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Content-Based Medical Image Retrieval

Henning Müller and Thomas M. Deserno

Abstract. This chapter details the necessity for alternative access methods to the
currently mainly text-based methods in medical information retrieval. This need is
partly due to the large amount of visual data produced, the increasing variety of
medical imaging data and changing user patterns. The stored visual data contain
large amounts of unused information that, if well exploited, can help diagnosis,
teaching and research. The chapter briefly reviews the history of image retrieval and
its general methods before technologies that have been developed in the medical
domain are discussed. We also discuss evaluation of medical content-based image
retrieval (CBIR) systems and conclude with pointing out their strengths, gaps, and
further developments. As examples, the MedGIFT project and the Image Retrieval
in Medical Applications (IRMA) framework are presented.

21.1 Introduction

Content-Based Visual Information Retrieval (CBVIR) or Content-Based Im-
age Retrieval (CBIR) has been one on the most vivid research areas in the field
of computer vision over the past almost 20 years. The availability of large and
steadily growing amounts of visual and multimedia data, and the development
of the Internet underline the need to create access methods that offer more
than simple text-based queries or requests based on matching exact database
fields. Many programs and tools have been developed to formulate and exe-
cute queries based on the visual or audio content and to help browsing large
multimedia repositories. Still, no general breakthrough has been achieved with
respect to large varied databases with documents of differing sorts and with
varying characteristics. Answers to many questions with respect to speed, se-
mantic descriptors or objective image interpretations are still open and wait
for future systems to fill the void [1].

In the medical field, images, and especially digital images, are produced
in ever-increasing quantities and used for diagnosis and therapy. The Radiol-
ogy Department of the University Hospitals of Geneva alone produced more
than 114,000 images a day in 2009, risen form 12,000 in 2002. Large hospital
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groups such as Kaiser Permanente that manage several hospitals had by early
2009 even 700 TB of data stored in the institutional archives and very large
hospitals such as the University hospital of Vienna currently produces over
100 GB of image data per day.

With Digital Imaging and Communications in Medicine (DICOM), a stan-
dard for image communication has been set and patient information can be
stored with the actual image(s), although still a few problems prevail with re-
spect to the standardization. In several articles, content-based access to med-
ical images for supporting clinical decision-making has been proposed [1, 2].
Still, only very few systems are usable and used in clinical practice as most
often development takes place in computer science departments totally dis-
connected from clinical practice.

21.1.1 Motivation and History

Image retrieval has been an extremely active research with first review ar-
ticles on access methods in image databases appearing already in the early
1980s [3]. The following review articles explain the state-of-the-art and contain
references to a large number of systems and descriptions of the technologies
implemented [4–7]. The most complete overview of technologies to date is
given by Smeulders et al. in [8]. This article describes common problems such
as the semantic gap or the sensory gap and gives links to a large number of
articles describing the various techniques used in the domain. In a more recent
article, the developments over the past 5-10 years are described [9].

Although early systems existed already in the beginning of the 1980s [10],
the majority would recall systems such as IBM’s Query by Image Content
(QBIC)1 as the start of content-based image retrieval [11].

Most of the available systems are, however from academia. It would be
hard to name or compare them all but some well-known examples include
Photobook [12] and Netra [13] that all use simple color and texture character-
istics to describe the image content. Using higher level information, such as
segmented parts of the image for queries, was introduced by the Blobworld2

system [14, 15]. PicHunter [16] on the other hand is an image browser that
helps the user to find an exact image in the database by showing to the user
images on screen that maximize the information gain in each feedback step.
A system that is available free of charge is the GNU Image Finding Tool
(GIFT)3 [17].

21.1.2 Query-by-Example(s) Paradigm

One of the biggest problems in CBIR is the formulation of queries without
text. Everyone is used to formulate queries with text (as 90% of Internet

1 http://wwwqbic.almaden.ibm.com/
2 http://elib.cs.berkeley.edu/photos/blobworld/
3 http://www.gnu.org/software/gift/
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users are using Google) and explain one’s information needs but with visual
elements this is far from trivial. Drawing small designs is one possibility re-
quiring artistic skills and being unsuitable for the majority of users. Using
image examples to search with Query by Image Example (QBE) is currently
the most common way to search for similar images being used by most image
retrieval systems. Thus, a system can search for visually similar images with
one or several example image(s). The problem remaining is to find a suitable
example image, which is not always obvious (“page zero problem”) [18].

In the medical domain images are usually one of the first examinations
performed on patients, and thus query examples are available. Once the user
has received a results set of images or cases similar to a given example image or
case, systems most often offer the possibility to mark images/cases as relevant
and irrelevant and thus refine the search through what is called (“relevance
feedback”) [19].

21.2 General Image Retrieval

General image retrieval started with the main concepts already in 1980 [3].
Still, the real research did not start before the late 1980s, when several systems
using simple visual features became available [11].

21.2.1 Classification vs. Retrieval

One of the first and basic questions in image retrieval is whether it is rather
an information retrieval task or a classification task. While there are many
similarities between them, there are two principle differences [20]:

• classification tasks have a limited number of classes of topics/items and
training data for each of the classes that allow training of class-specific
parameters;

• retrieval tasks have no fixed classes of items/objects in the database and
usually no training data available; documents can be relevant for a par-
ticular retrieval task or information need, with relevance being potentially
user-dependent.

In general, the techniques according to the classification paradigm follow the
general machine learning literature and its approaches, whereas the (informa-
tion) retrieval approaches follow techniques from general information retrieval.

In the end, when used for CBIR, both represent images by visual features
and then find similar images using a distance measure, showing the most
similar images to the user ordered by their visual similarity.

21.2.2 System Setup, Components, Computation, Grid Networks

Most of these systems have a very similar architecture for browsing and archiv-
ing/indexing images comprising tools for the extraction of visual features, for
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the storage and efficient retrieval of these features, for distance measures or
similarity calculation and a type of Graphical User Interface (GUI). This gen-
eral system setup is shown in Fig. 21.1.

Fig. 21.1. Retrieval system archi-
tecture. Overview of the main compo-
nents that most image retrieval systems
are constituted of.

Storage and
access methods

GUI and
interaction methods

Retrieval
engine

Visual
feature extraction

Distance and
similarity calculation

Computational efficiency is another often regarded question. Particularly
the visual analysis can take an enormous time for large databases and as the
challenge is to scale to millions of images, tools such as Grid networks and
parallel processing have been used for the off-line feature processing. This is
mainly used for the off-line step of representing images by features, whereas for
the query processing efficient indexing structures are used for quick response
times tr < 1 s.

21.2.3 Features and Signatures

Visual features were classified into primitive features such as color or shape,
logical features such as identity of objects shown and abstract features such
as significance of depicted scenes [6]. However, basically all currently available
systems only use primitive features such as:

• Color: In stock photography (large, varied databases for being used by
artists, advertisers and journalists), color has been the most effective fea-
ture. The red, green, blue (RGB) color space is only rarely used as it does
not correspond well to the human color perception. Other spaces such
as Hue-Saturation-Value (HSV) or the CIE Lab and Luv spaces perform
better because distances in the color space are similar to the differences
between colors that humans perceive. Much effort has also been spent on
creating color spaces that are optimal with respect to lighting conditions
or that are invariant to shades and other influences such as viewing posi-
tion [21].

• Texture: Texture measures try to capture the characteristics of the image
with respect to changes in certain directions and the scale of the changes.
This is most useful for images with homogeneous texture. Some of the
most common measures for capturing the texture of images are wavelets
and Gabor filters. Invariances with respect to rotation, shift or scale can
be included into the feature space but information on the texture may get
lost in this process [22]. Other popular texture descriptors contain features
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derived from co-occurrence matrices [23, 24], the Fourier transform [22],
and the so-called Wold features [25].

• Local color and texture: Both, color and texture features can be used also
on a local or regional level, i.e. on parts of the image. To use blocks of fixed
size, so-called partitioning, is the easiest way employing regional features
[26]. These blocks do not take into account any semantics of the image
itself. When allowing the user to choose a Region of Interest (ROI) [27], or
when segmenting the image into areas with similar properties [28], local
features capture more information about relevant image structures.

• Shape: Fully automated segmentation of images into objects itself is an
unsolved problem. Even in fairly specialized domains, automated segmen-
tation causes many problems. In image retrieval, several systems attempt
to perform an automatic segmentation for feature extraction [29]. The seg-
mentation process should be based on color and texture properties of the
image regions [28]. The segments can then be described by shape features,
usually being invariant to shift, rotation and scaling [30]. Medical image
segmentation with respect to browsing image repositories is frequently ad-
dressed in the literature as well [31].

• Salient points: Salient point-based features have in recent years had best
performances in most of the image retrieval and object classification tasks
[32]. The idea is to find representative points (or points that attract the
attention) in the images and then analyze the relationships of the points.
This permits to extract features that possess several invariants such as
invariance to shifts, rotations, scale and even view-point. A large number
of such techniques exist for detecting the points and then for extracting
features from the salient points.

• Patches and visual words: Patches and visual words are closely linked to
salient point-based features. as the patches and/or visual words are most
often extracted from regions in the images that were identified to contain
changes or high gradients and then local features are extracted in these
regions. It is also possible to put a regular grid on the image and then
extract patches around the points of the grid to well represent the entire
image. The term visual words stems from the fact that the features ex-
tracted around the selected points are often clustered into a limited number
of homogeneous characteristics that can have distributions similar to the
distribution of words in text allowing to use techniques well known from
text retrieval [33].

All of these features have their benefits and domains where they clearly work
well, but all these features are low-level visual features and might not corre-
spond to semantic categories. For this reason, text, whenever available should
be used for the retrieval of images as well, as semantic information is conveyed
very easily. All benchmarks show that text has a much superior performance
compared to visual characteristics, but can well be complemented by visual
retrieval.
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21.2.4 Distance and Similarity Measures

Basically all systems use the assumption of equivalence of an image and its
representation in feature space. These systems often use measurement sys-
tems such as the easily understandable Euclidean vector space model [11] for
measuring distances between a query image (represented by its features) and
possible results representing all images as feature vectors in an n-dimensional
vector space. This is done although metrics have been shown to not corre-
spond well to human visual perception [34]. Several other distance measures
do exist for the vector space model such as the city-block distance, the Maha-
lanobis distance [11] or a simple histogram intersection [35]. Still, the use of
high-dimensional feature spaces has shown to cause problems and great care
needs to be taken with the choice of distance measurement to be chosen in
order to retrieve meaningful results [36,37]. These problems with a similarity
definition in high-dimensional feature spaces is also known as the “curse of
dimensionality” and has also been discussed in the domain of medical imag-
ing [38].

Another approach is a probabilistic framework to measure the probability
that an image is relevant [39]. Another probabilistic retrieval form is the use
of a Support Vector Machine (SVM) [40, 41] for classification of images into
classes for relevant and non-relevant. In most visual classification tasks SVMs
reach in general the best performance.

Various systems use methods that are well known from the text retrieval
field and apply them to visual features where the visual features have to cor-
respond roughly to words in text [26,42]. This is based on the two principles:

• a feature frequent in an image describes this image well;
• a feature frequent in the collection is a weak indicator to distinguish images

from each other.

Several weighting schemes for text retrieval that have also been used in im-
age retrieval are described in [43]. A general overview of pattern recognition
methods and various comparison techniques is given in [44].

21.3 Medical Image Retrieval

The number of digitally produced medical images has rising strongly, mainly
due to large tomographic series. Videos and images produced in cardiology are
equally multiplying and endoscopic videos promise to be another very large
data source that are planned to be integrated into many Picture Archiving
and Communication Systems (PACS). The management and the access to
these large image repositories become increasingly complex. Most accesses to
these systems are based on the patient identification or study characteristics
(modality, study description) [45].
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Imaging systems and image archives have often been described as an im-
portant economic and clinical factor in the hospital environment [46,47]. Sev-
eral methods from the computer vision and image processing fields have al-
ready been proposed for the use in medicine more than ten years ago [48].
Several radiological teaching files exist [49] and radiology reports have also
been proposed in a multimedia form in [50].

21.3.1 Application Fields

Content-based retrieval has also been proposed several times from the medical
community for the inclusion into various applications [2,51], often without any
implementation. Figure 21.2 shows the general system architecture.

QBE
query by
example

feature
extraction

PACS
image database

image
retrieval

feature
extraction distance

?

retrieved
images

image

signature Fig. 21.2. Medical CBIR
system architecture. All im-
ages in the PACS archive and
the QBE image are describes
by a signature. Comparing sig-
natures instead of images al-
lows fast CBIR response.

Almost all sorts of images have already been used for image retrieval at
one point or another. The first separation is on whether systems use a large
and varied set of images [52] or work on a very focused domain as diagnosis
aid [53].

A typical application domain for CBIR-based image management is case-
based reasoning and evidence-based medicine, in particular in fields where
diagnosis is regarded as hard and where purely visual properties play an im-
portant role, such as mammography [54] or the diagnosis of interstitial lung
diseases [55,56]. CBIR-based eLearning has also been discussed [57].

21.3.2 Types of Images

The medical domain yields an extremely large amount of varying images, and
only very few have so far been exploited fully for visual similarity retrieval.
When thinking of medical images, clearly radiographs and maybe computed
tomography come instantly to mind but there is much more than this usually
gray scale set of images.

Here is a list of some of the types of visual data that are available in
hospitals and often stored in the PACS:

• 1D signals: EEG, ECG;
• 2D gray scale images: x-ray radiography;
• 2D color images: pathology slides microscopy, photography, dermatology;
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• gray scale video: ultra-sonography;
• color video: sleeping laboratory;
• pseudo-3D (slices): CT, MRI, PET, SPECT;
• 3D models: reconstructions of tomographic images;
• 4D data: temporal series of tomographic images such as CT images of a

beating heart;
• nD data: Multi-modal combinations of images such as from combined

PET/CT, PET/MRI scanners.

It becomes quickly clear that medical imaging is much more varied then the
images of the general CBIR domains, such as photographs in the Internet.

21.3.3 Image Preprocessing

Image pretreatment is most often used to harmonize the content in a database
and thus make feature extraction from the images based on the same grounds.
Such preprocessing can be the normalization of gray levels or colors in images.

Another application of pretreatment in the medical domain is the back-
ground removal from images and automatic detection of the field of view [58]
to concentrate the search on the important objects. Although medical images
are taken under relatively controlled conditions, there is a fairly large variety
remaining particularly in collections of scanned images.

Some typical images from our database are shown in Fig. 21.3 (top row).
The removal is mainly done through a removal of specific structures followed
by a low pass filter (median) and then by thresholding and a removal of
small unconnected objects. After the object extraction phase, most of the
background is removed but only a few images had part of the main object
removed (Fig. 21.3, bottom row).

21.3.4 Visual and Non-Visual Image Features

Most of the visual features used in medical images are based on those exist-
ing for non-medical imaging as well [59]. For radiographs, there is clearly a
need to highlight gray level values instead of the color values in non med-
ical image, which can make the search harder. On the other hand most of
the medical images are taken under fairly standardized conditions, requiring
fewer invariances and even making direct comparisons of downscaled versions
of the images possible.

In contrast to non-medical image archives, all medical images do have
meta-data attached to them as the images are part of a clinical record, that
consists of large amounts of structured data and of free text such as labo-
ratory results, anamnesis and release letter. Without this meta information,
interpretation of medical cases is impossible. No radiologist would read an
image without a minimum of meta data on the patient (e.g., age, sex) and a
basic anamnesis as many of the clinical parameters do have a strong influence
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on the visual characteristics of the images. For instance, old patients have
less dense bones, and the healthy lung of a smoker is much different from the
healthy lung of a non-smoker.

One of the largest problems is how to combine structured/free text data
with visual features. Several fusion approaches have been proposed in [56].
Most often, late fusion is considered best as there are potentially many features
and there can be negative interactions between certain of the clinical data and
certain visual features. It is also clear that the data quality in patient records
is often far from optimal and even in an anamnesis not all parameters are
asked systematically, leaving often incompleteness, for example, where it is
not clear if the patient was a smoker or not. Such incomplete data needs to
be taken into account for classification or retrieval approaches [59].

21.3.5 Database Architectures

Many tools and techniques have been used to allow for a quick access in
large collections of images, similar to access models in general database ar-

Fig. 21.3. Image Pretreatment. Images before (top row) and after (bottom row)
the removal of logos and text.
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chitectures. Frequently, the goal is to have rather a long off-line phase of data
pretreatment followed by a rather quick query response. Techniques from text
retrieval have shown to allow for extremely quick response times in sparsely
populated spaces and are frequently used.

Parallel access to databases and grid networks are frequently used for the
off-line phase, so the most computationally heavy phase. For on-line processing
this is often too slow, though, as often there is an overhead in grid networks,
for example, for the job submission and load balancing part.

21.3.6 User Interfaces and Interaction

Most of the current user interfaces follow the QBE paradigm and allow to
upload images to start with, or have a random function to browse images in
the database to find a starting point. Most interfaces show a ranked list of
results images ordered by similarity. A clear distinction needs to be made for
how visual and how textual queries can be formulated. Both together form
the most powerful framework [60].

Another important aspect of the user interface is the possibility to ob-
tain more information about the users information need by marking images
as positive and/or negative feedback. Many techniques exist for calculating
similarity between several positive and negative input images, from combining
all features for a joint pseudo-image to performing separate queries with each
image and then combining the results.

21.3.7 Interfacing with Clinical Information Systems

The use of content-based techniques in a PACS environment has been pro-
posed several times [61]. PACS are the main software components to store
and access the large amount of visual data used in medical departments [62].
Often, several layer architectures exist for quick short-term access and slow
long-term storage, but these are steadily replaced by fully hard disk oriented
solutions. The general schema of a PACS system within the hospital is shown
in Fig. 21.4. The Integrating the Healthcare Enterprise (IHE) initiative is
aiming at data integration in healthcare including all system components.

An indexing of the entire PACS causes problems with respect to the sheer
amount of data that needs to be processed to allow efficient access by content
to all the images. This issue of the amount of data that needs to be indexed is
not discussed in any of the articles. Qi & Snyder have proposed to use CBIR
techniques in a PACS as a search method but no implementation details are
given [63]. Bueno et al. extend a database management system for integrat-
ing content-based queries based on simple visual features into PACS [64]. A
coupling of image classification with PACS is given in [45]. Here, it is possible
to search for certain anatomic regions, modalities or views of an image. A
simple interface for coupling the PACS and the image retrieval system is also
proposed. The identification is based on the DICOM Unique Identifier (UID)
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Fig. 21.4. System inter-
connection. The Picture
Archiving and Communication
System (PACS) is connected
with imaging modalities such
as Computed Tomography
(CT) or Magnetic Resonance
Imaging (MRI), the Radiol-
ogy (RIS) and the Hospital
Information System (HIS).

of the images. An IHE compliant procedure calling external CBIR application
as well as returning the CBIR results into the PACS are described [65,66].

21.4 Evaluation

Whereas early evaluation in image retrieval was only base on small databases
showing a few example images, evaluation in text retrieval has always been a
very experimental domain. In CBIR, a first real standardization was achieved
place with the ImageCLEF4 medical image retrieval task that started in 2004
as has been organized every year since, including and classification task and
a retrieval task based on a data set of the Image Retrieval in Medical Appli-
cations (IRMA)5 group.

21.4.1 Available Databases

Medical image databases have increasingly become available for researcher
in the past five years. Some of the prominent examples is the Lung Image
Database Consortium (LIDC) data, the IRMA database with many different
classes and an increasing number of images and the images of the ImageCLEF
competition taken first from medical teaching files and then from the scientific
medical literature.

Nowadays, the National Institutes of Health (NIH) and the National Can-
cer Institute (NCI) require funded research to make their data available, and
several databases indeed have become available for the public.

21.4.2 Tasks and User Models

When evaluation image retrieval it is clear that a clear usage model and infor-
mation need have to be defined. A few research groups have actually conducted

4 http://www.imageclef.org/
5 http://irma-project.org
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surveys on the use of images for journalists [67] and in other domains such as
libraries or cultural heritage institutions [4].

For ImageCLEF 2005 the topic development was based on two surveys
performed in Portland, OR and in Geneva [68,69]. In total, around 40 medical
professionals were surveyed on their image use and search behavior to learn
more on how they use images and how they would like to search for them.
It became clear that depending on the role of the person (clinician, lecturer,
researcher) the information needs are significantly different, so each person
who had more than one role had to respond to the questions for all roles.
Librarians and students were also included into the survey. Most frequently,
people said that they would like to be able to search for pathology and then
came modality and anatomic region. People said to use Web search engine to
search for interesting images for lectures. People were concerned about image
quality in this case. Based on these surveys, topics for ImageCLEFmed were
developed along the following axes:

• anatomic region shown in the image;
• image modality (e.g., x-ray, CT, MRI, microscopy);
• pathology or disease shown in the image;
• abnormal visual observation (e.g., enlarged heart).

It was tried that topics covered at least two of these axes if possible. A
visual query topic is shown in Fig. 21.5, and a query topic requiring more than
purely visual features is shown in Fig. 21.6. As ImageCLEF is on multilingual
information retrieval and as the collection is in three languages, the topics
were also developed in these three languages.

Fig. 21.5. Visual query. An exam-
ple of a query (topic) of ImageCLEF
2005 that is at least partly solvable vi-
sually, using the image and the text as
query. Still, use of annotation can aug-
ment retrieval quality. The query text
is presented in three languages, English:
“Show me chest CT images with em-
physema”; German: “Zeige mir Lun-
gen CTs mit einem Emphysem”; French:
“Montre-moi des CTs pulmonaires avec
un emphysème”.

21.4.3 Ground Truth and Gold Standards

One of the most important aspects of evaluation is that there is a clear idea
of what a good or perfect query result would be like. In the case of the IRMA
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Fig. 21.6. Semantic query. A
query of ImageCLEF 2005; En-

glish: “Show me all x-ray im-
ages showing fractures”; German:
“Zeige mir Röntgenbilder mit
Brüchen”; French: “Montres-moi
des radiographies avec des frac-
tures”, which requires more than
only visual retrieval. Visual fea-
tures, however, can deliver hints to
good results.

collection, this ground truth (or gold standard) is given by the IRMA code
that is attributed to each image by a clinician [70]. Its mono-hierarchical
multi-axial architecture allows unambiguous ground truth labeling. Therefore,
depending on the data sets, classes can be generated using the entire hierarchy
or a partial hierarchy. Image classification systems can then be evaluated by
comparing them to the correct class labels.

For image retrieval evaluation as in the ImageCLEFmed retrieval bench-
mark is slightly different as no fixed classes exist. Based on well-defined in-
formation such as those in Fig. 21.6 experts can judge whether an image is
relevant to this query or not. In images three categories were used, relevant,
irrelevant, or indeterminable. Based on the judgments of clinicians on such
relevance, several retrieval systems can well be compared

Performance measures for the evaluation of information retrieval in general
and image retrieval in particular have created a large amount of discussion for
many years. Where as in image classification the choice is smaller (correctly
classified, incorrectly classified), there are many measures existing for retrieval
tasks.

21.4.4 Benchmarks, Events, and their Limitations

Information retrieval benchmarks have been established in the 1960s with the
Cranfield tests. Since 1991, the Text Retrieval Conference (TREC) has created
a strong testbed for information retrieval evaluation. For several years, TREC
contained a biomedical retrieval called TRECgenomics.

Cross Language Evaluation Forum (CLEF) started within TREC in 1997
and has been independent since 2000. With ImageCLEF that started in 2003,
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a new medical task was introduced as well, promoting the search for medical
images with textual and visual means combined. ¿From a small database of
8,000 images in 2004 the data sets and tasks have grown larger and more
complicated every year. Also regarding the IRMA database and the image
classification task, the complexity over four years was increased every year.

21.5 Examples for Medical CBIR Systems

This section describes three example projects for medical content-based image
retrieval.

21.5.1 MedGIFT

Initially, the Medical GIFT (MedGIFT)6 project was based on the GNU Image
Finding Tool (GIFT), which resulted from the Viper7 project at the University
of Geneva [26]. The visual features used are meant for color photography and
include a simple color histogram as well as color blocks in various areas of
the images and at several scales. To separate the actual query engine from
a user interface, the Multimedia Retrieval Markup Language (MRML)8 was
developed. This query language is based on direct communication of search
engine and interface via sockets and eases a variety of applications such as
meta-search engines and also the integration of a retrieval tool into a variety
of environments and applications.

After a while, however, it became clear that new techniques were necessary
in the medical domain, and the build components were grouped around five
axes:

• data access, ontologies, data annotation;
• techniques for retrieval and efficient structures to use them on large data

sets;
• applications in the medical field such as lung image retrieval, fracture

retrieval;
• inclusion of higher dimensional dat sources into the retrieval process such

as the use of 3D and 4D data;
• evaluation, mainly with the ImageCLEF benchmark describes in Sec-

tion 21.4.

Fig. 21.7 shows a typical web interface after a query was executed. The
query results are displayed ordered by their visual similarity to the query,
with a similarity score shown underneath the images as well as the diagnosis.
A click on the image links with the case database system and allows to access
the full-size images.

6 http://www.sim.hcuge.ch/medgift/
7 http://viper.unige.ch/
8 http://www.mrml.net/
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Fig. 21.7. MedGIFT user
interface. A screen shot of a
typical web interface for med-
ical image retrieval system al-
lowing QBE with the diagnosis
underneath the image.

In the context of heading towards indexing of higher-dimensional images
an interface for browsing 3D repositions was developed [71] and is shown in
Fig. 21.8.

Fig. 21.8. CBIR user in-
terface supporting 3D
data. An interface that allows
searching in 3D databases by
visual content and then can
visualized the images with
abnormal regions marked in
various colors.

21.5.2 IRMA

In Section 21.4, we have already introduced the Image Retrieval in Medi-
cal Applications (IRMA) framework. This research-driven project is active
for almost ten years, combining inter-disciplinary expertise from diagnostic
radiology, computer science, and medical informatics.

IRMA aims at developing and implementing high-level methods for CBIR
including prototypical application (e.g., [41,72,73]) to medico-diagnostic tasks
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on a radiological image archive. They want to perform semantic and formal-
ized queries on the medical image database which includes intra- and inter-
individual variance and diseases.

Based on a (i) central database that hold images, features, and the pro-
cessing methods, (ii) a scheduler that provides distributed processing, (iii) a
communicator that is used to interconnect CBIR with Radiology Information
System (RIS) and Picture Archiving and Communication System (PACS), (iv)
web-based user interfaces are provided for applications citeLGT2003. Three
levels of image content similarity are modeled (Fig. 21.9):

• global features are linked to the entire images and used to automatically
classify an image according to the anatomy, biosystem, creation, and di-
rection (registered data layer) [70],

• local features are linked to prominent image regions and used for object
recognition (feature layer), and

• structural features are linked to spatial or temporal relations between the
objects and used for high-level image interpretation (object layer).

Fig. 21.9. IRMA process-
ing pipeline and levels of
content abstraction [45].
All images are categorized
and registered to a category-
specific prototype. Feature ex-
traction and selection are sep-
arated. Constellation of iden-
tified objects (scene analysis)
are modeled on the highest
level.

images

categories

categorization

registration

feature extraction

feature selection

indexing

identification

retrieval

query results

RST-parameters

feature vectors

blob-trees

query

raw data layer

registered data layer

feature layer

scheme layer

object layer

knowledge layer

A pipeline of image processing is suggested (Fig. 21.9). Iterative region
merging is used to build up a Hierarchical Attributed Region Adjacency Graph
(HARAG), the data structure that is used to represent images, Objects of
Interest (OOIs), and object constellations (scene analysis). Hence, image re-
trieval is transformed to graph matching. Object comparison operates on the
HARAG nodes, while scenes are modeled by graph to sub-graph comparison.

Extended query refinement is provided to the user and allows for undo and
redo commands and logical combinations of individual query responses [74].
Figure 21.10 visualized the interaction loops that are all encapsulated within
one browser window. Parameter modules are used to transfer the input and
parameters from the user to the system (e.g., QBE), and the output modules
are used to display the query result (Fig. 21.10, green). Query refinement is
supported by the orange loop, and yellow indicates undo, and redo options.
The outer loop (Fig. 21.10, blue) allows combining individual queries by AND
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and OR. Here, the user can seek images having a certain characteristic in one
local area and another elsewhere.

parameter modules

[relevancefeedback]

output modules

[relevancefacts]

OK ?

in loop ?

start loop ?

end

start

merge

query logging

process modules

(and, or)

transaction modules

(undo, redo, history)

user

system

user

system

yes

yes

yes

no

no

no

step back ?
no

yes

search

user

system

user

system

yes

yes

yes

no

no

no

step back ?
no

yes

search

Fig. 21.10. IRMA ex-
tended query refine-
ment [74]. Four nested loops
are integrated within one
browser interface. Green:
simple QBE; Orange: query
refinement; Yellow: undo and
redo; Blue: AND and OR.

A typical IRMA user interface is shown in Figure 21.11. Here, a spine
x-ray databased is searched by shape and shape similarity [75]. The slider
bars below the images allow the user to evaluate the retrieval result (query
refinement).

Fig. 21.11. IRMA user in-
terface. A typical IRMA
web interface supporting QBE,
relevance feedback, and ex-
tended query refinement. Here,
a shape retrieval interface in
collaboration with the Na-
tional Library of Medicine
(NLM), National Institutes of
Health (NIH), USA is shown.

Currently, the IRMA group works on integration of CBIR into the clini-
cal workflow. Figure 21.12 shows the dataflow for CBIR-assisted pre-fetching
of previous radiographs supporting the radiologist in reading the scheduled
exam. Both, Health Level Seven (HL7) and Digital Imaging and Communi-
cations in Medicine (DICOM) interfaces are provided by the IRMA commu-
nicator module. The dataflow



18 Müller & Deserno

Fig. 21.12. IRMA inte-
gration with HIS and
PACS [76]. The communi-
cation steps are performed
(i) at time of examination
scheduling (steps 1 to 4); (ii)
in the night before the exam
(step 4); and (iii) on the day
of the examination (steps 5 to
12). The additional commu-
nication steps that have been
added to the communication
because of CBIR integration
are: 2c, 3, 6c, 7, 8, 9, 10a. To
support CBIR-based hanging
protocols, steps 10b and 11b
are required additionally.

RIS
Report

Management

further
HIS

Modalities
CT, MR, …

IRMA
Communicator

Scheduler

2b, 7a: HL7 (ORM)
11: HL7 (ORU)
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DB
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21.6 Discussion and Conclusions

Medical images have often been used for retrieval systems and the medical
domain is often cited as one of the principal application domains for content-
based access technologies [77, 78] in terms of potential impact. Still, there
has rarely been an evaluation of the performance and the description of the
clinical use of systems is even rarer. Two exceptions are the Assert system
on the classification of high resolution CTs of the lung [53] and the IRMA
system for the classification of images into anatomical areas, modalities and
view points [52].

Still, for a real medical application of content-based retrieval methods and
the integration of these tools into medical practice a very close cooperation
between the two fields is necessary for a longer period of time and not simply
an exchange of data or a list of the necessary functionality.

21.6.1 Strengths and Weaknesses of Current Systems

It was clearly described in this chapter that image retrieval has gone a long
way from purely theoretical laboratory style developments, where single im-
ages were classified into a small number of classes without any clinical ap-
plication, towards tools that combine visual and clinical data to really aid
diagnosis and deliver valuable information to the clinicians. Tools have have
shown to improve diagnosis in real settings when properly applied [79]. With
ImageCLEF there is also a benchmark to compare techniques for visual clas-
sification as well as for multi-modal medical information retrieval combining
text and image data. Such benchmarks are necessary to proof the performance
of techniques and entire systems
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Still, there is currently a total lack of system that are used in clinical
practice and in close collaboration with clinicians.

21.6.2 Gaps of Medical CBIR Systems

In [59, 80], several technical gaps in medical image retrieval have been iden-
tified (Fig. 21.13). However, there are several other levels of gaps that need
to be mentioned in this context. Legal constraints currently limit the appli-
cation domain as the secondary use of medical data is ruled by nationally
different laws that are not always easy to follow. In general, informed con-
sent is required even if data is anonymized. This limits the amount of data
potentially accessible and thus also the usefulness of the approach. Tools as
the one described in [81] to access research data in patient records with an
on-the-fly anonymization should limit these effects, but at the moment, it is
still far from being usable in many institutions.

All these gaps finally lead to a usage gap. Clinicians rather use Google
to search for images on the web than to search in patient records, where the
access is limited by patient ID. User interface, speed and retrieval quality
seem to have advantages with simple tools such as Google and this needs to
be taken into account for new medical CBIR interfaces.

21.6.3 Future Developments

Image retrieval does have a bright future as does information retrieval in
general. Information is produced in ever-increasing quantities and it also be-
comes increasing available, whether through patient record or via the Internet
in teaching files or the scientific literature. One of the future challenges is to
navigate in a meaningful way in databases of billions of images, allowing for
effective and efficient retrieval, and at the same time a diversity in the results
displayed and not simple duplicate images. Modern hospitals produced in the
order of 100GB or 120,000 images per day and few image retrieval systems
could index this providing a high response speed.

By far the largest amounts of data produced in 3D and 4D tomographic
data sets and there is still little research in this domain although a few ap-
proaches mainly for surface models do exist. To better integrate the entire
amount of available information it also seems necessary to better integrate
visual, textual and structured data retrieval into unique systems. Currently
the research domains are totally separated, and a closer collaboration is nec-
essary for working systems. The goal in the end should be to deliver the right
information to the right people at the right time, and this information needs
to include visual data.

Another important future task is the real evaluation of retrieval systems in
clinical practice and thus in collaboration with clinicians to show their prac-
tical benefit. This is required to show that the impact of image retrieval can
become real, and up to which level the impact can reach. Component-level
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evaluation is necessary to better understand what is currently working and
what not and this not only on the system level but on the level of single com-
ponents. Having all components accessible via standard interfaces could also
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Fig. 21.13. Gaps in medical CBIR [80].
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help to combine all possible components in a better way to really optimized
the overall system performance.
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