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A B S T R A C T

Objective: We investigate the influence of the clinical context of high-resolution computed tomography

(HRCT) images of the chest on tissue classification.

Methods and materials: 2D regions of interest in HRCT axial slices from patients affected with an

interstitial lung disease are automatically classified into five classes of lung tissue. Relevance of the

clinical parameters is studied before fusing them with visual attributes. Two multimedia fusion

techniques are compared: early versus late fusion. Early fusion concatenates features in one single

vector, yielding a true multimedia feature space. Late fusion consisting of the combination of the

probability outputs of two support vector machines.

Results and conclusion: The late fusion scheme allowed a maximum of 84% correct predictions of testing

instances among the five classes of lung tissue. This represents a significant improvement of 10%

compared to a pure visual-based classification. Moreover, the late fusion scheme showed high

robustness to the number of clinical parameters used, which suggests that it is appropriate for mining

clinical attributes with missing values in clinical routine.

� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

The interpretation of high-resolution computed tomography
(HRCT) images of the chest from patients affected with interstitial
lung diseases (ILDs) is challenging and time-consuming even for
experienced radiologists. The term interstitial lung disease
accounts for around 150 illnesses of which many forms are rare.
Images play an important role for confirming the diagnosis and
patients may not require surgical lung biopsy when the clinical and
radiographic impression is consistent with a safe diagnosis [1]. The
most common imaging procedure used is the chest X-ray because
of its low cost and weak radiation exposure. However, chest X-rays
are negative in a large proportion of diseases and often unspecific
where HRCT of the chest contains essential visual data for the
characterization of lung tissue patterns associated with ILDs [2].
The three-dimensional form of HRCT data requires significant
reading time, effort, and experience for a correct interpretation.
Owing to this intrinsic complexity of the interpretation of HRCTs,
an image-based computerized diagnostic aid tool (CAD) can bring
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quick and precious information, particularly to less experienced
radiologists and non-chest experts [3–5]. Moreover, a radiologist’s
ability to interpret HRCT images is likely to change based on the
domain-specific experience, human factors and time of the day
where computerized image analysis is 100% reproducible.

1.1. The clinical context of HRCT images

When analyzing an image, one interprets its content according
to a given context. This is particularly true when analyzing
medical images. Radiologists do never interpret HRCT images
without taking into account the clinical context. For example,
discovering some fibrotic findings in a lung belonging to an 80-
year-old patient is not as surprising as finding some in a lung of a
25-years-old young person. Several clinical parameters – in
particular the age of the patient (see Fig. 1) – have a major
influence on the visual aspect (density) of HRCT images of the
chest [6,7]. In Fig. 1, one can see that healthy tissue from the 88-
year-old man has lower mean density with more pre-fibrotic
lesions compared to the homogeneous healthy tissue of the 25-
year-old man. To accurately analyze HRCT images an image-based
computerized diagnostic aid system for ILDs must integrate the
clinical context of the images.
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Fig. 1. Healthy tissue from a 25-year-old man on the left, and from an 88-year-old

man on the right. Both images have identical window level settings.

1 http://www.imageclef.org/ (Accessed: 28 August 2009).
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1.2. Contextual image analysis

Although fundamental in almost every medical field, the
context is rarely used in computer vision applications. On the
one hand, collecting contextual information beside images is
usually time-consuming, requiring the help of a specialist. On the
other hand, a high-level of knowledge of the application domain is
required to find relevant contextual parameters [8]. The selection
of parameters for contextual medical image analysis has to be
carried out based on domain-specific literature along with
knowledge bases of computer-based diagnostic decision support
systems.

Contextual image analysis implies the fusion of multimodal
information sources. When carrying out contextual image analysis
of lung tissue in HRCT data, the visual information extracted from
HRCT image series is combined with the clinical parameters of the
corresponding patient. Integrating information from multiple
modalities consists of two major steps [9]. Firstly, the best
modalities have to be identified. The best modalities have to be
informative according to the considered classes along with being
complementary among each other. Each modality k is represented
by a set of features vk. Secondly, the information from the best
modalities must be combined with an optimal scheme in order to
allow for synergy. The so-called ‘‘fusion’’ can be carried out
according to two main strategies [10,11]:

� early fusion, where features are concatenated into one vector
v ¼ ðv1; . . . ; vkÞ to create one unique feature space,
� late fusion, where multiple classifiers hk are built on each

modality fv1; . . . ; vkg and the fusion is carried out at the decision
level.

Early fusion allows for a true multimedia (images and clinical
data) representation. One single classifier can learn from all
information sources. However this method is confronted with the
curse of dimensionality because the dimension of the resulting
feature space v is equal to the sum of the dimensions of the
subspaces vk. Even associated with feature weighting, high-
dimensional spaces tend to scatter the homogeneous clusters of
instances belonging to the same class. This is particularly true
when negative synergies occur among features [12,13].

Combining classifiers has been a very active domain over the past
ten years [14,15]. Wide interest for the latter mainly relies on the
assumption that the heterogeneity of classifiers hk leads to better
results [16]. Late fusion is a special case of classifier combination
where heterogeneity occurs in the input spaces. It allows for a
reduction of the data dimensionality by dividing the feature space
without neglecting information contained in features that would be
discarded by classical feature selection methods [17].
1.3. Related work

Context has been used in content-based image retrieval
(CBIR) where information from textual annotations of images
was fused with image features [18] (i.e. grey-level histograms
and texture features). In [19], a CBIR system combined visual
statistics with textual statistics directly in the feature vector
space representation. Inter-media medical image retrieval was
carried out in [20] using textual features semantically parsed
and described with the Unified Medical Language System
(UMLS) along with color and texture features. The visual and
textual information was combined in the calculation of the
similarity measure. Investigation of the effectiveness of com-
bining text and image for retrieval including medical image
retrieval is one of the main goals of the CBIR benchmarking
campaign ImageCLEF1 [21,22].

Combined decision of classifiers constructed on sequentially
selected sets of features were tested on four datasets including
medical data in [17]. Best results were obtained when the
combination approach was applied on top of feature selection.
Unfortunately, experiments were carried out with homogeneous
datasets which did not contain heterogeneous features such as
visual, textual, audio, etc.

Early fusion of clinical parameters and genetic factors was used
to predict the risk of coronary artery disease in [23]. Interaction
among features were studied using Bayesian network representa-
tions. Although visually identified feature groups were in
accordance with medical knowledge, no quantitative analysis of
the interactions was performed.

A combination of radiologic findings on chest radiographs and
clinical parameters to provide probability output of 11 possible
ILDs using an artificial neural network is carried out in [24]. By
using these probabilities, radiologists were able to significantly
improve their diagnosing accuracies. However, automatic detec-
tion of relevant patterns in the chest radiographs was not
investigated.

Utilization of knowledge of disease location to improve
detection of fibrosis patterns in HRCT data was carried out in
[25]. The locations of the patterns showed to significantly improve
detection performance but require an accurate segmentation of the
anatomy of the lung.

Many image-based diagnostic aid systems for ILDs achieved
high classification accuracy of lung tissue patterns in HRCT data
[4,26,27] and showed to be effective in clinical routine [5]. Yet,
most of these systems are based on visual data only. To our
knowledge no system attempted to integrate clinical parameters
for automatic detection of lung tissue patterns associated with ILDs
in HRCT data. Texture analysis of lung images using Wavelet
frames was investigated in [28,29] and support vector machines
(SVM) showed to be optimal for the categorization of lung tissue
using quincunx Wavelet frames in [30]. In this paper, we study the
influence of the integration of the clinical context of HRCT images
on classification performance of 2D regions of interest (ROI) drawn
by two radiologists in axial slices from patients affected with an
ILD.

The paper is structured as follows. In Section 2, the dataset and
software used for evaluating the influence of the clinical context on
lung tissue classification in HRCT images is described. Section 3 is
divided into two parts. Section 3.1 describes the composition of the
multimodal feature space whereas the comparison of the fusing
techniques is carried out Section 3.2. Results are interpreted and
discussed in Section 4, future work is proposed in Section 5 and
final conclusions are drawn in Section 6.

http://www.onco-media.com/


Table 1
Distribution of the ROIs and patients per class of lung tissue pattern. Each patient may contain several kinds of lung tissue patterns.

Visual aspect

Class Healthy Emphysema Ground glass Fibrosis Micronodules

# of ROIs 63 58 148 312 155

# of patients 5 4 14 28 5
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2. Methods

The dataset used to investigate the influence of clinical
parameters on classification accuracy of lung tissue is part of an
internal multimedia database of ILD cases containing HRCT
images created in Talisman.2 99 Relevant clinical parameters
were chosen according to the 15 most frequent ILDs [31] based on
the literature [32,33], along with knowledge bases of computer-
based diagnostic decision support systems. Discussions and
remarks from lung specialists, radiologists and the medical
informatics service (SIM3) at the University Hospitals of Geneva
(HUG) allowed an iterative review of the selected parameters as
well as standardized units and data format to be used. The
parameters that were not available from the electronic health
record (EHR) were removed. An HTML form and PHP scripts were
used to collect the clinical parameters and to store them into a
MySQL database. When multiples instances of clinical param-
eters (e.g. laboratory data) were available in the EHR, the instance
as close as possible to HRCT examinations was retained. 96
Patients with confirmed diagnosis were retrospectively collected
at the HUG between 2003 and 2006. For each patient, a physician
filled as many clinical parameters as possible and a total of 1104
ROIs of lung tissue patterns were drawn in full-resolution DICOM
images by two experienced radiologists. The slice thickness of the
images is limited to 1 mm as this is the current clinical protocol. A
graphical user interface implemented in Java was developed in
order to meet the needs of the radiologists for the various
annotation tasks.

736 ROIs from healthy and four pathologic lung tissue patterns
belonging to 48 patients with filled clinical parameters were
selected for this study (see Table 1). Patterns that are represented
by less than 4 patients are left aside. The selected patterns are
healthy, emphysema, ground glass, fibrosis and micronodules.
Distributions of the classes are highly imbalanced as the largest
class fibrosis contains 312 ROIs and the smallest class only 58 ROIs.
There is a mean of 147.2 ROIs per class.

Implementation of the SVMs’ C-support vector classification is
taken from the open source Java library Weka4 using a wrapper for
LIBSVM.5 The image feature extraction and the optimization of
SVMs is implemented in Java. Quincunx Wavelet frames are
implemented in Java [34].

3. Results

The first part of this section describes the composition of the
features in each modality used for the classification of the lung
tissue patterns. The second part describes and details the results of
the fusion of the two modalities.
2 TALISMAN: Texture Analysis of Lung ImageS for Medical diagnostic AssistaNce,

http://www.sim.hcuge.ch/medgift/01_Talisman_EN.htm (Accessed: 28 August

2009).
3 http://www.sim.hcuge.ch/ (Accessed: 28 August 2009).
4 http://www.cs.waikato.ac.nz/ml/weka/ (Accessed: 28 August 2009).
5 http://www.csie.ntu.edu.tw/�cjlin/libsvm/ (Accessed: 28 August 2009).
3.1. Modalities

The two modalities used for classifying the lung tissue patterns
are made up of the visual information from HRCT images of the
chest as well as the corresponding textual information describing
the clinical state of the patient at the time of the disease episode.

3.1.1. Clinical features cn

The clinical parameters entered in the MySQL database are not
directly usable for data-mining. Pre-processing steps are required
to build a workable feature space. Nominal variables are divided
into binary features. Textual variables and binary variables that
contained one single modality are left aside. Since leaving aside
cases with missing values is not conceivable, variables with less
than 50% of the values filled were removed and average values
were substituted. unknown was used when the clinical parameter
was not detailed in the EHR. After having gathered binary and
continuous variables, the created clinical feature space contains 72
attributes (63 binary and 9 continuous). For example, over the 48
selected patients, the parameter host_HIV has 3 yes, 43 no and 2
unknown values. yes values are coded with 1, no with 0 and thus the
missing values are substituted by the mean: 0.065. The continuous
features were not discretized as it is preferable not to group their
values together into categories with a further purpose of
separating clusters of instances in the feature space. The mean
filling rate of the retained attributes is 88.7%.

3.1.2. Visual features tm

Visual features consist of grey level features with 22 bins of
grey-level histograms of Hounsfield Units (H.U.) within the ROIs,
along with texture features using quincunx Wavelet frame (QWF)
coefficients extracted at 8 scales. The distributions of the wavelet
coefficients in each subband i are characterized through the
parameters of mixtures of two Gaussians. With fixed means
mi

1;2 ¼ mi, the standard-deviations si
1;2 (si

1 >si
2) are estimated

using the expectation-maximization (EM) algorithm. An additional
feature airpix measuring the number of pixels of the ROI with value
inferior to �1000 H.U. (which corresponds to the density of air) is
used. In total, the visual feature set is composed of 47 attributes. A
complete description and evaluation of the visual feature space can
be found in [29].

3.2. Combining features: early versus late fusion

In order to study the effect of the integration of the clinical
context of HRCT images on the classification accuracy of the lung
tissue patterns, optimized SVMs with a Gaussian kernel are used to
categorize ROIs from the multimodal feature space. SVMs with a
Gaussian kernel have shown to be effective to categorize lung
tissue patterns from visual features in [30] and are adapted to mine
clinical parameters as shown in [35]. Two methods for combining
visual and clinical attributes are compared: early versus late fusion
(Sections 3.2.2 and 3.2.3). The relevance of clinical attributes is
studied in Section 3.2.1.

http://www.onco-media.com/
http://www.onco-media.com/
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Fig. 2. Correlation of IGratio
and Asingle .
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3.2.1. Ranking the clinical attributes

Integrating the clinical context in lung tissue classification
implicitly assumes that clinical parameters contain relevant
information to predict the types of lung tissue contained in HRCT
image series of a patient affected with an ILD. Although parameters
such as age are clearly related to the visual aspect of the lung tissue
(see Section 1.1), dependencies between clinical attributes and
classes of lung tissue must be investigated before any fusion with
the visual features. Indeed, due to missing values, binarization or
irrelevance according to the studied diseases, some features might
introduce noise by scattering homogeneous clusters of instances in
the feature space. High presence of binary attributes increases the
risk of obtaining XOR configurations of instances, which leads to
highly non-linear decision boundaries. Moreover, it is preferable to
keep as few as possible features to limit the curse of dimensionali-
ty, especially for early fusion. A feature ranking is thus required to
build an effective set of attributes.

Two measures are compared in their ability to rank the clinical
attributes for lung tissue classification: the information gain ratio
IGratio

and the single testing accuracy Asingle. IGratio
is derived from the

information gain measure IG originally used by Quinlan in decision
trees in [36]. The information gain IGðYjXÞ of a given attribute X
Table 2
List of the first 20 clinical attributes with highest Asingle when combined with visual fea

LDH: serum lactate dehydrogenase.

Rank Asingle IGratio
Name

1 0.813 0.403 laborato

2 0.809 0.421 age

3 0.796 0.438 laborato

4 0.794 0.193 past_me

5 0.793 0.549 findings

6 0.784 0.519 past_me

7 0.779 0.469 findings

8 0.779 0.225 medicat

9 0.778 0.218 host_dia

10 0.763 0.227 biopsy_b

11 0.759 0.239 past_me

12 0.758 0.261 past_me

13 0.754 0.237 past_me

14 0.752 0.124 findings

15 0.751 0.506 host_che

16 0.746 0.182 past_me

17 0.745 0.192 findings

18 0.745 0.227 biopsy_b

19 0.745 0.361 laborato

20 0.743 0.52 host_hem
with respect to the class attribute Y quantifies the change in
information entropy when the value of X is revealed:

IGðY jXÞ ¼ HðYÞ � HðY jXÞ (1)

The information entropy H(Y) measures the uncertainty about the
value of Y and the conditional information entropy H(YjX)
measures the uncertainty about the value of Y when the value
of X is known:

HðYÞ ¼ �
X
y2Y

pðyÞ log pðyÞ (2)

HðY jXÞ ¼ �
X

x2x;y2Y
pðx; yÞ log pðyjxÞ (3)

The information gain ratio IGratio
is derived from IG using

IGratio
ðY jXÞ ¼ IGðYjXÞ

�
Pl

i¼1 jTij=jTj logðjTij=jTjÞ
(4)

with T the training set and l the number of possible values of X.
Compared to IG the gain ratio will not give advantage to attributes
with a high range of possible values [37,38]. As the clinical feature
space is populated with binary as well as continuous attributes, it
is highly preferable to use the IGratio

for ranking. Another measure
proposed for ranking the clinical attributes is the single testing
accuracy Asingle. Asingle is defined as the classification accuracy with
SVMs (see Section 3.2.4) based on a feature vector concatenating
all visual features tm with the studied clinical feature cn:

v ¼ ðt1 . . . tM cnÞ (5)

The correlation of IGratio
and Asingle obtained using the experimental

setup described in Section 3.2.4 is studied in Fig. 2. Table 2 lists the
first 20 clinical attributes with highest Asingle value. The correlation
matrix of the feature space containing the visual features along
with the first 20 clinical attributes is shown in Fig. 3.

3.2.2. Early fusion: feature concatenation

In order to create a multimodal feature space, clinical attributes
and visual features are normalized and concatenated into one
single feature vector v as follows:

v ¼ ðt1 . . . tM c1 . . . cNÞ (6)

with tm, m2 ½1; M� the visual features and cn, n2 ½1; N� the clinical
attributes. Using all 72 clinical attributes, the maximum
tures. Abbreviations: HTA: arterial hypertension, subOAP: acute pulmonary edema,

Type

ry_hematocrit Continuous

Continuous

ry_hemoglobin Continuous

dical_allergy Binary

_physical_generals_lymph binary

dical_lymphom Binary

_physical_generals_fever Binary

ion_cordarone Binary

betes Binary

ronchoscopy_transbronchial_eosinophil Binary

dical_HTA Binary

dical_dyspnea_attack Binary

dical_subOAP Binary

_physical_respiratory_tachypnea Binary

motherapy Binary

dical_wheezing Binary

_physical_abdominals_liver Binary

ronchoscopy_transbronchial_interstitial_fibrosis Binary

ry_LDH Continuous

opathy Binary



Fig. 3. Correlation matrix of the combined feature space. Indexes of the clinical parameters corresponds to their rank described in Table 2.

Fig. 4. Classification scheme for late fusion. Two expert SVM classifiers ht and hc

output probabilities pkðw jÞ which are multiplied to obtain the final probability of

each class wj.

Fig. 5. Classification accuracies for class healthy.
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dimensionality of the multimodal feature space reaches 119 with
56 continuous and 63 binary features. v is used as input of SVMs
which directly output the predicted class using one versus one
multiclass approach. Testing accuracies are obtained using the
experimental setup described in Section 3.2.4.

3.2.3. Late fusion: combination of SVM classifiers

Two SVM classifiers ht and hc are trained using visual features t

and clinical attributes c respectively. Attributes in t and c are
normalized (within each group) in order to give equal importance
to each of them. Both SVM output probabilities pt and pc

using pairwise coupling [39]. For each class wj ( j ¼ 1; . . . ;5),
probabilities are multiplied to compute final probability
pðw jÞ ¼ ptðw jÞ � pcðw jÞ. The final predicted class w j is given by
argmax j pðw jÞ. Using the product of probabilities for predicting
the final class assumes that the modalities t and c are conditionally
statistically independent [14,40], which is admissible as mean
correlation value rmean of each feature pair (tm, cn) is equal to
0.0143 (see Fig. 3). The late fusion scheme is summarized in Fig. 4.

Smaller feature subspaces have the advantage to reduce the
computational complexity for solving the quadratic problem of
finding the maximum margin hyperplane of SVMs. Moreover the
subspaces can be processed in parallel to allow for faster training of
the SVMs.

3.2.4. Experimental setup

In order to test the influence of clinical parameters on
classification accuracy of the 2D ROIs, a leave-one-patient-out
cross-validation was used. The latter is in accordance with a
clinical usage of the CAD. Each of the ROIs belonging to one same
patient are left aside for testing and all remaining ROIs are used to
train and optimize the SVMs. Indeed, the training set is used both
for grid search for optimal parameters and adjustment of the
maximum-margin hyperplane of the SVMs. Optimized parameters
of the SVM are the cost of the errors C and the width s of the
Gaussian kernel. A grid search is carried out within the intervals
C 2 ½1; 100� and s 2 ½10�2; 102�. For every coordinate of the grid, a
10-fold cross-validation (CV) is carried out on the training set.
Optimal parameters ðCo pt ;so ptÞ that allowed best mean CV
accuracy Acv are used to train the final model on the entire



Fig. 6. Accuracies for class emphysema. Fig. 9. Accuracies for class micronodules.

Fig. 7. Accuracies for class ground glass.
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training set. A preliminary coarse grid search was performed to
locate regions of the space with high Acv values.

As the toughness of the classification task can strongly vary
depending on the draw of the testing patient, the global
experimentation is repeated for all 48 patients to obtain reliable
accuracy values. In order to study the optimal number n of clinical
attributes to be used, mean classification accuracies over the 48
patients are computed for each n2 ½1; 72�, with clinical attributes
ordered by Asingle values (see Section 4.1). Mean classification
accuracies according to n obtained with the test set using visual
features only, clinical features only and combined features with
Fig. 8. Accuracies for class fibrosis.
early and late fusion are shown in Figs. 5–9 for each class. Global
accuracies of each method are summarized in Fig. 10. Mean
accuracies over n values as well as classification based on principal
component analysis (PCA) are contained in Table 3. First, a PCA
transform is applied only on the clinical feature set cn to be used
with combined SVMs. Second, a PCA transform is applied on the
whole concatenated feature set. The number of principal
components P kept is chosen according to [41]:

P>1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

K � 1

r
(7)

with N the number of features and K the number of instances. In
both cases, P = 2 is chosen based on (7).

4. Interpretation

The first part of this section discusses the limitations of the
ranking measures IGratio

and Asingle. The second part verifies the
relevance of the 20 clinical attributes with highest Asingle value to
the medical domain. The third part studies the consistency and the
complementarity of the multimodal feature space through the
correlation matrix presented in Fig. 3. The last section interprets
the performances of classification of the two fusion designs
presented in Table 3 and Figs. 5–10.

4.1. Measures for ranking

Fig. 2 shows that IGratio
is little correlated to both Asingle and

testing accuracy obtained with each single-handed clinical
Fig. 10. Global classification accuracies.



Table 3
Averaged accuracies obtained with the various techniques. Best performances are highlighted in bold.

Visual features Clinical features Concatenated

features

Combined

SVMs

Combined SVMs,

PCA on clinical features

PCA on concatenated

features

Healthy 0.46 0.01 0.19 0.43 0.48 0.22

Emphysema 0.64 0.08 0.26 0.43 0.47 0.78
Ground glass 0.57 0.56 0.6 0.71 0.62 0.5

Fibrosis 0.91 0.77 0.95 0.95 0.95 0.87

Micronodules 0.68 0.8 0.86 0.83 0.45 0.21

Global 0.74 0.61 0.74 0.79 0.72 0.58
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parameter. Pearson’s coefficient of regression R2 is below 0.25 for
both comparisons. Even if Asingle is averaged over 30 experiments,
the values obtained still have high variance according to the
drawdowns of the training and testing sets. This is a first
explication for having low values of R2. A second explication
comes with the definition of IGratio

which measures the relevance of
each separated single attribute. One feature generally distin-
guishes classes in combination with other features [42], which
suggests that IGratio

is not convenient to rank the clinical attributes
with a purpose of fusing them with visual features. IGratio

is also
known to be unstable as it is very sensitive to small changes in the
training set [16] which is not desirable for ranking attributes from
a high-dimensional set of heterogeneous features. Due to the
several drawbacks of IGratio

, Asingle is used for ranking the clinical
attributes.

4.2. Relevance of clinical attributes

The relevance of the clinical attributes for classifying lung tissue
patterns in HRCT data is subject to many external factors such as
the availability of the parameters in the EHR, its binarization
required to be added to v and relevance according to the studied
diseases. Indeed a parameter such as the result of a lung biopsy is
obviously highly informative for characterizing the lung tissue but
is rarely carried out and available in the EHR. The categorization
and binarization has also major influence on the quality of clinical
data. At last, the relevance of the parameter according to the
studied diseases is of course primordial.

As observed in Section 1.1, the age has an important influence
on the visual aspect of lung tissue (see Fig. 1) and this is confirmed
by finding it at the 2nd rank in Table 2. The presence of the
parameter laboratory_hematocrit at the top of the list is a bit more
subtle. An explication for this is that large homogeneous regions of
air, characterizing emphysema patterns, will cause hypoxia and
may elicit an increased production of red blood cells by the kidney,
and thus increase the level of hematocrit. This phenomenon is
indeed commonly observed in cases affected with chronic
obstructive pulmonary disease (COPD) [43], characterized by
HRCT images showing emphysema patterns. The latter observation
is firmly confirmed by looking at the correlation matrix in Fig. 3,
where the first clinical parameter (laboratory_hematocrit) is
strongly anticorrelated with the means mi of the QWF and highly
correlated to airpix the number of pixels of air within the ROIs.
Indeed the means mi of the QWF have high values for inhomoge-
neous patterns, where emphysema patterns are very homogeneous
due to absence of lung tissue. Coherently, the 3rd rank is occupied
by the parameter laboratory_hemoglobin which is also involved in
the transport of oxygen. Indeed, hemoglobin is the protein
contained in red blood cells that is responsible for delivery of
oxygen to the tissues. To ensure adequate tissue oxygenation, a
sufficient hemoglobin level must be maintained.

The presences of parameters findings_physical_general_lymph

(enlargement of lymph node(s)) and findings_physical_general_f-

ever at the 5th and 7th ranks are not surprising as they usually
highlights the presence of a host illness. Finding the parameter
medication_cordarone at the 8th rank is in accordance with the
well-known side effect of the cordarone drug creating pulmonary
fibrosis on the long range.

4.3. Consistency of the multimodal feature space

The study of the correlation of the multimodal feature space is
carried out in Fig. 3. A first look at the correlation matrix shows that
clinical features have little correlation with the visual features. This
is confirmed as mean correlation rmean is equal to 0.0143. Several
homogeneous groups can be identified within the visual features.
The first histogram bin representing pixels values within
½�1050;�975� H.U. is of course highly correlated with airpix and
is anticorrelated with bins in range ½�900;�450�. This partly due to
patterns with low-density tissues (mostly emphysema) are mainly
composed by air and thus do contain few pulmonary tissue in
range ½�900;�450�. Globally, histograms are logically correlated in
contiguous pairs. Bins 14-20 form a strongly correlated group
(rmean ¼ 0:95) which shows that high-density tissues with H.U.
values in ½�75; 375� only occur together, most probably in fibrosis

and ground glass patterns. Bins 21 and 22 are very sparse and thus
not correlated to any other attribute. Within the QWF features, two
groups can be identified: the means mi and the standard-
deviations mi

1;2 . rmean is equal to �0.04 between the two groups.
Within the groups, it is not surprising to observe that means and
standard-deviations of two consecutive Wavelet subbands are
correlated.

Within the clinical parameters, 3 are highly correlated:
past_medical_lymphom, host_chemotherapy and host_hemopathy

(rmean ¼ 0:84). This is not surprising as past_medical_lymphom,
which stands for having had a lymphoma or leukemia, which is a
type of hemopathy (blood cancer), is treated with chemotherapy.
Those three parameters are all involved in ILDs as chemotherapy
can induce diverse injuries of the lung tissue [44].

4.4. Influence of the clinical context on lung tissue classification: early

versus late fusion

Influence of the clinical context of HRCT images on lung tissue
classification accuracy is studied in Figs. 5–10. As baseline
performance, let us consider the accuracy achieved by using
visual features only which has a mean global value of 74%. The last
line of Table 3 shows that integrating the clinical context of the
images allows for significant global improvements of the
classification accuracies. In the mean, 5% is gained in global
accuracy using combined SVMs compared to using visual features
only. Classification accuracies of combined modalities are on
average always superior to single modalities as observed in Table 3.
However, the clinical features can harm the classification accuracy
if they are not integrated using an appropriate fusing technique.
With early fusion, positive interactions between clinical and visual
features are allowed as shown in Fig. 9 and for low n values in Fig. 5.
However, concatenating all features in a single vector has the
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drawback that less informative attributes scatter homogeneous
clusters of instances in the feature space. Figs. 5, 6 and 10 confirm
this phenomenon, where the curve of the concatenated features
drops when adding more noisy clinical attributes with low
discriminatory power. Some clinical features have negative
interactions among themselves as well as with the visual ones.
Separating visual and clinical features for mining using late fusion
avoid interactions between the feature groups which show more
stable performances compared to early fusion. This is particularly
true when clinical attributes carry little information as it is the case
for classes healthy. Moreover, the combined SVMs show high
robustness towards the number n of clinical parameters used and
allowed the best accuracy of 84% correct predictions of testing
instances (ROIs) among the five classes of lung tissue with an
optimal number of clinical attributes n ¼ 35. Although the PCA
transform allows best results for classes where clinical attributes
have low discriminatory power (see Table 3), it does not improves
the global accuracy.

5. Future work

We believe that negative synergies still occur among features
using a late fusion scheme. Groups of features with positive
synergy [13], which allow for homogeneous clusters of instances
belonging to the same class have to be identified and mined into
separated subspaces. Indeed, part of the fluctuations of the
performances according to n are the results of interactions among
the various groups of features. An approach for identifying feature
groups with positive synergy based on mutual information is
described in [12]. Identifying the groups should also include
medical knowledge. A visual approach based on Bayesian networks
is proposed in [23].

6. Conclusions

In this paper, the influence of the clinical context on lung tissue
classification from HRCT data is investigated. Correlation analysis
of the multimedia feature space shows that the dataset is in
accordance with medical knowledge. Two fusion schemes of the
modalities were studied: early versus late fusion. The combination
of two SVM classifiers achieved highest classification accuracies
and allowed a mean of 79% and a maximum of 84% correct
predictions of testing instances among the five classes of lung
tissue. This represents a significant benefit of 10% compared to a
pure visual classification. Late fusion shows robustness towards
the number of clinical parameters used, which suggests that it is
appropriate for mining clinical attributes with missing values.
Accuracy values are trustworthy for further usage in clinical
routine as we never train and test with ROIs that belongs to the
same patient. In addition, the leave-one-patient-out cross-valida-
tion testing approach is in accordance with a clinical usage of the
CAD where the radiologist analyzes one patient at a time and the
system was trained with all the previously analyzed patients. We
believe that the late fusion scheme can still be improved by
identifying groups of attributes with high synergy and mining
them separately in order to preserve homogeneous clusters of
instances in the feature space. Moreover, the combination rules
among the modalities have to be investigated in order to allow
optimal complementarity of the modalities.
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