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Abstract. Every year, we see the publication of new algorithms for medical image
analysis including segmentation, registration, classification and retrieval in the liter-
ature. However, in order to be able to translate these advances into clinical practice,
the relative effectiveness of these algorithms needs to be evaluated.

In this chapter, we begin with a motivation for systematic evaluations in sci-
ence and more specifically in medical image analysis. We review the components
of successful evaluation campaigns including realistic data sets and tasks, the gold
standards used to compare systems against, the choice of performance measures and
finally workshops where participants can share their experiences with the tasks and
explain the various approaches. We also describe some of the popular evaluation
campaigns in retrieval, classification, segmentation and registration techniques. We
describe the challenges in organizing such campaigns including the acquisition of
databases of images of sufficient size and quality, establishment of sound metrics
and ground truth, management of manpower and resources, motivation of partici-
pants, and the maintenance of a friendly level of competitiveness among participants.
We conclude with lessons learned over the years of organizing campaigns, including
successes and road-blocks.

22.1 Introduction

Medical images are being produced in ever-increasing quantities as a result
of the digitization of medical imaging and advances in imaging technology
in the last two decades. The assorted types of clinical images are critical in
patient care for diagnosis and treatment, monitoring the effect of therapy,
education and research. The previous chapters have described a number of
techniques used for medical image analysis from 3D image reconstruction to
segmentation and registration to image retrieval. The constantly expanding
set of algorithms being published in the computer vision, image processing,
machine learning and medical image analysis literature underscores the need
for sound evaluation methodology to show progress based on the same data
and tasks.
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It has been shown that many of these publications provide limited eval-
uation of their methods using small or proprietary data sets, making a fair
comparison of the performance of the proposed algorithm with previous al-
gorithms difficult [1, 2]. Often, the difficulty in obtaining a high quality data
sets with ground truth can be an impediment to computer scientists with-
out access to clinical data. We believe that newly proposed algorithms must
be compared to the existing state-of-the-art using common data sets with
application-specific, validated metrics before they are likely to be incorporated
into clinical applications. By providing all participants with equal access to
realistic tasks, validated data sets (including ground truth), and fora for dis-
cussing results, evaluation campaigns can enable the translation of superior
theoretical techniques to meaningful applications in medicine.

22.2 Components for Successful Evaluation Campaigns

Evaluation is a critical aspect of medical image analyses and retrieval. In the
literature, many articles claim superior performance compared to previously-
published algorithms. However, in order to be able to truly compare and
contrast the performance of these techniques, it is important to have a set of
well-defined, agreed-upon tasks performed on common collections using mean-
ingful metrics. Even if the tasks are very different from a technical standpoint
(segmentation vs. retrieval, for example), their evaluation can share many
common aspects. Evaluation campaigns can provide a forum for more robust
evaluations and equitable comparisons between different techniques.

22.2.1 Application and Realistic Task

First of all, the goal of the algorithms being evaluated must be well under-
stood. A technique such as image segmentation is useful in many clinical areas;
however, to perform a thorough evaluation of such algorithms, one must keep
the ultimate application in mind. For example, consider the following two seg-
mentation tasks: tumor segmentation to monitor a response to cancer therapy,
and anatomical segmentation of the brain from an fMRI study. The nature of
each task informs the choice of the optimal evaluation metric. In the first case,
missing portions of the tumor (and thereby under-estimating its size) can have
serious consequences, and therefore penalties for under-segmentation might
be more appropriate. In other applications, however, under-segmentation and
over-segmentation may be considered to be equally inconvenient.

An image retrieval system used for performing a systematic review might
have different goals than a system used to find suitable images for a lecture
or scientific presentation. In the first case, the goal might be to find every
relevant article and image, while in the second case a single image that meets
the search need might be sufficient. For some applications accuracy might be
more important while for those being used in real-time, speed can be critical.
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Evaluation campaigns are usually geared toward a specific clinical appli-
cation. For instance, the Medical Image Computing and Computer Assisted
Intervention (MICCAI) grand challenges for segmentation [3] target very spe-
cific tasks (e.g., segmentation of prostate, liver etc.). The goal for the image
retrieval task in the Cross Language Evaluation Forum (CLEF)3, medical re-
trieval campaign (ImageCLEF 2009) is to retrieve images from the medical
literature that meet information needs of clinicians [4].

Once the overall goal of the algorithm has been well understood, it is im-
portant to identify a set of realistic, meaningful tasks towards that goal. For
evaluating an image retrieval system this might consist of a set of reasonable
search topics (often derived from user studies or log file analyses [5–7]). For
the evaluation of a registration algorithm, an appropriate task might be to
register structures in an atlas to equivalent structures in a set of patients.
For segmentation challenges the task might be to segment normal anatomi-
cal organs (e.g., lung, liver, prostate, vasculature) or abnormalities (e.g., lung
nodule, liver tumor, lesion). Classification tasks might include classifying ra-
diographs based on the anatomical location [8], or separating voxels in the
brain into white, gray matter and Cereborspinal Fluid (CSF) in Magnetic
Resonance Imaging (MRI) data [9]. The number and scale of these tasks (how
many topics, how many structures for how many different patient studies, etc.)
must be carefully chosen to support the derivation of statistically meaningful
metrics.

22.2.2 Collections of Images and Ground Truth

In order to perform a fair comparison of different algorithms, ideally all tech-
niques must be compared on the same database or collection of images. Ad-
ditionally, these data must be of a sufficient variety, so as to encompass the
full range of data found in realistic clinical situations.

Often, computer scientists wishing to evaluate state-of-the-art algorithms
do not have access to large amounts of clinical data, thereby limiting the
scope of their evaluations. In general, getting access to the large collections
necessary for a robust evaluation has been challenging, even for researchers
associated with clinical facilities due to issues of cost, privacy and resources.

Recently, there has been a growing trend towards making databases of
images available openly towards the goal of promoting reproducible science.
Many governmental agencies, including the National Institutes of Health
(NIH) in the United States have funded initiatives like the Lung Imaging
Database Consortium (LIDC) [10] and the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI)4 [11] that create well-curated collections of images and
clinical data. These collections are typically anonymized to preserve patient
privacy, and openly available to researchers. These and other similar initiatives

3 http://www.clef-campaign.org/
4 http://www.loni.ucla.edu/ADNI
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foster collaboration between groups across the world and researchers from dif-
ferent domains including clinicians, imaging scientists, medical physicists and
computer scientists.

The issue of attaining ground truth or a gold standard continues to be
challenging. For most applications, the best references are manually generated,
and therefore their construction is an extremely time consuming and resource-
intensive task. However, often the absolute truth is unknown or unknowable.
For instance, it would be quite difficult to absolutely verify the registration
of a brain atlas to the MRI of a patient. Similarly, in order to evaluate the
performance of segmentation algorithms, experts usually manually delineate
the Regions of Interest (ROI). However, the true segmentation of a tumor
that is not physically resected may never be definitively established.

Additionally, even if there theoretically exists an “objective truth”, experts
often disagree on what constitutes that truth. In cases with more than one
human rater, these questions of inter-observer agreement make the creation of
a gold standard difficult. By providing segmentation in the form of annotations
of lung nodules by four independent raters, the LIDC database exemplifies this
difficulty in obtaining ground truth. Recent research has demonstrated that
all four raters agreed on the presence of a nodule at a given location in only
approximately 40% of the cases [12].

The problem is not limited to segmentation gold standards. When evaluat-
ing the effectiveness of information retrieval systems, relevance judgments are
typically performed by domain experts. However, the kappa-measures (used
to quantify inter-observer agreement) between experts in relevance judgment
tasks often indicate significant levels of disagreement as to which documents
count as “relevant”. The concept of relevance as applied to images is partic-
ularly problematic, as the relevance of a retrieved image can depend on the
context in which the search is being performed. An additional source of judg-
ment difficulty is that domain experts tend to be more strict than novices [4],
and so the validity of their judgments for a particular task may depend on
the nature of the intended users.

22.2.3 Application-Specific Metric

The choice of metrics should depend on the clinical goal of the algorithm be-
ing evaluated. In classification tasks, error rate is often the metric of choice.
However, if the cost of a miss (e.g., missed detection of a lung nodule) is high,
a non-symmetric measure of cost can be used. For registration and segmenta-
tion, measures related to volumetric overlap or surface distances can be used.
If the goal of an image retrieval system is to find a few good images to satisfy
the information need, early precision might be a good measure. On the other
hand, if the goal of the task is to find every relevant image in the database,
recall-oriented measures might be better suited.

In most evaluation campaigns, the evaluation measures are specified at the
outset. Often, a single measure that combines different aspects of the evalua-
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tion is preferred, as this makes comparisons between participants straightfor-
wardly (see Sec. 22.3).

22.2.4 Organizational Resources and Participants

Evaluation campaigns are usually conducted on a voluntary basis as funding
for such efforts can be hard to obtain. Organizing such campaigns can be
quite resource and time-intensive as the organizers need to acquire databases
of images of sufficient size and quality, establish sound performance metrics
and ground truth, provide the tabulation of the results, potentially organize
the publications of the proceedings and motivate participation by balancing
competitiveness with a friendly spirit of collaboration and cooperation.

Having a diverse set of loyal participants is a hallmark of a good evaluation
campaign. Often, significantly larger number of groups register for and obtain
data to evaluation campaigns than actually submit results and participate
in the workshops. It is important to strive to increase the number of actual
participants as the collaborative atmosphere, as found in the evaluation cam-
paigns engenders strides in the field by enabling participants to leverage each
other’s techniques. One of the challenges of organizing an evaluation campaign
is providing tasks that are appropriate for research groups with varying levels
of expertise and resources. If the task is too challenging and requires massive
computing resources, participation by groups without access to such facilities
can be limited. On the other hand, if the task is regarded as being too trivial,
the sought-after participation by the leading researchers in the area can be
difficult to attract. Options explored by some of the campaigns include pro-
viding multiple tasks at different levels, providing baseline runs or systems
that can be combined in a modular fashion with the participants’ capabilities
(ImageCLEF) or providing the option of submitting both fully automatic and
semi-automatic runs. Participants can generally be motivated by the oppor-
tunity to publish, by providing access to large collections of images that they
might otherwise not have access to, as well as the spirit of the competition.

Many evaluation campaigns (see Sect. 22.4) organize workshops at the
end of the evaluation cycle where participants are invited to present their
methods and participate in discussions. They are often, but not exclusively,
held in conjunction with larger conferences.

These workshops are an important part of evaluation cycle and can be
a great opportunity for researchers from across the globe to meet face-to-
face in an effort to advance their fields. In addition to the technical aspects,
the workshops also provide a chance for participants to provide feedback to
the organizers about the collections, the nature of the task as well as the
level of difficulty and organizational issues. They also provide a forum where
participants can offer suggestions for future tasks, collections, and metrics.
Furthermore, an in-person workshop is an excellent opportunity to recruit
new organizers, thereby aiding the sustainability of the campaign.
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22.3 Evaluation Metrics and Ground Truth

This section describes several of the commonly used performance metrics in
medical imaging tasks including registration, segmentation and retrieval.

22.3.1 Registration

One of the first steps in the evaluation of the performance of registration algo-
rithms is simply a visual check. This can be accomplished using image fusion
in which one image is overlaid on top of the other with partial transparency
and potentially different colors. Alternatively, the images can be evaluated
using a checkerboard pattern.

At is has been introduced in Chapter ??, the intensities of the registered
images can be used as metric [13]. The rationale behind this approach is that
the better the registration performance, the sharper the composited image is
expected to be as the registered image will be closer to the target image. With
respect to the template image j, the intensity variance is given as

IVj(x) =
1

M − 1

M
∑

i=1

(Ti(hij(x))− avej(x))
2, (22.1)

where avej(x) =
1
M

∑M

i=1 Ti(hij(x)) denotes the average, hij(x) is the trans-
formation from image i to j and M is the number of images being evaluated.

Other methods include comparing the forward and reverse transforms re-
sulting from the registration. In a perfect situation, the forward transform
would be the inverse of the reverse. The inverse consistency error measures
the error between a forward and reverse transform compared to an identity
mapping [13]. The voxel-wise Cumulative Inverse Consistency Error (CICE)
is computed as

CICEj(x) =
1

M

M
∑

i=1

‖hji(hij(x))− x‖2, (22.2)

where ‖‖̇ denotes the standard Euclidean norm. The CICE is a necessary but
not sufficient metric for evaluating registration performance [13].

In addition, Christensen et al. [13] note that the transforms resulting from
registration algorithms should satisfy the transitivity property. If HAB is the
transform from A to B, transitivity implies that hCB(hBA(x)) = hCA(x) or
hAC(hCB(hBA(x))) = x ∀A,B,C Ti is the ith image of the set and hij is the
registration transform.

The Cumulative Transitive Error (CTE) is defined as

CTEk(x) =
1

(M − 1)(M − 2)

M
∑

i=1i6=1

M
∑

j=1

‖hki(hij(hjk(x)))− x‖2 (22.3)
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Another common approach in registration is to define a structure in the
initial image (e.g., in an atlas), register the initial image to the final image
(e.g., actual patient image), and deform the structure using the resulting de-
formation field. If manual segmentation is available on the final image, then
many of the metrics defined in the following subsection can be used to compare
the manual segmentation to that obtained using registration of the atlas.

22.3.2 Segmentation

Image segmentation, the task of delineating an image into meaningful parts or
objects, is critical for many clinical applications. One of the most challenging
aspects in evaluating the effectiveness of segmentation algorithms is the estab-
lishment of ground truth against which the computer-derived segmentations
are to be compared.

Metrics without Ground Truth

In real-life clinical images, establishing true segmentation often is difficult due
to poor image quality, noise, non-distinct edges, occlusion and imaging arti-
facts. Physical and digital “phantoms” have been used to establish absolute
ground truth; however, they do not contain the full range of complexity and
variability of clinical images [14].

To avoid the use of phantoms, Warfield et al. [14] proposed the Simul-
taneous Truth and Performance Level Estimation (STAPLE) procedure, an
expectation-maximization algorithm that computes a probabilistic estimate
of true segmentation given a set of either automatically generated or manual
segmentations. STAPLE has been used for establishing ground truth in the
absence of manual segmentations as well as to provide a quality metric for
comparing the performance of segmentation algorithms.

However, it should be pointed out that manual segmentations are not re-
producible, i.e., they suffer from inter- as well as intra-observer variability, and
hence, their usefulness in absolute evaluation of medical image segmentation
is limited.

Volume-Based Metrics

Consider the case where the results of a segmentation algorithm are being
compared to ground truth using binary labels (i.e., a label of “1” is given
to a voxel that belongs to the object being segmented and a label of “0”
otherwise). Let A indicate the voxels belonging to the object according to
the segmentation under consideration (as determined by either another user
or an automatic algorithm) and G refers to the ground truth (Fig. 22.1).
A commonly used simple measure is based on the volumes enclosed by the
respective segmentations. The Volumetric Difference (VD) [15] is defined as
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VD =
Va − Vg

Vg

× 100 (22.4)

The Absolute Volumetric Difference (AVD) is the absolute value of the above
measure. However, these measures do not take into account the spatial lo-
cations of the respective volumes, and hence have limited utility when used
alone. Additionally, they are not symmetric.

Fig. 22.1. Venn diagram. The diagram shows the in-
tersection between the segmented label A and the gold
standard G.

The Dice [16] and Jaccard coefficients [17] are the most commonly used
measures of spatial overlap for binary labels. In both cases, the values for the
coefficients range from zero (no overlap) to one (perfect agreement).

D =
2 |A ∩G|

|A|+ |G|
× 100 J =

|A ∩G|

|A ∪G|
× 100 (22.5)

This is also sometimes known as the relative overlap measure. As all these
measures are related to each other, typically only one or the other is calculated.

J =
D

2−D
(22.6)

The Dice coefficient has been shown to be a special case of the kappa coef-
ficient [18], a measure commonly used to evaluate inter-observer agreement.
As defined, both of these measures are symmetric, in that over- or under-
segmentation errors are weighted equally. To characterize over- and under-
segmentations in applications where these might be important (e.g., tumor
delineation where the cost for missing the tumor is higher), false positive and
false negative Dice measures can be used. The False Positive Dice (FPD) is
measure of voxels that are labeled positive (i.e., one) by the segmentation al-
gorithm being evaluated but not the ground truth and hence is a measure of
over-segmentation. The False Negative Dice (FND) is a measure of the voxels
that were considered positive according to the ground truth but missed by
the segmentation being evaluated. Let Ā and Ḡ be the complements of the
segmentation and the ground truth (i.e., they are the voxels labeled 0).

FPD =
2
∣

∣A ∩ Ḡ
∣

∣

|A|+ |G|
× 100 FND =

2
∣

∣Ā ∩G
∣

∣

|A|+ |G|
× 100 (22.7)

The above-mentioned spatial overlap measures depend on the size and shape of
the object as well as the voxel size relative to the object size. Small differences
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in the boundary of the segmentation can result in relatively large errors in
small objects compared to large objects.

Additionally, the measures discussed above assume that we are comparing
the results of one algorithm with one set of ground truth data. However, often
there is either no ground truth available, or alternatively, manual segmen-
tations from multiple human raters are available. In these cases, many ap-
proaches have been considered, ranging from fairly simplistic majority votes
for the class membership of each voxel to the STAPLE algorithm mentioned
above [14] or the Williams index [19].

The Williams index [19, 20] considers a set of r raters labeling a set of n
voxels with one of l labels. D is the label map of all raters where Dj is the
label map for rater j and Dij represents the label of rater j for voxel i. Let
a(Dj,Dij) be the agreement between rater j and ji over all n voxels. Several
agreement measures can be used. The Williams index Ij as defined below, can
be used to assess if observer j agrees at least as much with other raters as
they agree with each other.

Ij =
(r − 2)

∑r
j′ 6=j a(Dj , Dj′)

2
∑r

j′ 6=j

∑j′

j′′ 6=j a(Dj′ , Dj′′)
(22.8)

All of the metrics discussed thus far have assumed that the class labels
were binary, i.e. each voxel belonged to either the structure or the background.
Although this has been the case historically and continues to be the predom-
inant mode for classification, more recently, methods as well as probabilistic
methods have required the use of partial labels for class membership. Crum
et al. [21] discussed the lack of sufficient metrics to evaluate the validity of the
algorithms in these cases. They proposed extensions of the Jaccard similarity
measure, referred to as Generalized Tanimoto Coefficients (GTC) using results
from fuzzy set theory. These overlap measures can be used for comparison of
multiple fuzzy labels defined on multiple subjects.

Surface-Based Metrics

Unlike the region-based approaches, surface distance metrics are derived from
the contours or the points that define the boundaries of the objects. The Haus-
dorff Distance (HD) is commonly used to measure the distance between point
sets defining the objects. The HD (a directed measure as it is not symmetric)
between A and G, h(A,G) is the maximum distance from any point in A to
a point in G and is defined as

h(A,G) = max
a∈A

(d(a,G)) (22.9)

where d(a,G) = minG∈G ‖a − g‖. The symmetric HD, H(A,G) is the larger
of the two directed distances, defined more formally as

H(A,G) = max(h(A,G), h(G,A) (22.10)
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Table 22.1. Fourfold table.

A 2x2 table for relevant and re-
trieved objects.

Relevant Not Relevant

Retrieved A ∩B Ā ∩B B

Not Retrieved A ∩ B̄ Ā ∩ B̄ B̄

A Ā

The Hausdorff distance, although commonly used, has a few limitations. It is
highly susceptible to outliers resulting from noisy data. However, many varia-
tions of a more robust version of this measure have been used for applications
in segmentation as well as registration.

Software Tools

The Valmet software tool, although no longer actively supported, incorporated
many of these measures and has been used for evaluation and visualization of
2D and 3D segmentation algorithms [22]. It includes the measures: volumetric
overlap (true and false positives, true and false negatives), probabilistic dis-
tances between segmentations, Hausdorff distance, mean absolute surface dis-
tance, and interclass correlation coefficients for assessing intra-, inter-observer
and observer-machine variability. The software also enabled the user to visu-
alize the results.

22.3.3 Retrieval

Information Retrieval (IR) has a rich history of evaluation campaigns, begin-
ning with the Cranfield methodology in the early 60’s [23] and the System for
the Mechanical Analysis and Retrieval of Text (SMART) [24], to more recent
Text Retrieval Conference (TREC)5 campaigns [25].

Precision, Recall and F-Measure

Precision and recall are two of the most commonly used measures for eval-
uation retrieval systems, both for text and images. Precision is defined the
fraction of the documents retrieved that are relevant to the user’s informa-
tion need. For binary relevance judgments, precision is analogous to positive
predictive value. Consider a 2 × 2 table for relevant and retrieved objects
(Tab. 22.1) where A is the set of relevant objects and B is the set of retrieved
objects

precision =
relevant documents retrieved

retrieved documents
P =

|A ∩B|

|B|
(22.11)

Precision is often calculated for a given number of retrieved objects. For in-
stance P10 (precision at 10) is the number of relevant objects in the first ten

5 http://trec.nist.gov/
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objects retrieved. Recall, on the other hand, is the ratio of the relevant objects
retrieved to the total number of relevant objects in the collection

recall =
relevant documents retrieved

relevant documents
R =

|A ∩B|

|A|
(22.12)

Recall is equivalent to sensitivity. It is important to note that recall does
not consider the order in which the relevant objects are retrieved or the total
number of objects retrieved.

A single effectiveness measure, based on both precision and recall was
proposed by van Rijsbergen [26]

E = 1−
1

α/P + (1− α)/R
(22.13)

where α denoting a fraction between zero and one can be used to weigh the
importance of recall relative to precision in this measure.

The weighted F-score (F-measure) is related to the effectiveness measure
as 1− E = F

F =
1

α/P + (1− α)/R
=

(β2 + 1)PR

β2P +R
(22.14)

where β2 = 1−α
α

and α ∈ [0, 1], β2 ∈ [0,∞].
In the balanced case where both precision and recall are weighted equally,

α = 1/2 and β = 1. It is commonly written as F1, or Fβ=1. In this case, the
above equation simplifies to the harmonic mean

Fβ=1 =
2PR

P +R

However, α or β can be used to provide more emphasis to precision or recall
as values of β < 1 emphasize precision, while values of β > 1 emphasize recall.

Average Precision

Overall, precision and recall are metrics based on the set of objects retrieved
but not necessarily the position of the relevant objects. Ideal retrieval systems
should retrieve the relevant objects ahead of the non-relevant ones. Thus, mea-
sures that consider the order of the returned items are also important. Average
precision, defined as the average of the precisions computed for each relevant
item, is higher for a system where the relevant documents are retrieved earlier.

AP =

∑N

r=1(P (r)× rel(r))

number of relevant documents
(22.15)

where r is the rank, N the number retrieved, rel() a binary function on the
relevance of a given rank, and P () precision at a given cut-off rank.
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In evaluation campaigns with many search topics, the Mean Average Pre-
cision (MAP) is a commonly used measure. The MAP is the mean of the
average precisions for all the search topics and is meant to favor systems that
return more relevant documents at the top of the list. However, the maximum
MAP that a system can achieve is limited by its recall, and systems can have
very high early precision despite having low MAP.

Software

Trec eval, a software package created by Chris Buckley6 is commonly used
for retrieval campaigns. This package computes a large array of measures
including the ones specified above [27]. The ideal measure depends on the
overall objective, but many information retrieval campaigns, both text-based
(TREC) and image-based (ImageCLEF) use MAP as the lead metric but also
consider the performance of early precision.

22.4 Examples of Successful Evaluation Campaigns

22.4.1 Registration

Image registration is another critical aspect of medical image analysis. It is
used to register atlases to patients, as a step in the assessment of response to
therapy in longitudinal studies (serial registration), and to superimpose im-
ages from different modalities (multi-modal registration). Traditionally, rigid
and affine techniques were used for registration. More recently, deformable or
non-rigid registration techniques have been used successfully for a variety of
application including atlas-based segmentation, and motion tracking based on
4D CT. The evaluation of non-rigid registration can however be quite chal-
lenging as there is rarely ground truth available.

The original Retrospective Registration Evaluation Project (RREP) and
the more recent Retrospective Image Registration Evaluation (RIRE)7 are re-
sources for researchers wishing to evaluate and compare techniques for CT-MR
and PET-MR registration. The “Vanderbilt Database” is made freely available
for participants. Although the “truth” transforms remain sequestered, partici-
pants can choose to submit their results on-line, enabling them to compare the
performance of their algorithms to those from other groups and techniques.

The Non-rigid Image Registration Evaluation Project (NIREP)8 is an ef-
fort to “develop, establish, maintain and endorse a standardized set of relevant
benchmarks and metrics for performance evaluation of nonrigid image regis-
tration algorithms”. The organizers are planning to create a framework to

6 http://trec.nist.gov/trec eval/
7 http://www.insight-journal.org/RIRE/index.php
8 http://www.nirep.org/index.php?id=22
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evaluate registration that does not require ground truth by utilizing a diverse
set of metrics instead. The database consists of 16 annotated MR images
from eight normal adult males and eight8 females acquired at the University
of Iowa. The metrics that are currently implemented include: squared intensity
error, relative overlap, inverse consistency error and transitivity error.

22.4.2 Segmentation

MICCAI Grand Challenges are the most prominent of the evaluation events
for segmentation. In 2007, a Grand Challenge workshop was held in con-
junction with MICCAI to provide a forum for researchers to evaluate their
segmentation algorithms on two anatomical sites, liver and caudate, using a
common data sets and metrics. This popular workshop has continued to grow
with three and four different sub-tasks in 2008 and 2009, respectively.

MICCAI Segmentation in the Clinic: A Grand Challenge

The liver is a challenging organ for CT-based segmentation as it lies near other
organs that are of similar density. Additionally, in the case of diseases there can
be significant non-homogeneity within the liver itself, adding to the challenge.
The MICCAI Grand Challenge Workshop was one of the most prominent
efforts to provide an opportunity for participants to compare the performance
of different approaches to the task of liver segmentation. Twenty studies were
provided as training data, while ten studies were used for the testing and an
additional ten were used for the on-site portion of the evaluation. Participants
were allowed to submit results from both completely automated techniques
as well as interactive methods.

The training data in the caudate part (33 data sets) were acquired from
two different sites using different protocols: 18 healthy controls from the In-
ternet Brain Segmentations Repository (IBSR)9 from Massachusetts General
Hospital and 15 studies consisting of healthy and pathological subjects from
Psychiatry Neuroimaging Laboratory at the Brigham and Women’s Hospital,
Boston. The test data were studies from a challenging mix of ages (adult, pedi-
atric, elderly), sites (Brigham and Women’s Hospital, Boston, UNC’s Parkin-
son research group, University of North Carolina at Chapel Hill, Duke Image
Analysis Laboratory) and acquired along different axes (axial, coronal) The
gold standard was established by manual segmentation of experts.

The organizers were interested in establishing a single score that combined
many of the commonly used metrics for segmentation described above. They
included volumetric overlap error (or Jaccard coefficient), the relative volume
difference, average surface symmetric distance, root mean square surface dis-
tance and the maximum symmetric surface distance. This common score was
provided for both the liver and the caudate cases. In addition, the caudate

9 http://www.cma.mgh.harvard.edu/ibsr/
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Table 22.2. MICCAI Grand Challenges. This is a suggestion of how to sum-
marize the essential information from the MICCAI Grand Challenges ???

Year Topic Data Type Training Test Ground Truth

2007 liver MRI 20 10 manual

caudate MRI 33 manual

2008 lumen line CTA 32 studies à 4 vessels manual, 3 raters each

MS lesion MRI 20 25 manual

liver tumor

2009 prostate MRI

head and neck CT

left ventricle

evaluation consisted of a test of reproducibility by providing a set of scans
for the same subject on different scanners. The variability of the score across
these scans was evaluated. The Pearson correlation coefficient between the
reference and the segmentation volumes was another metric provided for the
caudate set.

The organizers have continued to make available all the test and training
data, enabling new algorithms to be evaluated against the benchmarks estab-
lished in 2007. Furthermore, the success of the Grand Challenge in 2007 lead
to the continuation of this endeavor in 2008 and 2009 with more clinically-
relevant segmentation tasks [28, 29], including coronary artery central lumen
line extraction in CT angiography (CTA), Multiple Sclerosis (MS) lesions,
and others (Tab. ref).

Extraction of Airways from CT

The Extraction of Airways from CT (EXACT)10 challenge was held as part of
the Second International Workshop on Pulmonary Image Analysis in junction
with MICCAI 2009. It provides participants with a set of 20 training CTs that
had been acquired at different sites using a variety of equipment, protocols,
and reconstruction parameters. Participants were to provide results of algo-
rithms for airway extraction on the 20 test sets. The results were evaluated
using the branch count, branch detection, tree length, tree length detected,
leakage count, leakage volume and false positive rate. Fifteen teams partic-
ipated in this task. The organizers noted that “there appears to be a trade
off between sensitivity and specificity in the airway tree extraction” as “more
complete trees are usually accompanied by a larger percentage of false posi-
tives”. They also noted that the semi-automatic methods did not significantly
outperform the automatic methods.

Volume Change Analysis of Nodules

Again performed in junction with MICCAI as part of the Second Interna-
tional Workshop on Pulmonary Image Analysis, the goal for the Volume

10 http://image.diku.dk/exact/information.php
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Change Analysis of Nodules (VOLCANO)11 challenge was to measure volu-
metric changes in lung lesions longitudinally using two time-separated image
series. This was motivated by the notion that measuring volumetric changes
in lung lesions can be useful as they can be good indicators of malignancy and
good predictors of response to therapy.

The images were part of the Public Lung Database provided by the Weill
Cornell Medical College. 53 nodules were available such that the nodule was
visible on at least three slices on both scans. These nodules were classified into
three categories: 27 nodules ranging in diameter from 4-24mm visible on two
1.25 mm slice scans with little observed size change, 13 nodules ranging in size
from approximately 8 to 30 mm, imaged using different scan slice thicknesses
to evaluate the effect of slice thickness and 9 nodules ranging from 5-14 mm
on two 1.25 mm scans exhibiting a large size change. The participants were
provided with information to locate the nodule pairs. The participants were
to submit the volumetric change in nodule size for each volume pair, defined

as (V2−V1)
V1

where V1 and V2 are the volumes of the nodule on the initial and
subsequent scan.

22.4.3 Annotation, Classification and Detection

ImageCLEF IRMA

The automatic annotation task at ImageCLEFmed ran from 2005 until
2009 [30]. The goal in this task was to automatically classify radiographs
using the Image Retrieval in Medical Applications (IRMA) code along for di-
mensions: acquisition modality, body orientation, body region, and biological
system. The IRMA code is a hierarchical code that can classify radiographs
to varying levels of specificity. In 2005, the goal was flat classification in to 57
classes while in 2006 the goal was again a flat classification into 116 unique
classes. Error rates based on the number of misclassified images was used as
the evaluation metric. In 2007 and 2008, the hierarchical IRMA code was used
where errors were penalized depending on the level of the hierarchy at which
they occurred. Typically, participants were provided 10,000-12,000 training
images and were to submit classification for 1000 test images. In 200912 , the
goal was to classify 2000 test images using the different classification schemes
used in 2005-2008, given a set of about 12,000 training images.

Automatic Nodule Detection

Lung cancer is a deadly cancer, often diagnosed based on lung CT’s. Algo-
rithms for the automated Computer Aided Detection (CAD) for lung nodules
are a popular area of research. The goal for the Automatic Nodule Detection
(ANODE)13 challenge in 2009 was the automated detection of lung nodules

11 http://www.via.cornell.edu/challenge/details/index.html
12 http://www.imageclef.org/2009/medanno/
13 http://anode09.isi.uu.nl/
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based on CT scans. The database consisted of 55 studies. Of these, five were
annotated by expert radiologists and were used for training. Two raters (one
expert and one trainee) reviewed all the scans, and a third rater was used to
resolve disputes. The evaluation was based on a hit rate metric using the 2000
most suspicious hits. The results were obtained using Free-Response Receiver
Operating Characteristic (FROC) curves.

Another effort towards the detection of lung nodules in the Lung Imaging
Database Consortium (LIDC). The LIDC initiative provides a database of
annotated lung CT images, where each image is annotated by four clinicians.
This publicly available database enables researchers to compare the output
of various Computer Aided Detection (CAD) algorithms with the manual
annotations.

22.4.4 Information Retrieval

In information retrieval, evaluation campaigns began nearly fifty ago with
the Cranfield tests [23]. These experiments defined the necessity for a doc-
ument collection, query tasks and ground truth for evaluation, and set the
stage for much of what was to follow. The SMART experiments [24] then
further systematized evaluation in the domain. The role model for most cur-
rent evaluation campaign is clearly TREC [25], a series of conferences that
started in 1992 and has ever since organized a variety of evaluation campaigns
in diverse areas of information retrieval. A benchmark for multilingual infor-
mation retrieval is CLEF [31], which started within TREC and has been an
independent workshop since 2000, attracting over 200 participants in 2009.
In addition to its other components, CLEF includes an image retrieval track
(called ImageCLEF) which features a medical image retrieval task [32].

22.4.5 Image Retrieval

Image retrieval is a burgeoning area of research in medical informatics [33].
Effective image annotation and retrieval can be useful in the clinical care of
patients, education and research. Many areas of medicine, such as radiology,
dermatology, and pathology are visually-oriented, yet surprisingly little re-
search has been done investigating how clinicians use and find images [6]. In
particular, medical image retrieval techniques and systems are underdeveloped
in medicine when compared with their textual cousins [34].

ImageCLEF14, first began in 2003 as a response to the need for standard-
ized test collections and evaluation forums and has grown to become today a
pre-eminent venue for image retrieval evaluation. ImageCLEF itself also in-
cludes several sub-tracks concerned with various aspects of image retrieval;
one of these tracks is the medical retrieval task. This medical retrieval task
was first run in 2004, and has been repeated each year since.

14 http://www.imageclef.org/
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The medical image retrieval track’s test collection began with a teaching
database of 8,000 images. For the first several years, the ImageCLEF medical
retrieval test collection was an amalgamation of several teaching case files in
English, French, and German. By 2007, it had grown to a collection of over
66,000 images from several teaching collections, as well as a set of topics that
were known to be well-suited for textual, visual or mixed retrieval methods.

In 2008, images from the medical literature were used for the first time,
moving the task one step closer towards applications that could be of interest
in clinical scenarios. Both in 2008 and 2009, the Radiological Society of North
America (RSNA) made a subset of its journals’ image collections available
for use by participants in the ImageCLEF campaign. The 2009 database con-
tained a total of 74,902 images, the largest collection yet. All images were
taken from the journals Radiology and Radiographics, both published by the
RSNA. The ImageCLEF collection is similar in composition to that powering
the Goldminer15 search system. This collection constitutes an important body
of medical knowledge from the peer-reviewed scientific literature, and includes
high quality images with textual annotations.

Images are associated with specific published journal articles, and as such
may represent either an entire figure or a component of a larger figure. In either
event, the image annotations in the collection contain the appropriate caption
text. These high-quality annotations enable textual searching in addition to
content-based retrieval using the image’s visual features. Furthermore, as the
PubMed IDs of each image’s article are also part of the collection, participants
may access bibliographic metadata such as the Medical Subject Headings
(MeSH) terms created by the National Library of Medicine for PubMed.

A major goal of ImageCLEF has been to foster development and growth
of multi-modal retrieval techniques: i.e., retrieval techniques that combine
visual, textual, and other methods to improve retrieval performance. Tradi-
tionally, image retrieval systems have been primarily text-based, relying on
the textual annotations or captions associated with images [35]. Several com-
mercial systems, such as Google Images16 and Yahoo! images17, employ this
approach. Although text-based information retrieval methods are mature and
well-researched, they are limited by the quality of the annotations applied
to the images. There are other important limitations facing traditional text
retrieval techniques when applied to image annotations:

• image annotations are subjective and context sensitive, and can be quite
limited in scope or even completely absent;

• manually annotating images is labor- and time-intensive, and can be very
error prone;

• image annotations are very noisy if they are automatically extracted from
the surrounding text; and

15 http://goldmier.arrs.org/
16 http://images.google.com/
17 http://images.yahoo.com/
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• there is far more information in an image than can be abstracted using a
limited number of words.

Advances in techniques in computer vision have led to a second family of meth-
ods for image retrieval: Content-Based Image Retrieval (CBIR). In a CBIR
system, the visual contents of the image itself are mathematically abstracted
and compared to similar abstractions of all images in the database. These
visual features often include the color, shape or texture of images. Typically,
such systems present the user with an ordered list of images that are visually
most similar to the sample (or query) image.

However, purely visual methods have been shown to have limitations and
typically suffer from poor performance for many clinical tasks [36]. On the
other hand, combining text- and image-based methods has shown promising
results [37]

Several user studies have been performed to study the image searching
behavior of clinicians [6, 38]. These studies have been used to inform the
development of the tasks over the years, particularly to help ImageCLEF’s
organizers identify realistic search topics.

The goal in creating search topics for the ImageCLEF medical retrieval
task has been to identify typical information needs for a variety of users. In
the past, we have used search logs from different medical websites to iden-
tify topics [39, 40]. The starting point for the 2009 topics was a user study
conducted at Oregon Health & Science University (OHSU) during early 2009.
This study was conducted with 37 medical practitioners in order to under-
stand their needs, both met and unmet, regarding medical image retrieval.
During the study, participants were given the opportunity to use a variety of
medical and general-purpose image retrieval systems, and were asked to re-
port their search queries. In total, the 37 participants used the demonstrated
systems to perform a total of 95 searches using textual queries in English.
We randomly selected 25 candidate queries from the 95 searches to create the
topics for ImageCLEFmed 2009. We added to each candidate query 2 to 4
sample images from the previous collections of ImageCLEFmed, which rep-
resented visual queries for content-based retrieval. Additionally, we provided
French and German translations of the original textual description for each
topic to allow for an evaluation of multilingual retrieval.

Finally, the resulting set of topics was categorized into three groups: 10
visual topics, 10 mixed topics, and 5 semantic topics. This classification was
performed by the organizers based on their knowledge of the capabilities of
visual and textual search techniques, prior experience with the performance
of textual and visual systems at ImageCLEF medical retrieval task, and their
familiarity with the test collection. The entire set of topics was finally approved
by a physician. An example of a visual topic can be seen in Fig. 22.2 while
that of a textual topic is shown in Fig. 22.2.

In 2009, we also introduced case-based topics [4] as part of an exploratory
task whose goal was to generate search topics that are potentially more aligned
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Fig. 22.2. A sample image of a vi-

sual retrieval task. MR images of a
rotator cuff

with the information needs of an actual clinician in practice. These topics were
meant to simulate the use case of a clinician who is diagnosing a difficult case,
and has information about the patient’s demographics, list of present symp-
toms, and imaging studies, but not the patient’s final diagnosis. Providing
this clinician with articles from the literature that deal with cases similar
to the case (s)he is working on (similar based on images and other clinical
data on the patient) could be a valuable aide to creating differential diagnosis
or identifying treatment options, for example with case-based reasoning [41].
These case-based search topics were created based on cases from the teach-
ing file Casimage, which contains cases (including images) from radiological
practice. Ten cases were pre-selected, and a search with the final diagnosis
was performed against the 2009 ImageCLEF data set to make sure that there
were at least a few matching articles. Five topics were finally chosen. The

(a) (b)

Fig. 22.3. A sample image of a textual retrieval task. Images of pituitary
ademoma
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diagnoses and all information about the chosen treatment were removed from
the cases to simulate the aforementioned situation of a clinician dealing with
a difficult diagnosis. However, in order to make the judging more consistent,
the relevance judges were provided with the original diagnosis for each case.

During 2008 and 2009, relevance judgments were made by a panel of clin-
icians using a web-based interface. Due to the unfeasibility of manually re-
viewing 74,900 images for 30 topics, the organizers used a TREC-style pooling
system to reduce the number of candidate images for each topic to approxi-
mately 1,000 by combining the top 40 images from each of the participants’
runs. Each judge was responsible for between three to five topics, and sixteen
of the thirty topics were judged multiple times (in order to allow evaluation of
inter-rater agreement). For the image-based topics, each judge was presented
with the topic as well as several sample images.

For the case-based topics, the judge was shown the original case description
and several images appearing in the original article’s text. Besides a short
description for the judgments, a full document was prepared to describe the
judging process, including what should be regarded as relevant versus non-
relevant. A ternary judgment scheme was used, wherein each image in each
pool was judged to be “relevant”, “partly relevant”, or “non-relevant”. Images
clearly corresponding to all criteria were judged as “relevant”, images whose
relevance could not be safely confirmed but could still be possible were marked
as “partly relevant”, and images for which one or more criteria of the topic
were not met were marked as “non-relevant”. Judges were instructed in these
criteria and results were manually verified during the judgment process.

As mentioned, we had a sufficient number of judges to perform multiple
judgements on many topics, both image-based and case-based. Inter-rater
agreement was assessed using the kappa metric, given as:

κ =
Pr(a)− Pr(e)

1− Pr(e)
, (22.16)

where Pr(e) is the observed agreement between judges, and Pr(a) the ex-
pected (random) agreement. It is generally accepted that a κ ¿ 0.7 is good
and sufficient for an evaluation. The score is calculated using a 2x2 table for
the relevances of images or articles. These were calculated using both lenient
and strict judgment rules. Under the lenient rules, a partly relevant judgment
was counted as relevant; under strict rules, partly relevant judgments were
considered to be non-relevant. In general, the agreement between the judges
was fairly high (with a few exceptions), and our 2009 overall average κ is
similar to that found during other evaluation campaigns.

22.5 Lessons Learned

Conducting the ImageCLEF campaigns has been a great learning opportu-
nity for the organizers. Most evaluation campaigns are run by volunteers with
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meager resources. However, a surprising number of researchers willingly do-
nate their data, time and expertise towards these efforts as they truly believe
that progress in the field can only come as a result of these endeavors.

Participants have been quite loyal for the ImageCLEFmed challenge, an
annual challenge that has been running since 2004. Many groups have partic-
ipated for four or more years although each year sees newcomers, a welcome
addition. A large proportion of participants are actually PhD students who
obtain valuable data to validate their approaches. The participants have been
quite cooperative, both at the workshops and during the year. They have pro-
vided baseline runs or allowed their runs to be used by other in collaborative
efforts. Many of the new organizers were participants, thus ensuring a steady
stream of new volunteers willing to carry on the mantle of those that have
move away. By comparing the relative performance of a baseline run through
the years, we have seen the significant advances being made in the field.

22.6 Conclusions

Evaluation is an important facet of the process of developing algorithms for
medical image analysis including for segmentation, registration and retrieval.
In order to be able to measure improvements resulting from new research
in computer vision, image processing and machine learning when applied to
medical imaging tasks, it is important to have established benchmarks against
which their performance can be compared. Computer scientists are making
huge strides in computer vision, image processing and machine learning, and
clinicians and hospitals are creating vast quantities of images each day. How-
ever, it can still be quite difficult for the researchers developing the algorithms
to have access to high quality, well curated data and ground truth. Similarly,
it can also be quite difficult for clinicians to get access to state-of-the-art
algorithms that might be helpful in improving their efficiency, easing their
workflow and reducing variability.

Evaluation campaigns have provided a forum to bridge this gap by provid-
ing large, realistic and well annotated datasets, ground truth, meaningful met-
rics geared specifically for the clinical task, organizational resources including
informational websites and software for evaluation and often workshops for
researchers to present their results and have discussions. Examples of success-
ful evaluation campaigns include ImageCLEFmed for medical image retrieval
and annotation, the VOLCANO challenge to assess volumetric changes in
lung nodules, the EXACT airway extraction challenge and the popular set
of MICCAI segmentation grand challenges. Other efforts to provide publicly
accessible data and ground truth include the LIDC set of images for the detec-
tion of chest nodules based on CTs, the CT and PET images from the ADNI
initiative, and the RIRE and NIREP efforts to evaluate registration. Many
of these efforts are continuing beyond the workshops by still enabling partic-
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ipants to download data, submit results, evaluating and posting the results,
thereby providing venues for the progress in the field to be documented.
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List of Acronyms

ADNI Alzheimer’s Disease Neuroimaging Initiative
ANODE Automatic Nodule Detection
AVD Absolute Volumetric Difference
CAD Computer Aided Detection
CBIR Content-Based Image Retrieval
CICE Cumulative Inverse Consistency Error
CLEF Cross Language Evaluation Forum
CSF Cereborspinal Fluid
CTA CT angiography
CTE Cumulative Transitive Error
EXACT Extraction of Airways from CT
FND False Negative Dice
FPD False Positive Dice
FROC Free-Response Receiver Operating Characteristic
GTC Generalized Tanimoto Coefficients
HD Hausdorff Distance
IBSR Internet Brain Segmentations Repository
IR Information Retrieval
IRMA Image Retrieval in Medical Applications
LIDC Lung Imaging Database Consortium,
MAP Mean Average Precision
MeSH Medical Subject Headings
MICCAI Medical Image Computing and Computer Assisted

Intervention
MRI Magnetic Resonance Imaging
MS Multiple Sclerosis
NIH National Institutes of Health
NIREP Non-rigid Image Registration Evaluation Project
RIRE Retrospective Image Registration Evaluation
ROI Regions of Interest
RREP Retrospective Registration Evaluation Project
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RSNA Radiological Society of North America
SMART System for the Mechanical Analysis and Retrieval

of Text
STAPLE Simultaneous Truth and Performance Level Esti-

mation
TREC Text Retrieval Conference
VD Volumetric Difference
VOLCANO Volume Change Analysis of Nodules



Index

ADNI, 3
ANODE, 15
atlas-based segmentation, 12
AVD, 8

CAD, 15, 16
CBIR, 18
checkerboard pattern, 6
CICE, 6
CLEF, 3
clinician, 4
computer scientist, 4
consistency error, 13
Cranfield methodology, 10
CSF, 3
CTA, 14
CTE, 6

deformation field, 7
dermatology, 16
Dice coefficient, 8

early precision, 4
effectiveness measure, 11
Euclidean norm, 6
EXACT, 14
expectation-maximization algorithm, 7

F-measure, 11
F-score, 11
FND, 8
FPD, 8
FROC, 16
fuzzy segmentation, 9

fuzzy set theory, 9

gold standard, 4, 8, 13
ground truth, 4, 7, 12
GTC, 9

Hausdorff distance, 10
HD, 9

IBSR, 13
image annotation, 16
image fusion, 6
imaging scientist, 4
inter-observer agreement, 4, 8
inter-observer variability, 10
intra-observer variability, 10
IR, 10
IRMA, 15

Jaccard coefficient, 8, 13
Jaccard similarity, 9

kappa coefficient, 8
kappa metric, 20

LIDC, 3, 4, 16

MAP, 12
medical informatics, 16
medical physicist, 4
MeSH, 17
MICCAI, 3
motion tracking, 12
MRI, 3
MS, 14
multi-modal registration, 12
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NIH, 3
NIREP, 12
non-rigid registration, 12
non-symmetric measure, 4

observer-machine variability, 10
over-Segmentation, 8
over-segmentation, 2
overlap measure, 9

pathology, 16
Pearson correlation, 14
positive predictive value, 10
precision, 10

radiology, 16
recall, 10
recall-oriented measure, 4
relative overlap, 13
RIRE, 12
ROI, 4
RREP, 12
RSNA, 17

sensitivity, 11
serial registration, 12
SMART, 10
STAPLE, 7
surface distances, 4

transitivity error, 13
transitivity property, 6
TREC, 10

under-segmentation, 2, 8
United States, 3
University of Iowa, 13

Valmet software, 10
Vanderbilt Database, 12
VD, 7
Venn diagram, 8
VOLCANO, 15
volumetric overlap, 4

Williams index, 9




