
2007

German e-Science

Available online at http://www.ges2007.de
This document is under the terms of the

CC-BY-NC-ND Creative Commons Attribution

Automated Workflows using Dialectical
Argumentation

Jarred McGinnis1, Stefano Bromuri1, Visara Urovi2 and Kostas Stathis1

1 Royal Holloway College, University of London, McCrea Building , Egham, Surrey
TW20 0EX United Kingdom

2 Second Faculty of Engineering, University of Bologna Via Rasi e Spinelli 176 47023
Cesena (FC)

email: jarred@cs.rhul.ac.uk

phone: +44 (0)17 84 44 34 36

Abstract

This paper presents a framework for dynamic workflow creation and ex-
ecution developed as part of ARGUGRID, a collaborative project that
seeks to provide a new model for programming the Grid at a semantic,
knowledge-based level of abstraction through the use of argumentative
agent technology. In this framework, workflow selection is coordinated
by agent interactions based upon a dialogue game that allows agents
to argue about workflows and their properties.

1 Introduction

The misleading schism between research on the Grid and multiagent systems
is quickly dissipating as researchers on both sides recognise that Grid infrastruc-
tures can be made more flexible and dynamic through the use of agent tech-
nologies [4]. Conversely, the agency community see the Grid paradigm useful for
grounding their work in a practical environment. Motivated by these observa-
tions, the ARGUGRID project [1] seeks to provide a new model for programming
the Grid by using argumentative agent technology. Agents in ARGUGRID en-
act the reasoning and decision making processes and negotiation required for
dynamic composition of Grid resources and services into executable workflows,
using argumentative agents to support grid service providers and requestors.

As part of our contribution to the ARGUGRID project we aim at creating
dynamic and run-time execution of workflows using argumentative agents. Such
agents use the notion of dialogue games [5] to reason about the workflows avail-
able, decide amongst themselves the most satisfactory for a certain goal, and
then execute that workflow by using the same mechanism to coordinate their
interaction. This is a especially useful approach for scenarios in which it is im-
possible or impractical to know the workflow needed before execution time. The
burden no longer lays upon the engineer to foresee all possible workflows, nor
do we rely on one agent to have every possible solution either.

The following section, section 2, briefly describes dialogue games and their
use as a communication model for the selection of workflows by autonomous

2 J. McGinnis, S. Bromuri, V. Urovi and K. Stathis

agents. Section 3 describes the framework which coordinates the agents as they
make moves in the dialogue game in order to deliberate upon which workflow
is to be executed. This same framework can also be used to coordinate the
execution of the selected workflow. A practical example and scenario are given
in section 5. The technologies used for this approach is described in section 4
and concluding remarks are given in section 6.

2 Workflow selection via dialogue games

Our framework builds upon previous work on service-oriented agent archi-
tectures [2] using argumentation to model communication of propositions, which
allows agents to more quickly find solutions or identify problems. In addition
to communicating propositions, our framework also supports the reasoning and
justification for those propositions, in order to make easier for participants to
find common ground which is acceptable to all. However, unlike [2], we employ
dialogue games to provide rules for the commencement, termination and con-
tinuance of an agent dialogue to increase its reliability and the certainty that
progress is made towards a conclusion.

This approach is flexible in that it can support different dialogue types to be
formulated as different dialogue games. In [10] a set of six atomic dialogue types
are identified: information seeking, inquiry, persuasion, negotiation, deliberation
and eristic dialogues. Dialogue types are determined by the shared and private
goals of the participants. This typology has been influential in the development
communicative models for multiagent systems [8].

This framework implements the deliberation game described in [5]. However
the system is not dependent on any one dialogue game type or specific rules.
Deliberation games are traditionally seen as a discussion of a course of action
and we model workflow as such. In this model agents have access to a library of
workflows which are labeled with properties (metainformation about workflows
such as a computational cost, time to execute, and other useful details). By
using these properties, agents will thus be in a position to justify or reject a
workflow being proposed during a dialogue.

The dialogue game has several components which create the basis for a se-
mantically rich model of communication. This is achieved by formalising the
dialogue game at various levels. Firstly the logical language which the domain
(i.e. workflows) is discussed can be expressed as a number of sentence types
such as : actions, goals, constraints, and facts. Locutions which contain propo-
sitions of the type Actions are propositions for workflows. Goals specify top
level properties of the proposed workflows. Constraints are meant to restrict the
set of potential workflows by limiting them upon some grounds such as time for
execution or requiring the use or a particular service or provider. Facts allow
agents to communicate propositions about the state of the world or affairs that
may have an indirect effect on selection of the workflow.

In order to regiment the discussion between the agents and guide the dialogue
game towards some conclusion. The rules of the dialogue game are organised into

GES 2007 Automated Workflows using Dialectical Argumentation 3

the stages of: Open, Inform, Propose, Consider, Revise, Recommend,
Confirm and Close. The dialogue begins at the Open stage where agents
register the interest in the solution to a governing question (i.e. a problem to
be solved by the selection of a workflow). In the Inform stage, agents establish
their positions, biases, facts and constraints. The proposed workflows are passed
during the Propose phase. The agents can specify preferences between the
workflows proposed in the Consider stage. The Revise stage allows agents
to modify any proposals or preferences they have made. At a certain point
a proposed workflow is Recommended for execution. Afterwards, during the
Confirm stage, a poll is taken amongst the players of the dialogue to find if there
is a consensus on a workflow to be executed. Once that consensus is reached the
dialogue moves to the Close stage.

The changes of stages reflect moves made by the players and the moves avail-
able are dictated by the current stage. Moves are made by agents communicating
locutions. Locutions for our deliberation game are as follows: open dialogue, en-
ter dialogue, withdraw dialogue, propose, assert, prefer, ask justify, move, reject
and retract.

The Open stage begins once some agent has sent an open dialogue locution
and at least one other agent has shown their interest in playing the dialogue
game by communicating enter dialogue. This stage occurs once in a dialogue.
The agents can now progress to the Inform stage by the utterances of propose,
assert, retract and ask justify locutions for the proposition types of goal, constraint
and facts. In order to progress to the Propose stage on of the agents must
communicate a propose with the proposition of type action and the content of
the locution will be a workflow for execution. The agents are now able to move
to the Consider stage by utterances of prefer and ask justify. Activities in the
stage can be followed by the Revise stage, which allows the revision of proposed
workflows. This is achieved by the assumption that the agent will only suggest
one workflow at a time (i.e. its best workflow by whatever private and public
criteria that has been established). If the agent wishes to propose a revised
workflow, it can by the communication of a propose with the content being the
new workflow. The dialogue game reactive rules will update the commitment
store to reflect the revised proposed workflow for the agent. The game moves to
the Recommend stage by the utterance of the move locution with its content
being the workflow to be executed. The other players of the dialogue came can
either accept the workflow with an assert or reject it with a reject. Once all
players have sf asserted their acceptance of the workflow as part of the Confirm
stage, the game progresses to the Close stage by the participants utterance of
the withdraw dialogue locution.

Certain locutions carry with them obligations. These are expressed in pub-
licly verifiable commitments that disambiguates the requirement for the agents’
interaction and makes the semantics of the conversation and the subject of that
conversation clearer. For this dialogue game, the reactive game rules on the com-
munication medium update the commitment store upon the utterance of assert,
retract, reject, and prefer. The details of the semantics for each of the locutions

4 J. McGinnis, S. Bromuri, V. Urovi and K. Stathis

are similar to those of [5].

3 Framework for workflow selection and execution

This section describes the framework in abstract terms leaving the technical
details to a later section. Figure 1 shows our framework. Firstly the agents
(not limited to the two shown) communicate through a reactive medium by the
sending and receiving locutions acting as moves in the dialogue game. Also,
agents in the framework can read the dialogue state from the communication
medium enabling to determine the next appropriate move to make. This medium
reacts to the moves made by the agents by updating the state of the dialogue
according to the rules defining the dialogue game thus coordinating the activities
of the participating agents. In addition the reactive dialogue game rules ensure
that the commitments made or satisfied during the dialogue game are reflected
by the commitment store. This public and independent maintenance of the
commitments helps to ensure accountability and trust in the framework.

Figure 1: A dialogue game played between two agents.

Once the dialogue game concludes successfully and the participants have cho-
sen a workflow to be executed. The agent migrate to a different communication
medium which is loaded with the interaction rules, which are now the execution
order of the processes of the chosen workflow. This process is illustrated by
figure 2. Instead of trading speech acts, agents now inform the communication
medium of the execution and completion of processes and the medium reacts

GES 2007 Automated Workflows using Dialectical Argumentation 5

according to the workflow by initiating the next task. Agents act as proxies for
services as shown in figure 3.

Figure 2: Agents move to another communication medium with the selected protocol

Figure 3: Agents are coordinated by the reactive communication medium to execute

the protocol

4 Implementation

We are experimenting with the development of a multiagent system proto-
type implemented using the PROSOCS platform [9]. This platform allows the
deployment of agents with logical capabilities that can discover other agents or
objects such as game states and interact with each other by sending and receiving
messages over a network. In the current implementation we focus on the simple

6 J. McGinnis, S. Bromuri, V. Urovi and K. Stathis

case of two agents that play the game over a network using the components
shown in Fig. 1.

The underlying transport layer of PROSOCS platform is implemented using
TuCSoN [3] and ReSpecT [6]. TuCSoN (Tuple Centres Spread over the Network)
is a distributed systems infrastructure providing services for communication and
coordination. TuCSoN relies on a blackboard model of communication which is
useful for dealing with the asynchronous nature of agent interactions [7]. The
TuCSoN tuple centres can be programmable using ReSpecT. Using ReSpecT
it is possible to define a reactive tuple centre in order to achieve a complex
interaction by activities such as propagating messages containing locutions or
maintaining a shared object states such as those of dialogue games.

4.1 Agent Architecture

The agent architecture used is an improvement of the PROSOCS architecture
presented in [9]. Every agent is defined as a set of Java components:

• Agent Mind: The agent mind is a wrapper around a Prolog theory that
defines declaratively the agent behaviour. In this paper we utilized a simple
Prolog mind capable to manage the locutions of the deliberative dialogue,
in order to select a suitable workflow.

• Agent Body: The agent body is a composition of sensors and effectors, it is
an interface between the mind and its sensors and effectors, receiving per-
ceptions from the sensors linked to the environment and executing actions
on the environment through the effectors.

• Agent Effectors: Effectors are proxies hiding the complexity to deal with
the environment. The effectors execute actions defined as first order logic
predicates (i.e. speech act(open dialogue(Aid,Id,Q))). According to the
kind of environment this actions could have different effects. In our frame-
work agents utilize effectors to send speech acts to a tuple centre.

• Agent Sensors: Like effectors, the sensors are proxies between the agent
and the environment. They hide the complexity required to interface with
an environment. They retrieve information from the environment and
translate it in perceptions for the mind.

Figure 4 represents the agent architecture: the lifecycle stage of the agent
(alive, frozen, dead) are controlled by the body within the body state.

4.2 ReSpecT Dialogue Game

The ReSpecT language was designed to program the behaviour of a TuCSoN
tuple centre. It constrains and enables the interaction of heterogeneus agents.
Therefore, it can be used to model the agent interaction and move the responsi-
bility of maintaining the state of the interaction from the agents to the TuCSoN
tuple centres. In the case of the deliberative dialogue we developed, the ReSpecT
theory defines the working mechanism of a complex shared structure representing
the dialogue state in form of tuples.

GES 2007 Automated Workflows using Dialectical Argumentation 7

BODY
STATE

��������� BODY
CONTROL

Percepts Actions
Sensor

MIND

BODY

Effector

Effector

Effector

Figure 4: PROSOCS agent architecture

% OPEN −> INFORM
reac t i on (ou t r (propose (AID , ID , Type ,Q)) , (

i n r (propose (AID , ID , Type ,Q)) ,
X i s propose (AID , ID , Type ,Q) ,
i n f o rm l o cu t i on (X) ,

i n r (d i a l o g u e h i s t o r y (ID ,GQ, Sh , Lh)) ,
i s e a r ch (open , Sh) ,
append (Sh , [inform] ,NewSh) ,
append (Lh , [X] ,NewLh) ,
ou t r (d i a l o g u e h i s t o r y (ID ,GQ,NewSh ,NewLh)) ,

ou t r (d ia logue changed (ID))
)) .

% OPEN −> INFORM
reac t i on (ou t r (a s s e r t (AID , ID , Type ,Q)) , (

i n r (a s s e r t (AID , ID , Type ,Q)) ,
X i s a s s e r t (AID , ID , Type ,Q) ,
i n f o rm l o cu t i on (X) ,

i n r (d i a l o g u e h i s t o r y (ID ,GQ, Sh , Lh)) ,
i s e a r ch (open , Sh) ,
append (Sh , [inform] ,NewSh) ,
append (Lh , [X] ,NewLh) ,
ou t r (d i a l o g u e h i s t o r y (ID ,GQ,NewSh ,NewLh)) ,
%Commitment s t o r e update
i n r (commitment store (ID , Cs)) ,
append (Cs , [a s s e r t (AID , ID , Type ,Q)] , Cs1) ,

ou t r (commitment store (ID , Cs1)) ,
ou t r (d ia logue changed (ID))

)) .

Table 1: Inform stage of the Dialogue Game Theory

Table 1 is an example of the Dialogue ReSpecT reaction rules. The two reac-
tions state that the inform stage is accessible from the open stage with an assert
or a propose performed by the agents. The ReSpecT language is an extension
of Prolog, so it is possible to define predicates to check the preconditions’ satis-
faction. Likewise, in the two reactions considered, there is a constraint on the
locutions types that must be in the set goal, constraint, fact. Utilizing similar
reactions, we coded in ReSpecT the dialogue described in the previous section
adapted from [5]. The result is that the agents decide in a deliberative way

8 J. McGinnis, S. Bromuri, V. Urovi and K. Stathis

<?xml version=”1.0 ” encoding=”ISO−8859−1” ?>
<WorkflowDescription>

<Desc r ip t i on> plane t i c k e t </ Desc r ip t i on>
<Name> buyt i cket . txt </Name>
<Address> f l i g h t s@b r i t i s h a i rway s . com </Address>
<Input>new order (CaseName , Customer , Ticket , S e l l e r , Car r i e r)</ Input>
<Output>case done (ID) </Output>
<Serv iceCost>2 </ Serv iceCost>
<Ava i ab i l i t y>99 </ Ava i ab i l i t y>
<Re l i a b i l i t y>98 </ R e l a i a b i l i t y>
<Trust>90 </Trust>
<ServiceTime>3 </ServiceTime>

</Workf lowPropert ies>

Table 2: The workflow description format

which is the best workflow to execute, according to the workflow characteristics,
that are expressed in a XML format like in table 2.

In section 5 shows an example clarifying how this XML document is utilized
to deliberate between workflows and decide the most suitable for the execution.

5 Example and scenario

We exemplify our approach by considering a scenario for the dynamic pro-
vision of web-services for booking flights. In this context, virtual organisations
(VOs) of broker, service-provider and personal-service agents need to be formed.
We assume that users initiate such VOs by expressing their preferences to per-
sonal service agents to book one(or more) ticket(s) on their behalf. We are inter-
ested in the specific interactions that require agents to to book tickets according
to a workflow (steps such as 1.Dates, 2.Flights, 3.Price, 4.Passengers, 5.Payment,
6.Confirmation), reminiscent of how users buy such tickets on the web.

This section presents a scenario where the process of buying airplane ticket
is found by using the dialogue game. In this scenario, the agent which receives
the request for buying plane ticket service does not have a suitable workflow in
its own library, it must confer with other agents by requesting the instantiation
of a dialogue game described in secion 2. The dialogue takes place in a tuple
center and it can involve more than two agents. We use tuple centers as the
room where the participants can communicate with others using the dialogue.
The agents which are participating in the dialogue can observe the dialogue and
decide the next move to do. In our example three agents, agentA, agentB and
agentC participate in the dialogue with the governing question planeTicket. The
agentA perceiving the request for dialogue about plane ticket workflow, opens the
dialogue with the same governing question. The other agents react by inserting
an enter dialogue locution in the tuple space.

The table 3 shows a trace of the dialogue game being played. The dialogue
enters the Inform stage when agentA proposes as constraint the service time.
The dialogue remains in Inform stage when agentB proposes as a constraint
the cost. From Inform stage, the dialogue moves to the propose stage because
agentB proposes as an action the buyticket1.xml workflow and it remains in the
Propose stage when AgentC proposes another action. When the agentA, asks

GES 2007 Automated Workflows using Dialectical Argumentation 9

open d ia logue (agentA , ID , p l a n e t i c k e t)
en t e r d i a l o gu e (agentB , ID , p l a n e t i c k e t)
en t e r d i a l o gu e (agentC , ID , p l a n e t i c k e t)
propose (agentA , ID , cons t ra in t , s e r v i c e time)
propose (agentC , ID , cons t ra in t , co s t)
propose (agentB , ID , act ion , buyt i cket1 . xml)
propose (agentC , ID , act ion , buyt i cket2 . xml)
a s k j u s t i f y (agentA , ID , agentB , buyt i cket1 . xml)
a s s e r t (agentB , ID , fac t , S e rv i c e Time = 2)
p r e f e r (agentC , ID , act ion , buyt i cke t1 . xml , buyt i cket2 . xml)
move(agentA , ID , buyt i cke t1 . xml)
a s s e r t (agentB , ID , buyt i cket1 . xml)
a s s e r t (agentC , ID , buyt i cket1 . xml)
withdraw (agentA , ID , p l a n e t i c k e t)
withdraw (agentB , ID , p l a n e t i c k e t)
withdraw (agentC , ID , p l a n e t i c k e t)

Table 3: Trace of the Example Dialogue

the agentB to justify his action, the dialogue state changes to the Consider
state. The reply of agentB, changes the dialogue in Inform stage. After that,
agentC sends a prefer locution to express his preference for the buyticket1.xml
workflow as the best workflow. This locution changes the dialogue state from
Inform to Consider stage. The move locution made by agentA changes the
dialogue to the Recommend stage, then all the agents agree and the dialogue
is begins its closing. The dialogue changes from Recommend into Confirm
stage when agentC makes his assert locution and it changes from Confirm to
Closed when agentB withdraws from the dialogue.

Once the dialogue is closed, the service to buy plane tickets has been decided
amongst the agents. The workflow execution consists in providing the input to
the workflow engine which will perform the service. By defining ReSpecT rules
rules outside agents, it is possible to govern their interaction in a predictable way.
In this case, the workflow management system consists in workflow engines to
manage activities which are complied to by the agents. The workflow coordinated
by the workflow engine consists of three tasks to execute in sequence. Once the
workflow execution starts, the first task for the agents is to buy the ticket, when
it is concluded the agent which performed it should inform the workflow engine
that the task assigned to him has been successful. Then the workflow engine
generates the next task which is dispatch the ticket and then pay ticket. When
this activity is finished, the workflow case is considered completed.

10 J. McGinnis, S. Bromuri, V. Urovi and K. Stathis

6 Future work

We have presented a framework for dynamic workflow creation and execu-
tion developed as part of ARGUGRID, a collaborative project that seeks to
provide a new model for programming the Grid at a semantic, knowledge-based
level of abstraction through the use of argumentative agent technology. In our
framework, workflow selection is coordinated by agent interactions based upon a
dialogue game that allows agents to argue about workflows and their properties.
A significant feature of our framework is the use of dialogue games to provide
(a) a high-level coordination mechanism for workflow execution and (b) a speci-
fication tool for testing the conformance of the interaction according to the rules
of the communication protocols used by the agents in the system. In this way
we avoid the need for a tangled mix of interpreters and translation tools in order
to interoperate the resulting multiagent system with the language of a workflow
execution engine. We have also developed a prototype, which has provided us
with an immediate and satisfactory testbed for our approach. Our next step is
to use dialogue games to support workflow execution in Virtual Organisations
for the Grid. The detailed consideration of the issues involved in such a task we
plan to report in our future work.

References

1. The ArguGRID Project, http://www.argugrid.eu.
2. V. Curcin, M. Ghanem, Y. Guo, K. Stathis, and F. Toni. Building next generation

Service-Oriented Architectures using Argumentation Agents. In A. Polze and
R. Kowalczyk, editors, 3rd International Conference on Grid Service Engineering
and Management, pages 249 – 263, Germany, Sep 2006.

3. DEIS. TuCSoN Guide. University of Engineering of Bologna, Italy.
4. I. Foster, N. R. Jennings, and C. Kesselman. Brain meets brawn: Why grid

and agents need each other. In Proc. 3rd Int. Conf. on Autonomous Agents and
Multi-Agent Systems, New York, USA, 2004.

5. P. McBurney, D. Hitchcock, and S. Parsons. The eightfold way of deliberation
dialogue. International Journal of Intelligent Systems, 22(1):95–132, Jan 2007.

6. A. Omicini and E. Denti. Formal respect. Electronic Notes in Theoretical Com-
puter Science, 48, 2001.

7. A. Omicini and E. Denti. From tuple spaces to tuple centres. Science of Computer
Programming, 41(3), 2001.

8. P. M. S. Parsons, N. Maudet and I. Rahwan, editors. Proceedings of the Third
International Workshop on Argumentation in Multiagent Systems, volume 4049
of Lecture Notes in Artificial Intelligence. Spriner-Verlag, 2006.

9. K. Stathis, A. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali.
PROSOCS: a platform for programming software agents in computational logic.
In J. Müller and P. Petta, editors, Proceedings of the Fourth International Sym-
posium “From Agent Theory to Agent Implementation”, Vienna, Austria, April
13-16 2004.

10. D. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic Concepts of
Interpersonal Reasoning. SUNY press, Albany, NY, USA, 1995.

