P@1
dlocal as defined in (2),

with weights favoring P@Nr

histological
diagnosis

cases P@1 P@5 P@10 P@Nr P@1 P@5 P@10 P@Nr P@1 P@5 P@10 P@Nr

PF 30 50 50 48 40.9 63.3 39.3 35 31.7 56.7 42.7 35 35.7

TB 12 33.3 31.7 22.5 21.5 33.3 21.7 25 23.6 33.3 11.7 21.7 22.7

PCP 4 0 10 5 12.5 25 10 5 12.5 25 15 7.5 18.7

HP 16 43.7 26.2 21.9 21.1 37.5 20 19.4 20.3 25 22.5 20.6 21.1

AIP 4 0 0 0 0 0 0 2.5 0 0 0 2.5 0

COP 3 0 6.7 6.7 11.1 66.7 13.3 6.7 22.2 66.7 13.3 6.7 22.2

SA 16 31.2 28.7 25.6 24.6 62.5 43.7 39.4 31.6 56.2 38.7 38.1 31.2

mean
(case–based)

85 36.5 33.2 29.5 27.1 49.4 29.8 27.5 25.7 43.5 29.4 27.2 27.3

mean
(class–based)

85 24.4 23.3 19.9 19.8 42.2 22.2 20.1 21 38.3 21.7 19.9 22.4

the ones with the weighting scheme, which was also the case when using equivalent weight for each region (e.g.
wr = 1∀r in Eq. (2)).

4. INTERPRETATION

The results presented in Section 3 were obtained with the various steps of the retrieval system described in
Section 2 and are interpreted here.



4.1. Lung segmentation and 3D atlas

The trachea is included in Mlung in most cases, which may bias the volume percentages of the five patterns in
Eq. (1) and (2). The trachea is classified either as emphysema because it contains air, or as fibrosis which also
contains air bubbles and is a class favored by the SVM because it has a high number of instances. The construction
of the 3D atlas from Mlung was in general successful, although no quantitative evaluation is carried out due to a
lack of ground truth. Minor problems were observed with the separation of the left and right regions when the
right and the left lung were naturally overlapping. A quality control was carried out, and although no pixelwise
manual corrections were added, some regions (e.g. left/right, anterior/posterior and apical/central/basal) were
inverted due to errors in the “image orientation” DICOM tag.

4.2. Lung tissue classification

The 5–class lung tissue classification reaches a geometric mean of 88.5%, which suggests that the 3D map of
categorized lung tissue provides an appropriate estimation of both spatial and cardinal distribution of the diseases
to be used for case–based retrieval. Ground glass has the weakest recall of 59.3, and is mixed 22.9 times over
100 with fibrosis. This recurrent mistake can be partly explained by the available ground truth: fibrosis patterns
always contain a small percentage of ground glass, due to the redistribution of the perfusion which has been
annotated as fibrosis and thus introduces noise in the training examples. Fibrosis and micronodules have a
high number of false positives due to their dominant representation in the dataset as SVMs tends to favor large
classes to maximize global accuracy. Some classification errors appear close to the lung boundary where wavelet
coefficients from large scales are influenced by the lung borders.

4.3. Case–based retrieval

The optimal weights found for diagnoses PCP, AIP and COP are most often close to zero. The latter diagnoses
are containing a small number of cases (4, 4 and 3 respectively), suggesting that not enough data is available
to have a representative distribution of the abnormal tissue specific to these diagnoses. After analysis of the
optimal weights obtained for the diagnoses in Table 5, justifications could be found for several observations that
are consistent with prior medical knowledge detailed in Table 1 and in Section 1.1.

• Pulmonary fibrosis High weights obtained for central, basal, peripheral and posterior regions all are in
accordance with medical knowledge. According to,13 idiopathic PF is known to have peripheral, basal and
sub–pleural predominance in 70% of the cases. Honeycombing HRCT finding is also predominant in the
lower lung and posterior zone.

• Tuberculosis Apical regions are promoted by the weighting scheme, which is in accordance with the fact
that many cases of cavitary TB, pleural abnormalities represent the sequela of underlaying parenchymal
disease and are apical in location. In addition, micronodules that are characteristic to the miliary TB are
easier to detect in the peripheral region due to smaller and less visible bronchovascular structures.

• Sarcoidosis Upper parts of the lungs are favored by the weighting scheme and is consistent with the expected
distribution of micronodules with SA that is peribronchovascular in the central lung and upper lobes.

For all diagnoses, peripheral and basal regions are promoted by the system, which is indeed the siege of several
histological diagnoses of ILDs. It can be observed in Table 6 that the weighting scheme enables to tune the
system to favor a given disease at a given performance measure.

When compared to global inter–case distance dglobal, region–based retrieval using dlocal clearly improves early
precision (P@1) as it can be observed in Table 6. Localized comparisons of the tissue percentages with dlocal
have not the same effect on all diagnoses. It is obvious that dlocal globally improves retrieval performance for
diagnoses SA, PCP and COP. However, only early precision is improved for PF, whereas the dglobal enables better
retrieval when looking at the precision after N > 3 results. For HP, global–based retrieval performs better than
local, which can be explained by the fact that the disease has a patchy but diffuse (non–localized) distribution
within the lung. No clear trend can be deduced for TB. In order to benefit from both approaches, a fusion of
dglobal and dlocal may help to use localization only for the diseases having a characteristic predominance. Beyond



improving the quantitative evaluation of the early retrieval performance, we believe that local retrieval improves
the quality of the retrieved cases in terms of visual similarity.

It worth noting that no LOPO CV is used to choose the regional weights wr, which may introduce a risk of
overfitting the data and slightly bias the retrieval performance in Table 6. A risk of inducing false alarms to the
radiologists is also present as no control cases are contained in the database and the retrieval system can only
retrieve positive cases. When interpreting performances in Table 6, it is also important to keep in mind that the
link between visual similarity of two HRCT scans and their associated diagnoses is not straightforward. Finally,
a system showing cases that are visually similar but with distinct diagnoses prevents the reader from mixing
diagnoses with similar radiological findings, which is difficult to assess with the quantitative evaluation.

5. CONCLUSIONS

The CBIR approach proposed in this work provides complementary information, from past cases with confirmed
diagnoses, to lung tissue classification and quantification in HRCT. The system exploits the locations of the
pathological lung tissue and allows significant improvement in terms of early retrieval precision when compared
to the approach based on global features only. The distribution of the optimal regional weights is in accordance
with medical knowledge. The weighting scheme allows to tune the system by optimizing the retrieval performance
of a given diagnosis at a given performance measure (e.g. P@1, P@10). The limited performance observed for
some of the diagnoses can partially be explained by the fact that the link between visual similarity of two
HRCT scans and their associated diagnoses is not straightforward. The system provides an objective inter–case
similarity measure enabling advanced browsing in large collections of cases.
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