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Abstract. In this paper, a computer–aided diagnosis (CAD) system
that retrieves similar cases affected with an interstitial lung disease (ILDs)
to assist the radiologist in the diagnosis workup is presented and eval-
uated. The multimodal inter–case distance measure is based on a set
of clinical parameters as well as automatically segmented 3–dimensional
regions of lung tissue in high–resolution computed tomography (HRCT)
of the chest. A global accuracy of 75.1% of correct matching among five
classes of lung tissues as well as a mean average retrieval precision at rank
1 of 71% show that automated lung tissue categorization in HRCT data
is complementary to case–based retrieval both from the user’s viewpoint
and also on the algorithmic side.

1 Introduction

Interstitial lung diseases (ILDs) can be characterized by the gradual alteration of
the lung parenchyma leading to breathing dysfunction. They regroup more than
150 disorders of the lung parenchyma. The factors and mechanisms of the disease
processes vary from one disease to another. The diagnosis of these pathologies
is established based on the complete history of the patient, a physical examina-
tion, laboratory tests, pulmonary function testing as well as visual findings on
chest X–ray. When the synthesis of this information arouses suspicions toward an
ILD, high–resolution computer tomography (HRCT) imaging of the chest is of-
ten required to acquire a rapid and accurate visual assessment of the lung tissue.
Compared to the radiograph, the tomographic image acquisition process avoids
the superposition of the lung tissue with the ribs and other organs leading to
three–dimensional images of the lung volumes. Nevertheless, the interpretation
of HRCT is often challenging with numerous differential diagnoses and it is cur-
rently reserved to experienced radiologists [1]. A correct interpretation requires
an advanced knowledge of the lung anatomy and the alterations of the inter-
stitial tissues have wide intra and inter–disease variations. Moreover, the large
number of slices contained in an HRCT image series makes the interpretation
task time–consuming and subject to missing relevant lung tissue patterns.

Recent advances in medical informatics enabled access to most of the ra-
diological exams to all clinicians through the electronic health record (EHR)



and the picture archival and communication system (PACS). This change of the
medical workflow calls upon computer expert systems able to bring the right in-
formation to the right people at the right time. Interpreting HRCT of the chest
is no exception to this and has been an active research domain during the last
decade [2–5]. Most of the proposed systems aim at categorizing lung tissue to
provide a second opinion to radiologists. This provides a quick and exhaustive
scan of the large number of images and can draw the radiologist’s attention on
diagnostically useful parts of the images. To be useful in clinical practice such
systems have to be able to detect a sufficient number of types of lung tissue [6].
Several studies obtained recognition rates of up to 90% correct matches [7] but
usually while training and testing the classifier with images belonging to the
same patients, which introduces a large bias compared to a real–world clinical
usage with unknown incoming images [8].

In the context of medical image analysis, providing quick and precious in-
formation to the clinician is not limited to automatic recognition of abnormal
tissue and/or structure. The approach of the clinician to a diagnosis if he has
little experience of the domain is to compare the image under investigation with
typical cases with confirmed diagnosis listed in textbooks or contained in per-
sonal collections. It allows to rule out diagnostics and, in association with clinical
parameters, prevents the reader from mixing diagnoses with similar radiological
findings. This process allows the clinician to partly replace a lack of experience
but has two major drawbacks: searching for similar images is time–consuming
and the notion of similarity may be subjective and can be ambiguous [9].

Content–based medical image retrieval (CBIR) aims at finding objectively
visually similar images in large standardized image collections such as PACS [10].
For instance, the Radiology Department of the University Hospitals of Geneva
(HUG) alone produced more than 80,000 images a day in 2008, representing
retrospectively a potentially large repository of knowledge and experience as
images are all associated with one or several diagnosis. The notion of similarity
is usually established from a set of visual features describing the content of
the images. Features can vary from low–level measures such as the histogram
quantification of the colors to high–level semantically–related features describing
the anatomical content of images. Few CBIR systems have been evaluated in
clinical practice but some of them showed that they can be accepted by the
clinicians as a useful tool [11, 12]. The use of a CBIR system clearly increased
the number of correct diagnoses within the context of the interpretation of HRCT
images associated with ILDs in [13]. A possible extension to CBIR is to carry
out case–based retrieval. Most often, the clinician actually looks for similar cases
as he considers the image within the context of a patient with a personal history,
findings on the physical examination, laboratory tests, etc. Radiologists never
interpret an image without taking into account the clinical context defined by
disease–specific metadata.

In this paper we show that automated lung classification in HRCT data
is complementary to case–based retrieval, both from the user’s viewpoint and
also on the algorithmic side. In a first step, healthy and four abnormal tissue



types associated with 7 of the most common ILDs are automatically detected
in HRCT. These latter are emphysema, ground glass, fibrosis, micronodules and
healthy. Then, based on the volumes of the segmented tissues and a set of selected
clinical parameters, similar cases are retrieved from a multimedia database of
ILD cases built at the HUG within the context of the Talisman project 1 .

2 Methods

This section describes the various steps of our computer–aided diagnosis (CAD)
system for ILDs consisting of semi–automatic segmentation of the lung volumes,
classification of the lung tissue based on texture properties, and multimodal
retrieval of similar cases.

2.1 Semi–Automatic Segmentation of the Lung Volumes

Segmentation of the lung volumes is a required preliminary step to lung tissue
categorization. The result of this step is a binary mask Mlung that indicates the
regions to be analyzed by the texture analysis routines. Since the geometries
and shapes of the lungs are subject to large variations among the cases, semi–
automatic segmentation based on region growing and mathematical morphology
is carried out. The region growing routine contained in YaDiV 2 is used. Starting
from a seed point s(x, y, z) defined by the user, each 26–connected neighbor is
added to the region Mlung if the summed value of its own neighbors differs of
less than a given variance v defined by the user. At this stage, Mlung describes
the global lung regions well but contains many holes where the region growing
algorithm was stopped by denser regions such as vessels or consolidations of the
lung parenchyma. To fill these holes, a closing operation is applied to Mlung

using a spherical structuring element. Two parameters require attention from
the user: the radius r of the structuring element in millimeters and Nop which
defines the number of closing operations.

2.2 Automated Lung Tissue Categorization

Our approach for categorizing lung tissue patterns associated with ILDs in
HRCT relies on texture analysis. Most of the patterns depict nonfigurative and
cellularly organized areas of pixels. To describe texture properties, features based
on grey–level histogram in Hounsfield Units (HU) as well as statistical mea-
sures from a tailored wavelet transform are extracted. A support vector machine
(SVM) classifier is used to draw boundaries among the distinct classes of lung
tissue represented in the feature space.

1 Talisman: Texture Analysis of Lung ImageS for Medical diagnostic AssistaNce,
http://www.sim.hcuge.ch/medgift/01 Talisman EN.htm, as of 8 November 2009

2 YaDiV: Yet Another DIcom Viewer,
http://www.welfenlab.de/en/research/fields of research/yadiv/, as of 8
November 2009



Grey–Level Histogram CT scanners deliver DICOM images with pixel values
in HU that can be univoquely mapped to the density of the observed tissue. Thus,
essential information is contained directly in the grey–levels. To encode this
information, 22 histogram bins binj of grey–levels in [−1050; 600[ corresponding
to the interval of the lung HU values (including pathological) are used as texture
features. An additional feature pixair counts the number of air pixels which have
value below −1000 HU.

Wavelet–Based Features To be complementary to the grey–level histogram,
attributes describing the spatial distribution of the pixels are required. Multi-
scale analysis using wavelet transforms proved to be adequate for texture analy-
sis [14] but requires to control the three essential affine parameters: translation,
scale–progression and directionality. For lung tissue analysis, we assume that
lung tissues patterns in transversal slices are translation and rotation–invariant.
Moreover, a fine and initializable scale–progression is necessary to distinguish
between vessels and micronodules. To assess translation invariance, a wavelet
frame transform is used. Isotropic polyharmonic B–spline wavelets along with
the nonseparable quincunx subsampling scheme yield a near isotropic wavelet
transform with fine and tunable scale–progression [15]. The classical separable
wavelet transform tends to favor the vertical and horizontal directions, and pro-
duces a so–called “diagonal” wavelet component, which does not have a straight-
forward directional interpretation. The quincunx scale–progression is finer than
the widely used dyadic one with a subsampling factor of

√
2 instead of 2. In

addition to be near isotropic by implementing a multiscale smoothed version of
the Laplacian ∆, isotropic polyharmonic B–spline wavelets can be scaled easily
using the order γ that iterates ∆:

ψγ(D−1x) = ∆
γ

2 {φ} (x), (1)

, where φ is an appropriate smoothing (low–pass) function and D = [1 1; 1 −1] is
the quincunx subsampling matrix. Statistical measures of the wavelet coefficients
are extracted as texture features. Two variances σi

1,2 and fixed means µi
1,2 = µi

of a mixture of two Gaussians are estimated using the expectation–maximization
(EM) algorithm for each subband i ∈ [1; 8]. The low–pass filtered images are left
aside. γ = 3 obtained the best accuracy of the lung tissue patterns in [16].

Blockwise Classification In order to automatically categorize every pixel of
Mlung, each 2D slice is divided into overlapping blocks. Preliminary results using
block sizes of {8×8; 16×16; 24×24; 32×32; 40×40; 48×48; 56×56; 64×64} showed
that optimal blocks of size 32 × 32 is the best trade–off between classification
performance and localization. For each block, 22 histogram bins binj of GLH in
[-1050; 600] and the number of air pixels pixair are concatenated into one hybrid
feature vector v along with GMM parameters of 8 iterations of the quincunx
wavelet transform using βγ of order γ = 3:

v = (bin1 . . . bin22 pixair µ1 σ1
1 σ

1
2 . . . µ

8 σ8
1 σ

8
2) (2)



An SVM classifier learns from the space spanned by v to find the decision bound-
aries among five classes of lung tissue. The optimal cost of the errors C and
the width of the Gaussian kernel σkernel are found using a grid search with
C ∈ [0; 100] and σkernel ∈ [10−2; 102].

2.3 Multimodal Case–Based Retrieval

In order to retrieve similar cases from a database to assist the clinician in di-
agnosis of ILDs, a distance measure based on the volumes of segmented tissue
groups as well as on clinical parameters is used. Case–based retrieval is enabled
by the automated categorization of the entire HRCT image series. The three–
dimensional map of the lung tissue obtained with the blockwise classification of
the lung regions yields a semantically–related basis for the comparison of the
cases. The percentages of the respective volumes vi of the five classes of lung
tissue are used to assess the visual similarity between HRCT image series from
two patients. The respective volumes of lung tissue are semantically related to
the ILDs as each histological diagnosis is associated to a given combination of
HRCT findings. This allows to reduce the semantic gap between the user’s in-
tentions and the visual features, which is often a bottleneck in CBIR [17]. The
Euclidean distance is computed from the percentages of the five volumes of tissue
as follows:

dvol =
√

v2
h + v2

e + v2
g + v2

f + v2
m (3)

with vh corresponding to healthy tissue, ve to emphysema, vg to ground glass,
vf to fibrosis to vm for micronodules.

44 clinical parameters with two levels of importance are used to assess the
“meta–similarity” between the cases. The levels of importance are defined by
a physician according to the relevance for establishing the diagnosis of eight
common ILDs. 3 clinical parameters of first importance include age, gender and
smoking history. Another 41 parameters of second importance included physical
findings, medical history, and laboratory results. The parameters associated with
biopsy outcomes were not included as the goal of the CAD is to provide quick
information to the radiologists before any biopsy.

The multimodal distance measure dM between two cases is computed as a
linear combination of three modalities:

dM = a1dvol + a2dparam1 + a3dparam2, (4)

with aj being the weights of each modality. dvol is the Euclidean distance in
terms of percentages of the volumes of segmented tissue according to (3) and
dparam1,2 the euclidean distance in terms of clinical parameters of importance
1 and 2, respectively. dvol and dparam1,2 are normalized before being combined
in (4).

3 Results

In this section, the techniques described in Section 2 are applied to a multimedia
dataset consisting of 76 cases with at least one annotated HRCT image series



Fig. 1. An example of the segmentation of the lung volumes using a modified version
of YaDiV.

with slice thickness of 1mm and no contrast agent. Annotation of regions was
performed by two experienced radiologists at the HUG. The diagnoses of each of
the cases was confirmed either by pathology (biopsy, bronchoalveolar washing)
or by a laboratory/specific test confirming the diagnosis. For 69 of the 76 cases,
99 clinical parameters were collected from the EHR, describing the patient’s
clinical state at the time of the stay when the HRCT image series was acquired.
46 of these parameters were used for the retrieval of similar cases in (4).

To obtain recognition rates of the lung tissue patterns that are representative
for actual clinical situations, a leave–one–patient–out cross–validation [8] is used
to avoid training and testing the SVM classifier with images belonging to the
same patient. All images from the selected case are left aside for testing whereas
the remaining images are used to train the SVMs. For each case, lung volumes
are segmented using YaDiV, where a tab was added for the closing operation.
An example of the segmentation is depicted in Figure 1.

Then, the whole lung volume is segmented using a distance between the cen-
ters of the blocks equal to 4 pixels, leading to an overlap of 87.5% (see Figure 2).
Table 1 shows the confusion matrix of the segmented tissue sorts. The associ-
ated performance measures are listed in Table 2. Note that some patients may
contain several sort of lung tissue. To assess case–based retrieval performance,
mean precisions at rank 1, 5, 10 and at rank equal to the number of instances of
the diagnosis Nr are computed using a leave–one–patient–out cross–validation
with 69 cases (see Table 3). A grid search for optimal weights of the modalities
in (4) is carried out with aj ∈ [0 : 50[.

4 Discussion

The results obtained with the various components of the proposed CAD are dis-
cussed in this section. Our experience with the segmentation of 69 lung volumes



Fig. 2. Automated segmentation of the lung tissue patterns of a patient affected with
pulmonary fibrosis. The 3D segmented regions are displayed to the clinician using
YaDiV. Green: healthy (0.1 liters), blue: emphysema (0.39 l), yellow: ground glass (0.53
l), red: fibrosis (1.91 l), pink: micronodules (1.77 l).

Table 1. Confusion matrix of the blockwise classification of lung tissue patterns using
a leave–one–patient–out cross–validation in %. Global arithmetic and geometric means
of 75.1% and 74.7% are obtained respectively. Nvox denotes the number of manually
segmented voxels used for evaluation and Ncases the number of patients.

healthy emphysema ground glass fibrosis micronodules Nvox Ncases

healthy 78.1 2.8 0.7 0.2 18.1 63’914 7

emphysema 0.9 70.1 0 4.7 24.2 61’578 5

ground glass 4.6 1.6 76 14.7 3.1 644’814 21

fibrosis 2.3 1.9 17 73.5 5.3 860’474 28

micronodules 13.7 1.8 2.2 6.7 75.7 1’436’055 10

Table 2. Performance measures of the blockwise classification of the lung tissue pat-
terns using QWF and GLH features.

recall precision F–measure accuracy

healthy 78.4 78.2 78.3 91.3

emphysema 89.6 70.2 78.7 92.4

ground glass 79.2 76 77.6 91.2

fibrosis 73.6 73.5 73.6 89.4

micronodules 59.9 75.6 66.8 85



Table 3. Mean precisions based on the diagnosis of the retrieved cases. The values of
the weight ai that allowed best global precisions show the respective importances of
the modalities. Abbreviations: BOOP: bronchiolitis obliterans organizing pneumonia,
PCP: pneumocystis pneumonia.

P@1 P@5 P@10 P@Nr Nr

Fibrosis 79.2 58.3 51.7 42.7 24

BOOP 60 20 18 20 5

Miliary tuberculosis 71.4 48.6 34.3 42.9 7

PCP 25 20 10 25 4

Hypersensitivity pneumonitis 54.5 40 39.1 38 11

Acute interstitial pneumonia 66.7 33.3 25.5 27.2 9

Sarcoidosis 100 66.6 52.2 56.8 9

average/total 59.4 39.7 34.2 32.4 69
weights a1,2,3 in (4) 8;1;39 6;9;38 8;5;48 10;4;41

shows that the 3D region growing associated with closing allows an almost fully–
automatic segmentation. However, the trachea is included as lung tissue in most
cases, which may bias the volume percentages of the five patterns in (4). Manual
corrections are required when the closing operation cannot fill large regions of
consolidated tissue.

The automatic segmentation of the lung tissue is a crucial step for the success
of the CAD. The accuracies obtained in Table 2 show that the SVM classifier can
learn efficiently from the hybrid feature space. However, the recurrent confusion
between healthy and micronodules patterns suggests that the decision boundaries
are not trivial in some cases (see also Figure 2). Table 1 also shows recurrent
confusions between fibrosis and ground glass. This may be partially explained
by the fact that fibrosis patterns are most often accompanied with small regions
of ground glass because of the re–distribution of the perfusion to the functional
tissue remaining. This has the effect to overload the healthy tissue which thus has
the visual appearance of ground glass because of increased attenuation. However,
during the annotations sessions, the label fibrosis was assigned to the whole
ROI leading to classification errors when the system correctly detects the small
ground glass regions. Using the clinical context of the images such as the age
of the patient showed to allow clarifications between visually similar patterns
in [18]. For instance, micronodules in a 20–year–old subject are very visually
similar to healthy tissue surrounded by vessels of a 80–year–old man. In case
of unbalanced classes, SVMs classifiers with asymmetric margins can be used
to favor minority classes. At the border of the lungs, missclassifications occur
due to the response of the wavelets to the sharp change of intensity. A solution
to this is to use the symmetry of the lung tissue using the tangent to the lung
border as axis. To remove noise in the blockwise classification, a 3D averaging
of the lung regions may avoid small isolated regions.

The retrieval precisions presented in Table 3 are currently fairly low to be
used in clinical routine but show the feasibility of indexing ILD cases using the



volumes of automatically segmented lung tissue as well as clinical parameters. It
is important to note that the link between visual similarity of two HRCT scans
and their associated diagnoses is not straightforward. The values of the weights
a1,2,3 that allowed best performances reflect the importance of the each modality.
High values obtained for a3 shows the unexpectedly high importance of the
clinical parameters of secondary priority. High variations of the precision can be
explained by the fact that the number of cases is still fairly small, particularly for
BOOP and PCP. The link between visual similarity of two HRCT scans and their
associated diagnosis is not straightforward. Further improvements are required
to highlight the importance of the visual similarity: the low–level feature vector
v can be used directly as in (4), under the condition to overcome the difficulty
in setting up a standardized localization system for the lung anatomy.

5 Conclusion and Future Work

Image-based diagnosis aid tools for ILDs are available for evaluation to clini-
cians at the Emergency Radiology Service of the HUG. A web–based graphical
interface is available to submit visual and textual queries. The recognition rate
is obtained with an experimental setup that is similar to actual clinical situ-
ations. By analyzing every slice of the image series, it minimizes the risk of
missing of important lesions. Future work is required to reduce false detections
of micronodules as well as to improve the precision of case–based retrieval.
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