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Abstract

One of the difficulties in Language Recognition is the variabil-
ity of the speech signal due to speakers and channels. If channel
mismatch is too big and when different categories of channels
can be identified, one possibility is to build a separate language
recognition system for each category and then to fuse them to-
gether. This article uses a system selector that takes, for each
utterance, the scores of one of the channel-category dependent
systems. This selection is guided by a channel detector. We
analyze different ways to design such channel detectors: based
on cepstral features or on the Factor Analysis channel variabil-
ity term. The systems are evaluated in the context of NIST’s
LRE 2009 and run at 1.65% minCa.g for a subset of 8 lan-
guages and at 3.85% minCly.4 for the 23 language setup.
Index Terms: language recognition, channel, channel category,
fusion, factor analysis, channel detector.

1. Introduction

Automatic language recognition consists in processing a speech
signal to discover which language is used. Such systems can
be evaluated in identification mode, electing a given language
from a set of N languages, or, as for the work presented here,
in verification mode, detecting if a candidate language is used
in the input waveform. Significant progress has been made over
the last decades at different levels of information such as the
acoustic level [2, 4, 3, 10] and the phonotactic level [1, 2, 4].
A large deal of the progress has been stimulated by systematic
comparisons of systems through evaluation campaigns such as
the NIST Language Recognition Evaluations (LRE) in 1996,
2003, 2005, 2007 and 2009 [12].

A recurrent difficulty is in the fact that the speech signal
includes all sort of information that is not relevant for the task
of language recognition — like speaker and channel dependent
information. Speaker variability contains biometrics, emotion
and health and channel variability depends on the acquisition
and transmission procedures including background noise, mi-
crophone, transmission channel and encoding. Furthermore,
this non-useful information usually varies from session to ses-
sion and we propose here to qualify it as session dependent.

The feature extraction and modeling strategy should at-
tempt to focus on the language dependent information while
minimizing the effect of the speaker and session dependent in-
formation. There has been considerable progress on different
normalization techniques to achieve this in the feature extrac-
tion step (e.g. [5]) and the modeling of acoustic features with
session compensation [6, 10]. The solution is usually to use a
large set of training data including many speakers and having

session information that covers the one used in the testing con-
ditions. Despite all this, we still see a large sensitivity of the
models to a mismatch of channels [11]. For instance, NIST’s
Language Recognition Evaluation 2009 [12] is carried out in the
context of two rather different channel categories, namely the
traditional Conversational Telephone Speech (CTS) and phone
bandwidth segments of radio broadcasts (Voice Of America,
VOA). After solid improvements in speaker verification [7, 9],
the Factor Analysis (FA) approach to session compensation also
shows its usefulness in language recognition [10].

If we have rather different channel categories, one possi-
bility is to handle these categories separately and merge the
channel-category dependent systems at a later stage. This leads
to the idea to model CTS and VOA conditions separately and
then to merge these two systems. This fusion may be done
at different levels [11]: Pooling all data together since the be-
ginning (having thus just one common system), stacking FA’s
session compensation matrices in order to have a matrix with
a CTS specific and a VOA specific part or merging two com-
pletely channel-dependent systems only at score level.

A simple, but nevertheless effective way to merge such sys-
tems at score level is using a system selector. This means that,
for each test utterance, the scores of one or the other system are
taken (selected). Typically, such a system selector acts accord-
ing to the channel category detected in the test utterance and
selects the scores of the corresponding system. The work pre-
sented here investigates different ways to design channel detec-
tors in the context of such a system selector. More specifically,
we design channel detectors based on (shifted delta) cepstral
features, as well as on Factor Analysis level, were the term con-
taining the session and channel variability is used. This is a
simple, but novel idea, which at the same time also validates
the fundamental idea behind the FA approach.

Section 2 gives a description of the general working of our
FA systems along with the way they are evaluated. In Section 3,
we sketch the data that was used for training and for testing.
The different channel detectors under analysis are introduced in
Section 4. The results they yield are given in Section 5 and are
followed by conclusions and some lookout in Section 6.

2. GMM-UBM system with Factor Analysis

The first step of our training procedure is to compute a so-called
Universal Background Model (UBM), which is in our case a
language independent Gaussian Mixture Model (GMM). The
parameters of the model are estimated using a standard Expec-
tation Maximization algorithm by taking as much and as differ-
ent data as possible from a large set of languages.



2.1. GMM-UBM with Factor Analysis

Factor Analysis works in a super-vector space where mypm,
is the super-vector (SV) composed of the mean vectors of the
Gaussian mixtures concatenated together [9]. The basic Factor
Analysis (FA) formula can be stated as:

Mobserved = Mubm + Dylanguage + stession (1)

where Mopserved 15 the super-vector of expected means of the
observed data according to the UBM, Dy is the language spe-
cific term, and Ux represents the session variability, which is
included in the observed data and which has to be discarded
for the language model. The language dependent contribution
y is weighted by a language independent diagonal matrix D.
Factor Analysis assumes that the session dependent vector x
is located in a lower-dimensional subspace which is projected
back to super-vector space by the session compensation matrix
U which is rectangular (session and language independent).
Each utterance is thus decomposed into the global part
(mubm ), a language specificity (Dy) and some session variabil-
ity (Ux). Another way to express this is that mpm, is the cen-
troids of all training data, Dy is an averaged offset from these
centroids for each language and Uz is the residue correspond-
ing to the session variability inherent to every single utterance.

2.1.1. Training of the FA parameters

The session compensation matrix U is common to all lan-
guages. It is iteratively estimated using expectation maximiza-
tion (EM) algorithm. Each step, the different & session (variabil-
ity) vectors are estimated, then a Yjanguage 1S estimated for each
language (using the new z) and finally U is estimated globally,
based on these = and y. Since x and y also depend on U, the
process is iterated until convergence. The step by step algorithm
is described in more detail in [9].

At the last iteration, the m + Dyjanguage part of the factor
analysis formula (1) is injected back into the UBM to form the
language model. Mixture weights and covariances are taken un-
changed from UBM. In other words, this last step corresponds
somehow to a language specific MAP adaptation using session-
compensated data.

2.1.2. Testing using compensated models

We also apply session compensation in the testing stage. There
are two strategies for doing so. Either by removing the session
contribution from the acoustic vectors or by moving the model
parameters towards the unclean data injecting back the Ux term
to the previously stored language model. We underline here the
fact that x is estimated using statistics of the testing utterance
obtained through the UBM. We therefore have language mod-
els where parameters are changing from test utterance to test
utterance.

2.1.3. Channel dependent compensation

In the case we can distinguish different channel categories, the
Factor Analysis approach described above can be applied in a
category dependent way. These channel-category dependent
systems can then be fused — for instance by a system selector
taking the output scores of the system that corresponds to the
detected category [11].

For this article, two different types of such channel depen-
dent systems are used in order to assess the effect of different
channel detectors. For the pure channel systems, the compen-
sation matrix U has a rank of 40 and is estimated exclusively

on data of one channel. The merged-U systems use a common
U matrix, which is obtained by stacking the two channel depen-
dent U matrices to obtain a matrix with a rank of 80.

2.2. Scoring and evaluation

Scores are normalized separately for each test utterance. Each
likelihood score is divided by the maximum of the scores the
utterance obtained against all language models.'

System performance is measured using minimal average
cost (minCaqyg). It is the detection system choosing the de-
cision threshold in such a way that the average rate of misses
(utterances not recognized as being of the true language) and
false acceptances (mistakenly detecting the presence of a lan-
guage) among all target/non-target language pairs is minimal
(see Section 4.1f of the LRE 2009 plan [12] for a description).

In our case, a false negative (a miss) and a false positive
(false acceptance) have the same cost and the prior of a target
test is 0.5. The cost function that will be minimized thus is:

Covg = |T1T\ > [0.5-PM1-35(1)+ 05 > PFA(z,k)]
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(2)

where L is the set of languages in the test data set (also called
target languages), Ly is the set of languages for which we have
models (non-target languages), Puriss is the probability that a
language model misses a match and Pr 4 (I, k) is the probability
that an utterance of language ! is mistakenly recognized as being
of language k. It is thus the mean over all target languages of
its probability to be missed and its average probability to be
detected by a false language model.

3. Data parts

NIST LRE 2009 comprises 23 languages [12]. This article
will not only evaluate the systems on the entire 30 second part,
but also separately for the CTS and the VOA condition. On
the training side, we have CTS data available for 11 languages
only? and VOA data for 22 languages’.

The fact that we don’t have training data of both conditions
for every language poses some troubles for training channel-
category specific systems. When corresponding data is avail-
able, the language models are trained using this data. For the
languages which are missing category-specific data, the training
data of the other category is used. A more detailed description
of the data sources may be found in [11].

3.1. Training data

Training material for the CTS condition is drawn from various
sources: All three parts of the CallFriend corpus for 8 languages
(three of them in two dialects) with about 20 hours of speech
per language/dialect, the Indian English recordings with a nom-
inal duration of 10 and 30 seconds of LRE 2005 development
data, the full conversations of the LRE 2007 evaluation data
for 9 languages, and the 10 and 30 second evaluation segments

I'The reader knowing our prior works [10, 11] may have noticed that
this is a change in normalization strategy. We looked for an even more
simpler scheme than the division by the sum of the scores against all
models, put to a power of K. This simple division does not depend on
any tunable parameters, nor on the availability of a separate calibration
data set (as required for more evolved backends), but still performs well.

2Spanish, English, Korean, Mandarin, Hindi, Indian English, Can-
tonese, French, Persian (Farsi), Russian and Vietnamese.

3The language missing VOA data being Indian English.



of LRE 2005 for 6 languages. Each language has between 40
and 2253 segments representing between 2.7 and 64.8 hours of
speech. In total for 11 languages, we have 337 hours in 7870
segments.

The data of the VOA condition is drawn from the Voice Of
America 3 (VOA3) data set* by limiting the number of utter-
ances to a maximum of 400 for each language. For every lan-
guage, they sum up to 3.0 to 27.9 hours of speech. In total for
22 languages, we have 333 hours across 8632 segments.

3.2. Testing data

Tests are conducted on NIST-LRE 2009 data [12]. This eval-
uation set is composed of 41 794 utterances containing nomi-
nally 3, 10 and 30 seconds of speech each. The primary condi-
tion aggregates just utterances of the 23 languages (closed-set).
We focus only on the 30 second ones which comes down to
10 571 files giving that many target trials and thus 232 562 non-
target trials. There are between 315 and 1015 testing files per
language. From these testing files, 8708 are of CTS condition
(10 languages) and 7490 of the VOA condition (22 languages).

4. Channel detector descriptions

The system selector for merging channel-category dependent
systems bases its decisions (the scores of which system to take)
on the advice of a channel detector. This section shows different
designs for such channel detectors.

4.1. Simple sum

The simple sum fusion is not a channel detector, but a baseline
replacement for the system selector. For each test, the scores of
both channel-category dependent systems get summed together
(without special weighting). This gives minimal system perfor-
mances we want to meet with the different channel detectors.

4.2. Feature-based MAP

As first approach, a MAP adapted model is estimated for each
of the two channels using all training data (feature vectors) of
that channel. Since the same UBM as for training the channel-
dependent systems has been used, these channel models are
mixtures of 2048 Gaussians. This f~MAP detector has a channel
identification rate of 87.63% on the 30-s LRE 2009 segments.

4.3. SVM on channel variability

Since Factor Analysis tries to model separately and expressively
the session and channel variability, it may sound obvious to try
to use this information for a channel detector. The channel vari-
ability part of the factor analysis formula (1) is the term Uz.
Since U is fixed, the vector = represents the channel variability.

These x vectors (here with a dimension of 40) may directly
be used as input SVs for a SVM [4, 3, 10]. The x vectors of the
target category are taken as positive SVs and the = vectors of
the other category as blacklist (negative examples). We notice
that the SVMs we get for our two-category case are symmetric
(in theory just the sign changes). This x-SVM detector has a
channel identification rate of 87.41% on LRE 2009 30 seconds.

4.4. MAP on channel variability

These FA x vectors can also be used as new features (front-end)
on whom a new channel-UBM can be estimated. This can then

4LDC2009E40 (which includes also the VOA2 set).

be adapted through MAP to obtain channel-dependent models
working on these x vectors. For the works presented here, we
use models of 64 mixtures (since each utterance is represented
by one frame only). This x-MAP channel detector returns the
channel of to the model with the bigger likelihood and has an
accuracy of 75.29% on the 30 second LRE 2009 segments.

4.5. Oracle

The oracle represents the error-less channel detector. It returns
the true channel category of an utterance. Evaluating the sys-
tems using the oracle as channel detector, gives the performance
we want to approach by automatic channel detectors.

The performances of data based channel detectors are thus
expected to lay between the one of a simple-sum fusion and that
of the oracle.

5. Results

The parametric features used in this work are Shifted Delta Cep-
stra (SDC) in the configuration 7-1-3-7 [2, 3, 5] with energy
based speech detection and mean/variance normalization, as de-
scribed more in detail in [11].

5.1. Evaluation on 8 common languages

Because there are some language—channel combinations which
lack training or testing data, this section evaluates the systems
on the NIST LRE 2009 30-second segments of the 8§ common
languages® only, as well as solely on the CTS and solely on the
VOA subset.

5.1.1. Pure systems

Table 1 presents the results of the two pure channel-category de-
pendent systems and their fusion. The results of all automatic
channel detectors fall in between those of a simple-sum fusion
and the oracle. We observe that the best results among the au-
tomatic channel detectors are obtained by the x-SVM detector.
They are not too far away (~ 6% relative) from the oracle de-
tector, which represents ground truth. The weakest channel de-
tector is the one where the same x vectors are modeled by MAP.

Table 1: 8 languages, pure per-channel systems, in % minCaqg

LRE 2009 closed-set 30s tests
base system | fusion all 30s [ CTS only [ VOA only
CTS — 2.34 2.11 2.94
VOA — 6.34 9.88 1.28
— sSum 2.58 3.67 1.30
— oracle 1.63 2.11 1.28
— f-MAP 1.88 2.49 1.38
— x-MAP 2.31 3.06 1.73
— x-SVM 1.73 2.27 1.26

5.1.2. Systems with merged-U matrix

The results shown in Table 2 are obtained by systems featuring a
common (stacked) U matrix. The observations for the merged-
U systems are similar to those for the pure systems, with slightly
better performances (4.3% relative gain for the x-SVM chan-
nel detector) except for the VOA only evaluation. When evalu-
ated on channel-categories separately, the feature based MAP

5Cantonese, English, Hindi, Korean, Mandarin, Persian, Russian
and Vietnamese; see [11] for more details.



channel detector (f~MAP) is slightly better than x-SVM with
2.30% minClayyg for CTS tests and 1.44% minCl.q for VOA.

Table 2: 8 languages, merged-U systems, in % minCaug

LRE 2009 closed-set 30s tests
base system | fusion | all 30s | CTS only | VOA only
CTS — 2.53 2.04 3.63
VOA — 6.30 6.64 1.48
— sSum 2.40 3.48 1.60
— oracle 1.55 2.04 1.48
— f-MAP 1.75 2.30 1.44
— x-MAP 2.27 2.96 1.87
— x-SVM 1.65 2.39 1.45

5.2. Evaluation on all 23 languages

This section presents the same systems under the 23 language
NIST LRE 2009 condition. It also shows to which extent the
systems are robust enough to recognize languages of a channel
category for which no training data is available.

5.2.1. Pure systems

The results in Table 3 show that the automatic channel detectors
achieve results that are a bit further off the oracle (about 12%
relative) compared to the 8-language protocol, but they still re-
main closer to the oracle than to the simple-sum performance.

Table 3: 23 languages, channel-dependent U, in % minCaug

LRE 2009 closed-set 30s tests
base system | fusion | all 30s | CTS only | VOA only
CTS — 9.87 7.44 11.05
VOA — 8.59 25.40 3.73
— sSum 8.70 16.73 6.39
— oracle 3.95 7.44 3.73
— f-MAP 4.47 8.24 4.02
— x-MAP 5.94 9.84 5.51
— x-SVM 4.65 8.35 4.36

5.2.2. Systems with merged-U

The performances of the systems using a common stacked
U matrix are given in Table 4. They also indicate that these
systems perform better than the pure systems. For the f-MAP
channel detector, which, with 3.85% minCl.4 performs best,
the enhancement over the channel-category dependent U matrix
systems is 14% relative.

Table 4: 23 languages, merged-U systems, in % minClyg

LRE 2009 closed-set 30s tests
base system | fusion | all 30s | CTS only | VOA only
CTS — 6.59 6.63 7.51
VOA — 5.80 13.77 343
— sSum 4.32 7.17 3.92
— oracle 3.64 6.63 3.43
— f-MAP 3.85 7.01 3.54
— x-MAP 478 7.58 4.51
— x-SVM 4.44 7.58 4.09

6. Conclusions and perspectives

The results show that channel detectors may be designed in dif-
ferent ways and that they may approach the performance of

oracle based ground truth fusion up to 5-6% relative. Of the
analyzed channel detectors, x-SVM and f~-MAP work with sim-
ilar results. Whereas the former works slightly better if there
is training data for all channel-categories (and languages) and
the latter seems more robust to lack of such data. The results
on the = vector based detectors confirm the basic idea behind
Factor Analysis, in which the channel variability is captured by
the Ux term of Formula (1).

The validation of x vector based channel detectors opens
the interesting perspective of fully data based systems that au-
tomatically cluster and identify channel categories in the train-
ing data (instead of having labeled CTS and VOA). This is not
possible on the feature level, since the information about the
channel is mixed up with the information about the language.

7. References

[1] Zissman, M. A., "Comparison of four approaches to automatic
language identification of telephone speech”, Speech and Audio
Processing, IEEE Transactions on., vol.4, no.1, pp.31-44, January
1996.

[2] Torres-Carrasquillo, P. A., Singer, E., Kohler, M. A., Greene, R.
J., Reynolds, D. A. and Deller Jr., J. R., "Approaches to Lan-
guage Identification Using Gaussian Mixture Models and Shifted
Delta Cepstral Features”, Proc. International Conference on Spo-
ken Language Processing in Denver, Colorado, ISCA, pp.82-92,
September 2002.

[3] Campbell, W. M., Singer, E., Torres-Carrasquillo, P. A. and
Reynolds, D. A., "Language Recognition with Support Vector
Machines”, in Proc. Odyssey: The Speaker and Language Recog-
nition Workshop in Toledo, Spain, ISCA, pp.41-44, May 31-June
3, 2004.

[4] Singer, E., Torres-Carrasquillo, P.A., Gleason, T.P., Campbell,
W.M. and Reynolds, D.A., ”Acoustic, phonetic,and discrimina-
tive approaches to automatic language identification”, in Proc. of
Eurospeech, pp.1345-1348, September 2003.

[5] Matéjka, P. and Burget, L. and Schwarz, P. and éernock)’/, ],
”Brno University of Technology System for NIST 2005 Language
Recognition Evaluation”, in Proc. of Odyssey 2006: The Speaker
and Language Recognition Workshop, San Juan, PR, pp.57-64,
2006.

[6] Castaldo, F., Colibro, D., Dalmasso, E., Laface, P. and Vair,
C., ”Compensation of nuisance factors for speaker and language
recognition”, in Audio, Speech, and Language Processing, IEEE
Transactions on, vol.15, no.7, pp.1969—-1978, September 2007.

[7]1 Kenny, P., Boulianne, G., Ouellet, P. and Dumouchel, P., ”Factor
Analysis Simplified”, in Proc. of ICASSP *05., vol.1, pp.637-640,
March 18-23, 2005.

[8] Gauvain, J.-L. and Lee, C.-H., "Maximum a Posteriori Estima-
tion for Multivariate Gaussian Mixture Observations of Markov
Chains”, Speech and Audio Processing, IEEE Transactions on.,
vol.2, no.2, pp.291-298, April 1994.

[9]1 Matrouf, D., Scheffer, N., Fauve, B. and Bonastre, J.-F., ”A
straightforward and efficient implementation of the factor anal-
ysis model for speaker verification”, in Proc of Interspeech 2007,
pp-1242-1245, 2007.

[10] Verdet, F., Matrouf, D., Bonastre, J.-F. and Hennebert J., ”Factor
Analysis and SVM for Language Recognition”, in Proc. of Inter-
speech ’09, pp.164-167, Brighton, UK, 2009.

[11] Verdet, F., Matrouf, D., Bonastre, J.-F. and Hennebert J., "Coping
with Two Different Transmission Channels in Language Recog-
nition”, in Proc. of Odyssey 2010: The Speaker and Language
Recognition Workshop, Brno, CZ, June 28-July 1, 2010,
(currently under publication — in the meantime it is accessible at
http://florian.verdet.ch/tmp/odyssey2010verdet.pdf ).

[12] The 2009 NIST Language Recognition Evaluation, evaluation
plan, http://www.itl.nist.gov/iad/mig/tests/lre/2009



