
Pervasive Healthcare using Self-Healing Agent
Environments

Stefano Bromuri, Michael Ignaz Schumacher, Kostas Stathis

Abstract Pervasive healthcare systems (PHSs) are required to be constantly avail-
able to the patients accessing them. To address this issue, in this paper we present an
agent-based PHS that self-heals one or more of its parts when a service disruption
happens. We propose a multi-agent system (MAS) approach that utilises coordina-
tion, planning and the notion of agent environment to create a distributed system
capable to heal itself even if 50% of the system is not functioning due to external
causes.

Key words: Multi-Agent Systems, Self-Healing, Planning, Pervasive Healthcare.

1 Introduction

Pervasive Healthcare [12] focuses on bringing healthcare everywhere, breaking the
boundaries of hospital healthcare. In [12] Varshney defines Pervasive Healthcare
Systems (PHSs) as complex systems where multiple components interact to allow
large scale monitoring of physiological data of heterogeneous patients. Two main
limitations affect existing PHSs: (a) failures of the distributed system are never taken
into consideration and (b) the system topology is statically defined. Consequently,
PHSs need fault tolerance mechanisms as system downtimes may be dangerous for
patients relying on them. Space-based redundancy [5], a practice that improves the
resilience of an infrastructure by replicating components, should be avoided as it is
an expensive practice for distributed systems like PHSs. In this paper we address

Stefano Bromuri, Michael Ignaz Schumacher
Business Information Systems, University of Applied Sciences Western Switzerland, TechnoArk
3, CH-3950, Sierre, Switzerland e-mail: {stefano.bromuri,michael.schumacher}@hevs.ch

Kostas Stathis
Department of Computer Science, Royal Holloway University of London, Egham Hill, EGHAM,
TW20 0EX, e-mail: kostas.stathis@rhul.ac.uk



PHSs fault tolerance via the self-healing paradigm [7] that focuses on time-based
redundancy [5], which, instead of replicating components, replicates components
behaviours to ensure that if a component fails an existing component can substi-
tute it. Mikic-Rakic et al. in [9] identified the following properties as necessary for
self-healing systems: adaptability, dynamicity, awareness, observability, autonomy,
robustness, distributability, mobility and traceability.

Multi agent systems (MASs) [15] represent a valid abstraction to model such sys-
tems and fulfil the self-healing paradigm requirements. In particular, the adoption
of MASs facilitates the transition from a centralised computing model to a decen-
tralised one where thousands of autonomous agents interact to achieve a common
goal. Moreover, the concept of agent environment [14] has been accepted as a useful
abstraction to mediate the interaction between agents and to model how the agents
perceive resources and interfaces that they utilise in their interaction.

In [1] we proposed a PHS based on a distributed agent environment built on the
GOLEM1 platform [2], to support intelligent agents monitoring patients affected
by diabetes. In this system we mapped the agent environment represented as a dis-
tributed rectangular grid to a real environment representing a city. In this paper we
extend such a PHS by defining a novel coordination and planning algorithm that
agents use to detect faults and recover the system functionalities. The contributions
of this paper are: a) we introduce a practical approach based on agents to handle
fault tolerance in PHSs; b) we split responsibilities between the agents and the agent
environment thus simplifying the behaviour of the agents to fulfil the requirements
of self-healing systems; c) we illustrate how a compact declarative specification for
the agents behaviour can deal with multiple failures of the agent environment in
parallel.

The rest of this paper is structured as follows: Section 2 describes the self-healing
system we developed in terms of its main components; Section 3 evaluates our ap-
proach and discusses relevant related work; finally Section 4 concludes this paper
and presents future directions.

2 Extending GOLEM with Self-Healing Procedures

In this paper we extend the PHS presented in [1] with self-healing procedures. The
system presented in [1] is based on the GOLEM agent platform [2] whose main
abstractions are agents, cognitive entities, objects, reactive entities available to the
agents as resources, and containers, declaratively programmed distributed spaces
where agents and objects are situated, defining a distributed agent environment. Fig.
1 shows the conceptual architecture of our extended system in relationship to its
distributed topology.
We introduced an infrastructure agent in the containers of the distributed agent en-
vironment and mediation rules to mediate the messages exchanged by the agents, to

1 GOLEM stands for Generalised Onto-Logical Environments for Multi-Agent Systems.



Fig. 1 Division in Containers of PHSs(on the left) and System Logic Architecture (on the right).

propagate the events produced by the infrastructure agents and to modify the agent
environment topology when a disruption takes place. The infrastructure agents use
the containers interfaces to perceive topological changes and cover for dead neigh-
bours, while the rules take care of modifying the known neighbourhood by updating
the neighbourhood registries. Every GOLEM container in this setting is connected
with a neighbourhood and every container shares the same architecture with the
neighbour containers, following the pattern of time-based redundancy. The ratio-
nale is a system that fulfils the requirements of self-healing systems: our system
adapts to changes in the topology, it is observable as we use a declarative approach
to describe our entities, it is autonomous and aware as we use planning agents to
deal with the failures by coordinating in a distributed environment.

2.1 The Containers Behaviour

We specify the observable state of the GOLEM entities and of events as C-logic
structures. C-logic [3] is a convenient formalism to express complex structures as
logical objects, and it has a direct translation to the Ambient Event Calculus [2]
(AEC), a formalism that handles the evolution in time of logical objects by means
of events in distributed settings. In our GOLEM-based PHS, we express the state of
a container by means of the following C-logic structure and AEC translation:

container:c1[position⇒{Latitude,Longitude},side⇒50,state⇒up,neighbours⇒{container:c2,container:c3}]
⇓

happens(ev1,0). instance(c1, container,start(ev1)). object(c1,side,50,start(ev1)).
object(c1,position, Latitude,start(ev1)). object(c1,position, Longitude,start(ev1)).
object(c1,state,up,start(ev1)). object(c1, neighbour, c2,start(ev1)). object(c1, neighbour, c3,start(ev1)).



which means that a container represents a real world location in terms of latitude
Latitude and longitude Longitude, its state is up, it covers a square that has a side
of 50 meters and it has two neighbours c2 and c3. GOLEM containers are pro-
grammed declaratively, using the AEC formalism. Through happens/2 predicates
(the 2 represents the predicate arity) we specify how events take place in the AEC:
R1) happens(ack:Event [receiver⇒ Container], T)←

happens(Event[actor⇒ Agent, receivers⇒ Containers, known neighbours⇒ NeighbourList], T),
member(Container, Containers), holds at(Container, neighbour, this, T).

R2) happens(inform:Event[receiver⇒ Container], T)←
happens(Event[actor⇒ Agent, receivers⇒SubList, cover⇒CBroken, randomvalue⇒ Diceroll], T),
holds at(this, neighbourhood list, List, T), subset(List, SubList),
member(Container, SubList), holds at(Container, neighbour, CBroken,T).

where the happens/2 is an AEC predicate stating that an event has happened in a
container of the agent environment and holds at/4 is an AEC predicate, that pro-
vides an attribute value given an entity identifier (in this case this represents the cur-
rent container), the attribute name (in this case neighbourhood list) and the time.
R1 mediates an ack event produced by an agent during the PHS normal behaviour
and it states that whenever such an event happens, then this also happens in the
containers within the Containers list. The happens/2 has the function of replicat-
ing in the neighbourhood of a container an event happened locally through another
happens/2. Inside the ack message, there is also the known neighbour containers
list at a given time, so that every agent in the distributed topology can have knowl-
edge of the neighbours of their direct neighbours. This is similar to the successor
list of the CHORD P2P algorithm [10], where given a successors list of length r,
and a disruption probability p for a single node, then the CHORD ring disruption
probability is pr, meaning that the ring resilience can be improved by increasing the
successors list length. In our case, the probability that the PHSs cannot restore the
area covered by a node is p8, when keeping a list of neighbours of neighbours in a
grid like topology, where if needed the resiliency of our PHS can be improved by
increasing the neighbourhood knowledge.

R2 mediates disruptions happening in the distributed settings. Once an agent fails
to send an ack events to a neighbour container that is down due to external causes,
the agent sends an inform event to all the containers that have a neighbouring rela-
tionship with the unresponsive container and it starts the healing procedure that we
will discuss later. Additional predicates have been defined to update the neighbours
list when a communication fails and when a neighbour is substituted by another
container. For the moment, the tasks of joining a network and redeploying a failed
container are handled by a human actor. We will address these issues in future work.

2.2 The Infrastructure Agents

A GOLEM agent consists of a declarative module embedded in an agent body,
which is situated in a container to perceive the events happening in it. The infrastruc-
ture agent cognitive model is based on two cycles, one to process the events sensed



by the body and one to plan and act in the environment. The pseudo code for the two
agent mind cycles is reported here (CSP stands for Conditional-STRIPS-Planner, an
extension of the STRIP planner [4] to handle conditional plans):

procedure ACTING-Cycle(time)
static:KB, a knowledge base; ACTION-QUEUE, a queue of actions accessible by the agent body;

p1, p2 . . . pk ,where∀pi, pi ∈ Plans⊂ KB, a set of plans;
currentstate← STATE-DESCRIPTION(KB,time); goal ← NEXT-GOAL(currentstate,time);
if @pi|pi.goal = goal then pk ← CSP(currentstate,goal); ADD(Plans, pk);

pexec ← NEXT-EXECUTABLE-PLAN(Plans,time),

if(pexec = nil) then NOW(timenew); ACTING-Cycle(timenew);
else currentact = pexec.nextact,

if(CONDITIONAL?(currentact)) then
if(CHECK-KB(KB,IF-PART[currentact]))

then pexec ← THEN-PART[currentact]; ADD(Plans, pexec); NOW(tnew); ACTING-Cycle(tnew);
else pexec ← ELSE-PART[currentact]; ADD(Plans, pexec); NOW(tnew); ACTING-Cycle(tnew);

else ADD-ACTION(ACTION-QUEUE, currentaction); NOW(tnew); ACTING-Cycle(tnew);

procedure PERCEPTION-Cycle(time)
static:KB; PERCEPTION-QUEUE; p1, p2 . . . pkwhere∀pi, pi ∈ Plans⊂ KB;
percept← NEXT-PERCEPT(PERCEPTION-QUEUE, time);
UPDATE-KB(KB, percept, time); NOW(timenew), PERCEPTION-Cycle(timenew)

The PERCEPTION-Cycle/1 reads the PERCEPTION-QUEUE for percepts
coming from the environment. Such percepts are used to update the knowledge base
KB about the state of the containers that are known in the agent environment. A plan
is represented in the agent mind as a C-logic object. For example, the following plan
expressed in AEC:

plan:p1[goal⇒ cover:g1[container⇒ c2], diceroll⇒ 3000,next action⇒ ac1, delay action⇒ 0,
sequence⇒ {inform:ev4[cover⇒ c2, diceroll⇒ 3000],wait:ev5[delay⇒ 6], if then else:if1 }].

if then else:if1[if⇒ check winner(ag1,p1,3000),
then⇒ { modify topology:ev6[cover⇒ c2], end plan:ev8 }, else⇒ { end plan:ev9 } ]

check winner(A,P, Diceroll)← now(Time),
not (holds at(P,competitor, Comp,Time),holds at(Comp, diceroll, Diceroll∗,Time), Diceroll∗ >Diceroll).

specifies a plan p1, with a goal g1 to cover for a container c2. In this plan the ac-
tions performed are: an inform event ev4, then a wait ev5 action with a 6 seconds
delay, to attend for messages incoming from other agents. These actions are pushed
by the ACTING-Cycle/1 in the ACTION-QUEUE/2 of the agent body, that pro-
duces them in the container, which then mediates the actions according to the rules
previously defined. The inform event is sent to the neighbourhood of the dead con-
tainer. Inside this event there is a random value diceroll that is used by the agents to
compete for the coverage of a container (in this case c2). After waiting for the delay,
the planner finds an if1 object as the next action to perform. This is a C-logic object
representing an if-then-else structure, handled by the CONDITIONAL?/1 predi-
cate in the planner, that checks for the if condition check winner/3 in the if-then-
else structure. The planner then executes either the then sequence of actions or the
else sequence of actions according to the result of the check winner/3 condition.
If agent ag1 is the competition winner, it covers for the dead container and ends
the plan, otherwise the plan is destroyed. Furthermore the NEXT-EXECUTABLE-
PLAN/2 predicate distinguishes between plans that have been frozen due to the



introduction of a delay, and plans whose execution can continue, allowing for plans
with different goals to be executed in parallel. Despite the communication taking
place between the agents, two or more containers may end up covering the same
area. When the inconsistency is perceived, the interested agents start a resolution
protocol similar to the one to cover for a dead neighbour. High level planning agents
have the advantage of a compact definition of the agent mind as plans are structures
that can be instantiated and destroyed according to the interaction state, while reac-
tive agents would require a low level verbose agent mind, that is difficult to debug
in distributed settings.

3 Evaluation and Related Work

To evaluate our system we deployed a 10x10 grid of self-healing GOLEM contain-
ers in a dual core Intel Centrino 2, 2.66 Ghz with 3Gb of RAM.

Fig. 2 Performance Evaluation of a 10x10 Pervasive Agent Environment

A PHS should be distributed on a grid and deploying it on a single host gives only
a partial view of the real performances of the system. In real settings we foresee that
some of the containers will require more resources when representing hot spots (i.e.
super markets or hospitals), while unpopulated areas will require less resources.
This is a matter of future work, but we recognise the need to study the system in
real settings. Still, this evaluation offers important insights about the system perfor-
mances. As evaluated by Urovi et al. in [11], a GOLEM container can support up
to 50 users, meaning that a 100 containers grid, as in this evaluation, supports up to
4000-5000 users. This is a meaningful scale for a real system deployed in medium
sized cities where the number of patients needing constant monitoring is on the or-
der of hundreds. We took an average of 10 samples for each of the two curves in
Fig. 2, that evaluate respectively the number of messages to recover from failures
with an increasing number of containers and the total downtime with respect to the
number of dead containers. These are two critical parameters: if too many messages



are exchanged this can impact the PHS performances, and if there are long down-
times, emergencies may happen when the system is unavailable. When producing
the curves in Fig. 2 we made these assumptions: a) since the system is deployed in
a single host, the delays of a real network are not taken into consideration b) we as-
sumed that the containers die all at the same time, that is a pessimistic assumption,
as the probability of this happening is very low; c) the system presents failures after
every container had time to learn about its neighbours.

The first part of Fig. 2 has a logarithmic behaviour because the more nodes in a
neighbourhood die, the less nodes take part to the competition for covering a dead
node, producing less messages. Consequently, the second part of Fig. 2 behaves
like a quadratic curve as the alive infrastructure agents have to execute more plans
to cover a bigger area. Finally, the introduction of parallel plans helps agents to
minimise the downtime as whenever a dead neighbour is detected, a new plan is
instantiated to cover it. Also, introducing agent communication, mediated by the
agent environment, allows to minimise a) the number of messages exchanged in the
environment b) the uncontrolled growth of the area controlled by a container and c)
the conflicts arising in the healing protocol.

Self-healing is a important topic within the distributed system community. Mikic-
Rakic et al. in [9] propose the PRISM model for self-healing and fault tolerance.
Such a model has a set of components connected by means of communication ports
that exchange synchronous and asynchronous events and that rely on metal-level
components for the self-healing procedures. With respect to PRISM, the infrastruc-
ture agents are meta-level components communicating and sharing knowledge about
the topology of the distributed system. From the stand point of self-healing systems,
in [6] Selvin et al. and Kondacs in [8], propose to utilise a bio-inspired approach
to rebuild geometric shapes. These works demonstrate that using nature inspired
models allows to have a very resilient service capable of self-healing 99% of its
components. Our approach is similar to the one proposed in [8] and [6] except that
we have further constraints on the number of messages exchanged and on the re-
covery time. Another contribution that uses agents is the one of Haesevoets et al. in
[13], where the MACODO system defines laws in the agent environment to handle
the consistency of the agent roles. As in [13], we separate the concerns of handling
self-adaptation between the agent environment and the agents by means of cognitive
agents dealing with the changes of the environment.

4 Conclusion and Future Works

In this paper we presented a pervasive healthcare system where agents reorganise
the agent environment to self-heal from a fault of one or more of the containers com-
posing it. We utilise planning agents that can reason in parallel about multiple faults
and that produce plans and interact to cover for missing containers in the environ-
ment. The novelty of the approach resides in using planning agents combined with
a complex declarative agent environment that simplifies the interaction between the



agents controlling the distributed system. We evaluated the system downtime and
the number of message exchanged to recover from a growing number of dead con-
tainers, discovering that the system scales up and it can recover in useful time even
when more than 50% of the system is down. Future works include deploying the
system in real setting and testing it with real users as well as extending the algo-
rithm to define the topology of the environment dynamically at deployment time.
Another interesting issue for future work is how to deal with patients roaming in a
distributed network that is self-healing from a disruption.

References

1. S. Bromuri, M. I. Schumacher, and K. Stathis. Towards distributed agent environments for per-
vasive healthcare. In Proceedings of the Eighth German Conference on Multi Agents System
Technologies (MATES ’10), 2010.

2. S. Bromuri and K. Stathis. Distributed Agent Environments in the Ambient Event Calculus.
In DEBS ’09: Proceedings of the third international conference on Distributed event-based
systems, New York, NY, USA, 2009. ACM.

3. W. Chen and D. S. Warren. C-logic of Complex Objects. In PODS ’89: Proceedings of the
eighth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pages
369–378, New York, NY, USA, 1989. ACM Press.

4. R. Fikes and N. J. Nilsson. STRIPS: A New Approach to the Application of Theorem Proving
to Problem Solving. In IJCAI, pages 608–620, 1971.

5. F. C. Gärtner. Fundamentals of fault-tolerant distributed computing in asynchronous environ-
ments. ACM Comput. Surv., 31:1–26, March 1999.

6. S. George, D. Evans, and L. Davidson. A biologically inspired programming model for self-
healing systems. In WOSS ’02: Proceedings of the first workshop on Self-healing systems,
pages 102–104, New York, NY, USA, 2002. ACM.

7. D. Ghosh, R. Sharman, H. R. Rao, and S. Upadhyaya. Self-healing systems – survey and
synthesis. Decision Support Systems, 42(4):2164–2185, 2007. Decision Support Systems in
Emerging Economies.

8. A. Kondacs. Biologically-inspired self-assembly of two-dimensional shapes using global-to-
local compilation. In IJCAI’03: Proceedings of the 18th international joint conference on
Artificial intelligence, pages 633–638, San Francisco, CA, USA, 2003. Morgan Kaufmann
Publishers Inc.

9. M. Mikic-Rakic, N. Mehta, and N. Medvidovic. Architectural style requirements for self-
healing systems. In Proceedings of the first workshop on Self-healing systems, WOSS ’02,
pages 49–54, 2002.

10. I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Balakr-
ishnan. Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM
Trans. Netw., 11:17–32, February 2003.

11. V. Urovi, S. Bromuri, K. Stathis, and A. Artikis. Towards runtime support for norm-governed
multi-agent systems. In F. Lin, U. Sattler, and M. Truszczynski, editors, KR. AAAI Press,
2010.

12. U. Varshney. Pervasive Healthcare Computing: EMR/EHR, Wireless and Health Monitoring.
Springer Publishing Company, Incorporated, 2009.

13. D. Weyns, R. Haesevoets, A. Helleboogh, T. Holvoet, and W. Joosen. The macodo middle-
ware for context-driven dynamic agent organzations. ACM Transactions on Autonomous and
Adaptive Systems, 5(1):3.1–3.29, February 2010.

14. D. Weyns, A. Omicini, and J. Odell. Environment as a first class abstraction in multiagent
systems. Autonomous Agents and Multi-Agent Systems, 14(1):5–30, 2007.

15. M. Wooldridge. MultiAgent Systems. John Wiley and Sons, 2002.


