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In this paper, we compare five common classifier
families in their ability to categorize six lung tissue
patterns in high-resolution computed tomography
(HRCT) images of patients affected with interstitial lung
diseases (ILD) and with healthy tissue. The evaluated
classifiers are naive Bayes, k-nearest neighbor, J48
decision trees, multilayer perceptron, and support vector
machines (SVM). The dataset used contains 843 regions
of interest (ROI) of healthy and five pathologic lung
tissue patterns identified by two radiologists at the
University Hospitals of Geneva. Correlation of the
feature space composed of 39 texture attributes is
studied. A grid search for optimal parameters is carried
out for each classifier family. Two complementary
metrics are used to characterize the performances of
classification. These are based on McNemar’s statistical
tests and global accuracy. SVM reached best values for
each metric and allowed a mean correct prediction rate
of 88.3% with high class-specific precision on testing
sets of 423 ROIs.
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INTRODUCTION

I nterpreting high-resolution computed tomogra-
phy (HRCT) images of the chest showing

patterns associated with interstitial lung diseases
(ILDs) is time-consuming and requires experience.
ILDs are a heterogeneous group of around 150
illnesses of which many forms are rare and, thus,
many radiologists have little experience with. The
diagnosis of ILDs is often established through the
collaborations of the clinicians, radiologists, and
pathologists. Images play an important role and
patients may not require surgical lung biopsy when

the clinical and radiographic (HRCT) impression is
consistent with a safe diagnosis of ILD.1 The first
imaging examination used is the chest radiograph
because of its low cost and weak radiation dose.
When the chest x-ray does not carry enough
elements to finalize the diagnosis, HRCT is used
to provide an accurate assessment of lung tissue
patterns.2 Computerized HRCT analysis can pro-
vide quick and precious information for emergen-
cy radiologists and other non-chest specialists.3,4

Whereas the radiologists’ ability to interpret
HRCT data is likely to change based on the
domain-specific experience, human factors, and
time of the day, computerized classification of
lung tissue patterns is 100% reproducible. The
computer-aided detection (CAD) system can be
used as first reader in order to improve the
radiologist’s productivity and reduce reading fa-
tigue.5,6 One approach for building image-based
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computerized diagnostic aid for ILDs is to imitate
the radiologists’ human vision system. This latter
can be schematized into two main parts:

� the eyes, which act as captors and aims at
extracting relevant features from the observed
scene7 and

� the visual cortex, which takes decisions based
on the pre-processed information provided by
the eyes as input as well as the knowledge and
experience of the radiologist as information
processor.

In pattern recognition, these two tasks can be
respectively identified as feature extraction and
supervised machine learning. In this work, the
feature extraction part is based on texture proper-
ties and gray-level analysis (gray-level histograms)
along with complementary analysis of spatial
variations in the image through discrete wavelet
frames with a quincunx subsampling scheme.8–10

The two are described in “Texture Features”.
Texture properties have been shown to have high
importance for medical image analysis in CADe
systems.11 In this paper, the supervised machine
learning part is studied.

Supervised Learning

Since the outputs of the CADe are the detected
classes of lung tissue patterns, the machine
learning task involved is a classification task.
Once the feature space is built, algorithms have
to be used to detect and create boundaries among
the several classes of lung tissue patterns. This
process is called supervised learning.
In order to classify unknown regions of

interest (ROIs) of lung tissue, a model has to
be built from known labeled data through the
training phase. The training is challenging, as it
is partly based on the experience of the radiol-
ogists. The goal is to find the functions F which
model best the boundaries among the distinct
classes of lung tissue patterns represented in the
feature space. The best functions are those that
achieve classification of a test set with the lowest
error rate. The test set is composed of labeled
ROIs, which have not been used to train the
classifier. It simulates future unknown instances
and thus allows measuring the generalization
performance. Indeed, the objective is to minimize
the error rate on the training set while avoiding

overfitting of the training instances. Several
approaches are available to implement F . Three
general approaches including five classifier fami-
lies are studied in this paper:

� Learning by density estimation with naive
Bayes and k-nearest neighbor (k-NN) classi-
fiers;

� Recursive partitioning of the feature space
with J48 decision trees; and

� Nonlinear numerical approaches with the
multilayer perceptron (MLP) and kernel sup-
port vector machines (SVM).

In practice, the choice of a classifier family is a
difficult problem and it is often based on the
classifier which happens to be available or best
known to the user.12,13

Classifier Families

Naive Bayes

The naive Bayes classifier is based on a
probability model and assigns the class, which has
the maximum estimated posterior probability, to the
feature vector extracted from the ROI. The posterior
probability P ci �!��� �

of a class ci given a feature
vector �! is determined using Bayes’ theorem:

P ci �!��� � ¼ P �! cij
� �

P cið Þ
P �!� � : ð1Þ

This method is optimal when the attributes are
orthogonal. However, in practice, it performs well
without this assumption. The simplicity of the
method allows good performance with small
training sets.14 Indeed, by building probabilistic
models, it is robust to outliers (i.e., feature vectors
that are not representative of the class to which
they belong). Moreover, it creates soft decision
boundaries, which has the effect of avoiding
overtraining. However, the arbitrary choice of the
distribution model for estimating the probabilities
P(x) along with the lack of flexibility of the
decision boundaries results in limited performance
for complex multiclass configurations.

k-Nearest Neighbor

The k-nearest neighbor classifier cuts out hyper-
spheres in the space of instances by assigning the
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majority class of the k-nearest instances according
to a defined metric (e.g., Euclidean distance).15 It
is asymptotically optimal and its straightforward
implementation allows rapid tests, for example for
evaluating features. However, several shortcom-
ings are inherent to this method. It is very sensitive
to the curse of the dimensionality. Indeed, increas-
ing the dimensionality has the effect to sparse the
feature space, and local homogeneous regions that
represent the prototypes of the diverse classes are
spread out. The classification performance strongly
depends upon the used metric.14 Moreover, a small
value of k results in chaotic boundaries and makes
the method very sensitive to outliers.

J48 Decision Trees

The J48 decision trees algorithm divides the
feature space successively by choosing primarily
features with the highest information gain.16 J48 is
an implementation of the C4.5 algorithm. In
medicine, it is in correspondence to the approach
used by clinicians to establish a diagnosis by
answering successive questions. This is neverthe-
less only partially true when radiologists interpret
HRCT images. This method is robust to noisy
features, as only attributes with high information
gain are used. However, it is sensitive to the
variability of data. The structure of the tree is
likely to change completely when a new instance
is added to the training set. Another drawback is its
incapability to detect interactions between features,
as it treats them separately. This results in decision
boundaries that are orthogonal to dimensions,
which is not accurate for highly nonlinear prob-
lems. Two main parameters influencing the gener-
alization performance require optimization:

� Ninstances: the minimum number of instances
per leaf, which determines the size of the tree;
and

� Cpruning: the feature confidence factor used for
pruning the tree, which consists of removing
branches that are deemed to provide little or
no gain in statistical accuracy of the model.

Multi-layer Perceptron

MLPs are inspired by the human nervous
system where information is processed through
interconnected neurons.17 The MLP is a feed-

forward neural network, which means that the
information propagates from input to output. The
inputs are fed with values of each feature and
the outputs provide the class value. With one layer
of neurons, the output is a weighted linear
combination of the inputs. This network is called
the linear perceptron. By adding an extra layer of
neurons with nonlinear activation functions (the
hidden layer), a nonlinear mapping between the
input and output is possible.18 The training phase
consists of iterative optimization of the weights
connecting the neurons by minimizing the mean
squared error rate of classification. The learning
rate, Rlearn, which controls the adjustments of the
weights during the training phase, must be chosen
as a trade-off between error on the training set and
overtraining. Another critical parameter is the
number of units, Nhidden, of the hidden layer.
Indeed, the MLP is subject to overfitting and
requires an optimal choice of the parameters for
regularization. The MLP can create models with
arbitrary complexity by drawing unlimited deci-
sion boundaries. It is also robust to noisy features,
as these will obtain a low weight after training.

Kernel Support Vector Machines

Kernel SVMs implicitly map input feature
vectors �i

! to a higher dimensional space by using
the kernel function K �i

!; �j
!� � ¼ � �i

!� �
; � �j

!� �� �
.

For example, the Gaussian kernel is defined by:

K �i
!; �j

!� � ¼ e
� �i
!��j

!�� ��2

2� ð2Þ

with σ being the width of the Gaussian to
determine. In the transformed space, a maximal
separating hyperplane is built considering a two-
class problem. Two parallel hyperplanes are con-
structed symmetrically on each side of the hyper-
plane that separates the data. The goal is to
maximize the distance between the two external
hyperplanes, called the margin.19,20 An assumption
is made that the larger the margin is, the better the
generalization error of the classifier will be.
Indeed, SVMs were developed according to the
structural risk minimization principle which seeks
to minimize an upper bound of the generalization
error, while most of the classifiers aims at
minimizing the empirical risk, the error on the
training set.21 The SVM algorithm aims at finding
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a decision function f �!� �
, which minimizes the

functional:

minC
XN
i

max 0; 1� yif �i
!� �� �2þ fk kK ð3Þ

where N is the total number of feature vectors,
fk kK is a norm in a reproducing kernel Hilbert

space, H , defined by the positive definite function
K, which means that the functionals f are bounded.
yi is the label of �i

! with yi 2 �1; 1f g (two-class
problem). The parameter C determines the cost
attributed to errors and requires optimization. For
the multiclass configuration, several SVM models
are built using one versus one combinations.
Finally, the majority class is attributed.
In summary, SVMs allow training generalizable,

nonlinear classifiers in high-dimensional spaces
using a small training set. This is enabled through
the selection of a subset of vectors (called the
support vectors) which characterizes the true
boundaries between the classes well.

Classifiers Used for Lung Tissue
Categorization in HRCT Data

A brief review of the recent techniques used for
the categorization of lung tissue patterns in HRCT
data is given in this section.
Shyu et al.3 describe a physician-in-the-loop

content-based image retrieval system in which the
physician delineates a suspicious ROI. The system
classifies ROIs using decision trees that minimize
the entropy over all distributions associated with
lung tissue classes and matches the ROI against
reference images in JPEG (and not DICOM) that are
already indexed in the database. The hierarchical
organization of the features imposed by the structure
of decision trees assigns too much importance to the
first selected attributes and is not adapted to integrate
information from a set of complementary attributes
such as gray-level histogram bins.
In Caban et al.,22 normal versus fibrotic patterns

are classified using SVMs with gray-level histo-
grams, co-occurrence, and run-length matrices. No
details about the choices of the parameters of the
SVMs are communicated. The small dataset used
(nine HRCT image series) leads to a biased
classification task, since training and testing using
series from the same patient create instances
artificially close together in the feature space.

Nonlinear binning of gray-level values for co-
occurrence matrices is proposed in23 in order to
qualify lung tissue fibrosis in HRCT data. A
minimum Mahalanobis distance classifier is used.
This extended naive Bayes classifier relies on the
assumption that the probability density functions
of the classes are Gaussian, leading to non-flexible
decision boundaries.
Two classifiers along with two feature selection

techniques are evaluated in24 through their ability
to detect fibrosis in HRCT images using co-
occurrence matrices. The two are naive Bayes
and J48 decision trees. The feature selection
technique showed improvement of classification
accuracy, whereas two classifier families achieved
equivalent performance. Still, the dataset used for
testing is fairly small and the classifiers may not be
flexible enough for multiclass problems. Informa-
tion about the localization of the lung tissue
patterns within a lung atlas is integrated as an
additional feature in,25 which allow a classification
accuracy improvement.
In Uppaluri et al.,26 six lung tissue patterns are

classified using an adaptive multiple texture
feature method. Correlated features are removed
and a Bayesian classifier is used. The latter may
not be accurate for classifying any type of lung
tissue, as it is sensitive to the choice of the
probability density function of the features.
Optimization of the parameters of SVMs with

Gaussian kernels using a gradient descent is
carried out in Shamsheyeva and Sowmya.27

Quincunx wavelet frames are used as texture
features. The dataset used is small, containing 22
images for four lung pattern classes. The optimi-
zation of the cost C of the errors, as well as the
width σ of the Gaussian kernel, is carried out for
each two-class combination. The use of an
anisotropic Gaussian kernel is tested in Sham-
sheyeva and Sowmya28 and did not lead to
significant improvement of the classification
accuracy.
In Depeursinge et al.,10 gray-level histograms

with discrete wavelet frame features were evaluat-
ed using a k-NN classifier. In this paper, we
evaluate the ability of five optimized common
classifier families to discriminate among six lung
tissue patterns characterized by improved quin-
cunx wavelet frame texture features.
The paper is structured as follows. In “Method(s)”,

the dataset used for evaluating the classifier
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families is described. “Results” is divided into two
parts. “Texture Features” studies the composition
of the feature space, whereas “Classifier Family
Evaluation” carries out the comparison of the
classifier performances. Results are interpreted in
“Interpretation” and final conclusions are drawn in
“Conclusions.”

METHOD(S)

The dataset used is part of an internal multime-
dia database of ILD cases29,30 containing HRCT
images created in the Talisman project at Geneva
University Hospitals and University of Geneva.
Approval of the ethics commission was obtained
ahead of the official start of the project to allow for
a collection of retrospective cases. The slice
thickness of the images is limited to 1 mm.
Annotation of regions is performed by two
radiologists. Around 100 clinical parameters relat-
ed to the 15 most frequent ILDs are acquired with
each case. A graphical user interface implemented
in Java was developed in order to meet the needs
of the radiologists for the various annotation tasks.
It allows high-quality annotations in 3D HRCT
data. Eight hundred forty-three ROIs from healthy
and five pathologic lung tissue patterns commonly
found in HRCT images of the chest are selected for
training and testing the classifiers (see Table 1). The
selected patterns are healthy, emphysema, ground
glass, fibrosis, micronodules, and macronodules.
Distributions of the classes are highly imbalanced,
as the largest class, fibrosis, contains 312 ROIs and
the smallest class, macronodules, only 22 ROIs.
There is a mean of 140.5 ROIs per class.
Classifier implementations were taken from the

open source Java library Weka.31,32 The feature
extraction and the optimization of the classifier

parameters were implemented in Java. Quincunx
wavelet frames are implemented in Java.9 LIBSVM
library is used for the SVMs’ C-support vector
machine classification.33

RESULTS

Texture Features

The construction of the feature space is detailed in
this section. It is composed of image texture features,
as the taxonomy used by radiologists to interpret
patterns in HRCT images often relates to texture
properties.10 The two feature groups are gray-level
histograms, air components and quincunx wavelet
frame coefficients with B-spline wavelets.
Full-resolution (12-bit gray values) HRCT

images contain values in Hounsfield units (H.U.)
in the interval [−1,500;1,500]. These values corre-
spond univoquely to densities of the anatomic
organs and thus allow the identification of lung
tissue components. In order to take advantage of
this, histograms of pixel values are computed over
each ROI. Each bin value is integrated into the
feature space, and the optimal number was
investigated in Depeursinge et al.10 where 40 bins
constituted the best trade-off between classification
accuracy and dimensionality of the feature space.
Twenty-two bins corresponding to pixel values in
[−1,050;600] were kept, as the bins outside this
interval were very sparsely populated. The air
component value given by the number of pixels
with value less than −1,000 H.U. is computed as
an additional feature.
In order to study the spatial organization of the

pixels, quincunx wavelet frame (QWF) coeffi-
cients are extracted from the ROIs. Discrete
wavelet frames have shown to perform well for

Table 1. Distribution of the ROIs Per Class of Lung Tissue Pattern
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texture analysis.8 Compared to the wavelet trans-
form, wavelet frames are redundant and offer more
flexibility for image analysis: they enable transla-
tion invariance by removing the subsampling part of
the algorithm. A quincunx subsampling scheme is
used in order to allow a finer scale progression
compared to classical dyadic wavelet transform9

(images are downsampled by a factor of
ffiffiffi
2

p
instead

of 2 at each iteration). Moreover, its isotropy is
suitable for analysis of axial images of the lung
tissue, as we made the assumption that no informa-
tion is contained in directionality of patterns. The
mean, μi, and variance, σi, of the coefficients of
eight iterations of QWF are computed over each
ROI, resulting in 16 QWF features.
The feature space contains a total of 39 attributes

that are normalized in order to give equivalent weight
to each of them. The correlation of the values is shown
in Figure 1.

Classifier Family Evaluation

The methodology utilized to compare the
performance of each classifier family is de-
scribed in this section. The full dataset (843

ROIs) is divided into two equal parts: 50% for
training and 50% for testing. Training means
both search for optimal parameters and creation
of the model (i.e., adjustments of the decision
boundary). The methodology is detailed in
Figure 2 and in “Grid Search for Optimal
Parameters” and “Ranking.”

Grid Search for Optimal Parameters

In order to determine the optimal parameters pi,
a grid search is performed for each classifier
family. When required, exponential grid steps
were used for coarse search. For every coordinate
of the grid, a tenfold cross-validation (CV) is
carried out on the training set. Optimal parame-
ters popti that allowed best mean CV accuracy Ac�

are used to train the final model on the entire
training set. Optimized parameters are detailed in
Table 2. An example of grid search for best Ac� is
shown in Figure 3 where the cost C and the σ
value of the Gaussian kernel of the SVM are
optimized. A preliminary coarse grid search is
performed to locate regions of the space with high
Ac� values.
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Fig. 1. Correlation matrix of the feature space.
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Ranking

Instances of the test set are classified by each
classifier family, and McNemar’s test is applied to
the classifiers in pairs with the hypothesis:

H0 : A
test
1 ¼ Atest

2

H1 : A
test
1 6¼ Atest

2

with Atest
1;2 the testing accuracy of the classifiers 1,2

computed as the number of correctly classified
instances divided by the total number of instances
in the test set. Compared to other statistical tests for
comparing supervised classification learning algo-
rithms, McNemar’s test showed to be the only test
with acceptable type I error rate in Dietterich.34

Type I errors correspond to a false detection of

difference in performance between two algorithms.
Bonferroni’s correction for multiple comparisons is
used to adjust the threshold of the test. When H0

is rejected and Atest
1 is greater than Atest

2 , the score
of the classifier 1 is incremented. When H0 is
accepted, 0.5 is added to the scores of both
classifiers. The global experimentation is repeated
50 times and a final ranking based on the total of
the scores is performed. As distribution of the
classes are highly imbalanced, the geometric
mean, Ageom, of each class-specific accuracy,
Aci, on the test set are computed for every
classifier as follows:

Ageom ¼ N

ffiffiffiffiffiffiffiffiffiffiffiffiffi
YN
i¼1

Aci

vuut ð4Þ

Table 2. Grid Search for Optimal Parameters popti

Classifier family Parameters Ranges Step

Naive Bayes – – –

k-NN k [0; 100] linear
J48 Ninstances, Cpruning [0; 5], [0.02; 0.24] lin, lin
MLP Rlearn, Nhidden [10−10 ; 105], {0, 6, 22, 45} log, –
SVM C, σ [1; 100], [102; 10−2] lin, log

The values for the number of hidden layer units, Nhidden, of the MLP are chosen as {none, number of classes, (number of attributes +
number of classes)/2, number of attributes + number of classes}

Fig. 2. Methodology for benchmarking the classifiers.
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with N as the number of classes. Ageom gives the
same importance to each class even if the classes
are imbalanced.35 Two classification configura-
tions are investigated. First, classifiers are evaluat-
ed on a multiclass configuration using all six
classes of lung tissue. Similarly, a two-class
configuration opposing healthy versus pathologi-
cal tissues is investigated. In this configuration, the
classes emphysema, ground glass, fibrosis, micro-
nodules, and macronodules are grouped together
to form the class pathologic containing 730 ROIs
versus 113 for the class healthy. Final rankings, mean
testing accuracies Atest

mean , and mean geometric accu-
racies Ageom

mean are shown in Figures 4, 5, 6, and 7. The
class-specific accuracies achieved by each classifier
family are presented in Tables 3 and 4.

Stability

Optimal parameters of each classifier family
were stored for every 50:50 division. In order to
study the stability, histograms of the values of
(popt1 , popt2 ) are built for SVMs and J48 as shown in
Figure 8.

INTERPRETATION

Feature Space

In the correlation matrix (see Fig. 1) of the
feature space, three groups of features clearly
appear as little correlated: the gray-level histo-
grams, the mean μi of QWF, and the variance σi of
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Fig. 3. Grid search for SVM optimal parameters C and σ.
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QWF. Bins of gray-level histograms are highly
correlated in pairs, which is in accordance with the
assumption that the density of the tissue extracted
from the same ROI is roughly homogeneous.
However, one can differentiate two subgroups:
the 14 first bins with values in [−1050;0]
corresponding to various lung tissue patterns, the
15th to 22nd bins with values in [0;600]
corresponding to higher density tissue (i.e., vascu-
lar tissue). Features in this second subgroup are
highly correlated due to sparsity. It is not surpris-
ing that the first bin is highly correlated with air
pixels. Means of QWF are anti-correlated with air
pixels, which is in accordance with the fact that
regions with air are homogeneous (i.e., emphysema
and interior of bronchus). Little correlation among
the three groups of features suggests that the
feature space contains little redundancy and is
adapted to describe lung tissue texture.

Classifier Performances

All scores are shown in Figures 4 and 6
resulting in strong variations among the classifiers.
Moreover, the variations can be decreased by the
use of Bonferroni’s correction, which makes the
tests more permissive (i.e., McNemar’s test rejects
more easily H0). Two classifier families reach
scores out of the lot: k-NN and SVM. These
performances are confirmed by their respective
accuracies in Figures 5 and 7. Overall scores and
mean testing accuracies, Atest

mean, show to be
complementary metrics. For example, with the
six-class configuration, the MLP reaches high
global accuracy of 79.9% with a low score of
97.5. Those discordances can be understood by

looking at the mean geometric accuracies, Ageom
mean.

The latter is very low for MLP with a value of
47.7%, which indicates that the MLP has a very
low class-specific accuracy, and thus a low
precision for each class, which is not suitable for
the characterization of lung tissue. Therefore, the
SVM that reached best score and global accuracy
is able to classify tissue of each class accurately
even from those that are little represented. Beyond
the fact that the k-NN classifier reached a slightly
lower score and global accuracy compared to SVM
with six classes, one problem occurs with this
classifier. The optimal number k of nearest
neighbors for each of the 50 training/testing splits
was 1. This strong tendency can be explained by
the fact that for some classes, the number of
patients is low, and thus, many ROIs are extracted
from the same image series. Training and testing
with images from the same image series can result
in a biased classification, as images are similar as
they belong to the same patient. Two such
instances are artificially close in the feature space
and will facilitate the classification task while
attributing the class of the closest neighbor, which
probably belongs to the same image series. In that
sense, the k-NN classifier carries out overfitting of
the training instances, which is not suitable for
classifying ROIs from new ILD cases.
The complementarity of the classifiers is studied

in Tables 3 and 4. Naive Bayes performs surpris-
ingly well for classifying healthy tissue in the two-
class configuration. However, the low accuracy
achieved on the majority class pathological sug-
gests that Naive Bayes tends to favor the class
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healthy. Again, the competition between k-NN and
SVM is tight with an advantage for SVM. For the
six-class configuration, SVM reached three times the
best accuracy and is nomore than 2% behind the best
performance over all classes. On the difficult class
macronodules, SVM outperforms all other classifier
families by more than 6% of accuracy.
Distributions of the optimal parameters (popt1 ,

popt2 ) represented in Figure 8 show distinct behav-
ior for SVM and J48. Coupled parameters are more
uniformly distributed for J48 compared to SVM: σ
of the Gaussian kernel of SVM is characterized by a
bimodal distribution. This means that two values of
σ allow a convenient mapping of the feature space
to higher dimensions for accurate separation of the
classes. These values affect the optimal value of
cost C. Indeed, the organization of the classes in
the transformed space is fixed by the value of σ,
which requires a corresponding readjustment of
the optimal cost C. The most frequent pair of
values of J48 occurs nine times over 50, while the
second most frequent pair occurs five times. For
the SVM, the most frequent pair occurs 12 times
over 50, while the second most frequent pair
occurs nine times. In that sense, the SVM
classifier offers more stability. The stability has
an important influence on the generalization
performance: a classifier that frequently obtained
identical pairs of optimal parameters has a high
probability to be optimal for classifying new data.

CONCLUSIONS

In this paper, five common classifier families
were tested to discriminate six classes of lung
tissue patterns in HRCT data from healthy cases
and cases affected with ILDs. Evaluation of the
classifiers is based on a high-quality dataset taken

from clinical routine. The classifiers were opti-
mized in order to compare their best performance.
The SVM classifier constitutes the best trade-off
between the error rate on the training set and
generalization, the ability to classify ROIs correct-
ly from images of new patients. Since SVMs were
designed to avoid overfitting of training samples,
using them to classify medical images with much
heterogeneity is adapted. The SVM classifier was
able to correctly classify 88.3% of the instances
into the six classes and 96.4% when discriminating
healthy tissue versus all other pathological classes.
Two metrics were used to characterize the per-
formances of the classifiers: scores based on
McNemar’s test along with global accuracy on
the test set. The two metrics have shown to be
complementary. The optimal classification algo-
rithms were integrated into a software for classifi-
cation of ROIs directly in three-dimensional
DICOM images (Fig. 9). The diagnostic aid tool
is easy to integrate into the PACS having the same
user interface and offers the possibility to add
clinical data from the electronic patient record. The
classifier belongs to the core of a computer-aided
diagnosis system involved in the decision-making
process.

Table 3. Class-specific Accuracies for Each Classifier Family

Healthy Emphysema Ground glass Fibrosis Micronodules Macronodules

Naive Bayes 0.9161 0.8753 0.7873 0.7454 0.3778 0.3076
k-NN 0.9104 0.9978 0.7369 0.8926 0.91 0.3605
J48 0.7568 0.9419 0.6803 0.8821 0.7555 0.3054
MLP 0.7290 0.9707 0.6756 0.8751 0.8035 0.2461
SVM 0.9242 0.9874 0.7731 0.9218 0.8907 0.4250

Best performances are highlighted in bold. SVM reached three times the best accuracy and is no more than 2% behind the best
performance over all classes

Table 4. Class-specific Accuracies for Each Classifier Family
with Two-Class Configuration

Healthy Pathological

Naive Bayes 0.922 0.8087
k-NN 0.8923 0.9764
J48 0.6985 0.9675
MLP 0.711 0.958
SVM 0.8535 0.9818

Naive Bayes performs well for classifying healthy tissue.

DEPEURSINGE ET AL.



Fig. 8. Bivariate histograms of the optimal parameters (popt1 , popt2 ) for SVM and J48.

Fig. 9. A screenshot of the DICOM viewer for the classification of image regions.
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