
 EXPERIENCES IN AUTOMATED WORKFLOWS USING
DIALECTICAL ARGUMENTATION

Visara Urovi* , Stefano Bromuri**, Jarred McGinnis**, Kostas Stathis** and Andrea Omicini*
 *Second Faculty of Engineering. University of Bologna, Via Venezia 52, 47023 Cesena(FC), Italy

**Royal Holloway University of London, McCrea Building, Egham, Surrey, TW200EX, United Kingdom
email: visara@cs.rhul.ac.uk
 phone: +44 (0) 1784443696

ABSTRACT

This paper presents a multi-agent framework based on argumentative agent technology for the automation of the
workflow selection and execution. In this framework, workflow selection is coordinated by agent interactions
governed by the rules of a dialogue game whose purpose is to evaluate the workflow's properties via argumentation.
Once a workflow is selected using this process, the workflow is executed by dynamically configuring workflow
engines to coordinate the participating agents' workflow activities.

KEYWORDS

WORKFLOW MANAGEMENT, AGENT DIALOGUES, ARGUMENTATION, TUCSON, PROSOCS.

 1. INTRODUCTION

The complexity of business processes is increasing along with the complexity of the computational systems
that are designed to handle them. The design and development of such systems mandates new methodologies,
technologies and tools, but firstly it requires high-level metaphors to model and organize them. Multiagent
Systems (MAS) and the related abstractions and technologies are today the most appealing approach for
automating the solution to complex computational problems. In the context of MAS, one of the most effective
approaches is to interpret complex computational problems as social / organizational issues, and re-cast them in
terms of autonomous agents collaborating within a social framework to achieve individual as well as global
goals.
In this paper, we focus on automated workflow management in the context of service-oriented architectures
for virtual enterprise interoperability. By adopting MAS as the reference paradigm, we interpret workflow
selection as a social problem involving workflow participants represented as agents. Thus, dialogue and
argumentation among individual agents become essential tools: participants of a workflow have to talk and
discuss in order to select toward the most effective workflow configuration. The use of MAS infrastructure
allows the dynamic configuration of workflow engines [11]. The ability to discuss the workflow using
deliberative dialogue games [5] and argumentation [2] is a promising approach for workflow participant In this
paper we present just such a MAS framework based on argumentative agent technology for the automation of
the workflow selection and execution, where the workflow engines are dynamically configured according to
the execution needs.
The reminder of this paper is organized as follows. Section 2 describes the general approach and architecture
of our framework. Section 3 describes in details the implementation of the deliberative dialogue and of the
workflow engines, and Section 4 presents a case study. Finally, future works and conclusions are presented in
Section 5.

mailto:visara@cs.rhul.ac.uk

2. APPROACH

In our approach we utilize the Agents and Artifacts meta-model[10] , where artifacts are computationally
reactive entities aimed at the agent use, supporting agent social activity and their coordination. As a Workflow
Management Systems (WfMS), coordination artifacts naturally play the role of workflow execution engines
[12]. By assigning activities of the workflow to the agents, workflow execution is coordinated by the artifact
and allow dynamic configuration. The technologies and models used for our proposed approach are the
following: the TuCSoN infrastructure [8] to provide tuple centers as coordination artifacts and workflow
execution engines, the PROSOCS agents platform [14], and dialogue games [15,6] to coordinate the
interactions of the argumentative agents.
In developing this approach, we have made no assumptions about participating agent's decision making
strategies or algorithms. Instead one of our goals is to allow heterogeneous populations of agents to share,
understand and utilize a coordination mechanism regardless of internal design.

2. 1 Architecture

Our agent-based architecture is based on a layered approach where every layer defines agent roles and
infrastructural services to provide agents with what they need to achieve their goal. Four main roles are
identified in our system:
– Workflow Composition Agent (WFCA): The Workflow Composition Agent implements services for
composing workflows according to its goals and plans. It specifies the needed services to the Workflow
Selection Agents, building up workflow properties corresponding to these services.
– Workflow Selection Agent (WFSA): The Workflow Selection Agent implements services for
argumentation based on dialogues games. It has the ability to argue with other agents about known
workflows proposed as suitable for the service that the WFCA is searching.
– User Agent (UA): The User Agent is the user representative, acting as intermediary between the user and
the system. It is able to use the services as composed by the WFCA, starting the workflow execution.
– Workflow Execution Agents (WFEA): The Workflow Execution Agent has the responsibility to execute
workflow activities selected by WFSA agents.
These four agents are then distributed in three layers as shown in figure 1.

 Figure 1. The layered MAS architecture

The first layer is the Workflow Composition
Layer (WFCL). In this layer agents have
internal goals and and generate plans to
achieve these goals. The agents in the WFCL
ask agents in the second layer, the Workflow
Selection Layer (WFSL), to find workflows
with certain characteristics. We assume that
WFCA has the ability to reason about which
services are needed to achieve its goal. It is
able to provide to the WFSL a workflow
description scheme, which has a mapping
with the workflow description file, indicating
constrains over the workflow to be selected.
A service may require the ordered execution
of two or more workflows; the kind of
ordering may vary and is often referred to as
sequential, and-split, and-join, xor-split, and
xor-join [15]. By providing the WFSL with a
workflow scheme it constrains the structure
of a particular workflow selected to fit in the
general service composition. For example, the

WFCA needs a service to buy a plane ticket and rent a car in the destination place. It constrains the WFSL to
consider only car rental services offering the service in the destination place of the plane ticket company (this
example will be explained with more detail in section 4).

In WFSL, agents use deliberative dialogues to select the workflow required from the WFCA. The WFSA is
an agent capable of interacting with other agents playing dialogue games and proposing workflows which
satisfies the WFCA requirements. This type of agent argues using deliberative dialogues in order to share
workflow knowledge, to find the best workflows given the workflow schema, to identify hidden dependencies
or to build trust concepts over workflows e.g: an agent may express a preference between two workflows
because one is more trusted.

 Figure 2. The Dialogue Game

The particular deliberative dialogue utilized by the
WFSA is described in [5] and implemented in [6].
The dialogue defined by McBurney is composed
by a set of stages (Open, Inform, Propose,
Consider, Revise, Recommend, Confirm or
Close) in which it is possible to express a set of
locutions (open_dialogue, enter_dialogue,
withdraw_dialogue, propose, assert, prefer,
ask_justify, move and retract) according to the
current stage of the dialogue game. The locutions
allow agents to argument by expressing statements
and the kind of proposition they are stating (e.g.
question, action, goal, fact). The agents play the
game in respect to the dialogue rules which states
what moves (locutions) are possible to perform at
certain stage. Their moves determine the new
dialogue state. The figure 2 represents the
dialogue as a push down automata. Although it
does not express all the possible path between
stages or all the possible locutions that make the
dialogue changing its state, it is a general picture

of how the dialogue changes when two or more agents argue by using the locutions.
The third layer is the Workflow Execution Layer (WfEL) and it executes the workflow previously selected
and composed. In the framework, workflow engines are provided to coordinate workflow activities and allow
run time linking with other workflow engines. The UA starts the required service by initiating the workflow
execution and configuring the workflow engines. The linking conditions and the input structure of the
workflow engine are provided by the WFCA to the UA. The workflow is designed as a set tasks distributed to
WFEA-s which, by coordinating together, realizes a social goal.

3. MODELING THE WORKFLOW SELECTION LAYER AND THE
WORKFLOW EXECUTION LAYER

The agents in our system are developed using the PROSOCS platform presented in [14]. This platform is
integrated with coordination artifacts which can be conceived as persistent entities specialized to provide
services in Multi Agent Systems [9,13] and used to model services for the social activities of agents. By
encapsulating services inside coordination artifacts, we allow agents to abstract from how the service is
implemented. Both PROSOCS and the coordination artifacts that we use are implemented in TuCSoN [8], a
coordination infrastructure which provides the reification of the coordination artifact concept. Coordination is
based on the tuple center model, empowered with the ability to determine its behavior in response to
communication events according to the specific coordination needs. Agents access tuple centers associatively
by using simple communication operations such as assert (out), blocking reading (rd), blocking retract (in),
retract (inp), and reading (rdp). The communication language between agents is tuple based [3]. The behavior
of a tuple center can be modeled addressing the application needs by defining a set of specification tuples
expressed in the ReSpecT language [7], which define how a tuple center should react to incoming
communication events. A ReSpecT program takes the form of a set of reactions:

 reaction (Event, (Body))

where Event is a communication event and Body is a set of primitives which create the possibility to inspect
and change the content of the tuple set, by inserting, retrieving or reading associatively tuples.

3.1 Modeling Dialogues Using ReSpecT

In particular, the deliberative dialogue defines a set of constructive rules to shape the social deliberative
dialogue activity. Using ReSpecT it is possible to define a set of rules which capture how the dialogue state
changes when a locution is made. The dialogue protocol can be described as a set of rules stating:

Deliberative Dialogue Protocol:
reaction(out(Locution1),

when Conditions1 then Stage1).
reaction(out(Locution2),

when Conditions2 then Stage2).
...
reaction(out(Locutionj),

when Conditionsj then Stagej).

These rules describe the effects on the dialogue state and commitments due to the utterances of locutions by
the agents . Every locution made by the agents is maintained in the locution history. The transition of stages is
also recorded. Conditionsj expresses how the dialogue progresses from a state to another according to the
current stage and admissible moves. Table 1 shows one of the dialogue rules. The rule states that if any of the
participants makes a propose locution and the dialogue has been in the Open stage, then the new dialogue
state is Inform stage. The other rules for the deliberation dialogue game are defined similarly. For example, the
dialogue cannot start from Consider stage if the participants have not firstly opened, shared information and
exchanged proposal for actions.

Table 1. Example of a Dialogue rule in ReSPecT

OPEN TO INFORM
reaction (out (propose (AID, ID , Type ,Q)) , (
 in_r (propose (AID, ID , Type ,Q)) ,
 X is propose (AID, ID , Type ,Q) ,
 in_r (dialogue_history (ID ,GQ, Sh , Lh)) ,
 isearch (open , Sh) ,
 append (Sh , [inform] , NewSh) ,
 append (Lh , [X] , NewLh) ,
 out_r (dialogue_history (ID ,GQ,NewSh ,NewLh)) ,
 out_r (dialogue_changed (ID)))) .

Once the dialogue goes through Open, Inform, Propose agents are free to access Revise, Consider,
Recommend, Confirm and Close stage. If necessary, the agent may return to one of the three initial stages.
The Close stage concludes the workflow selection. The dialogue's progression from one stage to another
depends on the history of the stages and on the history of the locutions. We use commitment stores [4] to track
locutions that create obligations between agents. This allows the agent to reason about the expectations it has
about others and what others expect of it. When agents communicate a locution that commits an agent, the
ReSpecT rules update the Commitment Store. The locutions that creates commitments are the assert locution
when its type is question, goal, constraint, perspective, fact or evaluation, the move locution and the retract
locution. In the retract locution, the agent indicates an assert or move or prefer locution to be removed from
the commitment store. Although the locution will be removed, the trace of the locutions retracted will remain
in the locution history. The agents can inspect the Commitment Store and they will have all a coherent view of
each participant's obligations.

3.2 Modeling WFMS Using ReSpecT

The deliberative dialogues rules model a protocol for the agents’ communication, and coordinates agents
during their workflow selection. Once the selection occurs the workflow should be executed in the specified

order. This section explains how coordination artifacts can be specialized as workflow engines to provide
coordination of workflow activities.
It is possible to model two levels of workflow coordination rules. The first level specifies the coordination of a
single workflow, seen as an atomic service (e.g. booking a ticket). As described in [12], the ReSpecT rules
embedded in tuple centers are an alternative way to model workflow engines which coordinates workflow
activities. The coordination artifact orchestrates the activities of the workflow by telling agents for which
activities they are responsible. The workflow defines a set of activities and relations between them. In
particular, we distinguish between initial, final, loop, sequence, and_join, xor_join, and_split, xor_split
relations between activities. Table 2 demonstrates our translation from the theoretical activity relations of
workflows to their implementation as ReSpecT expression rules.

Table 2. The table express how relationships between workflow activities can be captured by using the ReSpecT rules

Activity Relations ReSpecT Expression Rules
Initial - The first activity of the workflow. reaction(Input,

when Preconditions then next(A0))
Final - The last activity of the workflow. reaction(completed(An-1),

when Conditions then Output)
Loop - The execution of an activity certain number of
times while the Conditions hold.

reaction(completed(A),
when Conditions then next(A))

reaction(completed(A),
when not Conditions then next(B))

Sequential - An activity B is sequential to the
activity A when B is executed after A.

reaction(completed(A),
when Conditions then next(B))

And_join - synchronize two or more parallel
flows. E.g: A, B and C must be synchronized in D,
when A, B or C are completed the conditions
change accordingly. D starts when all of the 3
activities are completed.

reaction(completed(X),
 when contains(synchronize([A1,A2,..., An]), X)
 and Conditions then update(ListCompleted))
reaction(completed(X),

when ListCompleted is [A1,A2,...,An]
 then next(D))

Xor_join - none of the alternative branches is
executed in parallel. A, B or C are completed,
according to the conditions only one of them
activates D.

reaction(completed(A),
when Conditionsi then next(D))

reaction(completed(B),
when Conditionsj then next(D))

reaction(completed(C),
when Conditionsk then next(D))

And_split - two or more concurrent activities
are executed in parallel.

reaction(completed(A1),
when Conditions then next(A2)

 next(A3)
 ...
 next(An))

Xor_split - The next activity is chosen based on
which condition becomes true . Mutual exclusion
between conditions has to be provided.

reaction(completed(A1),
when Conditionsi then next(A2))

reaction(completed(A1),
when Conditionsj then next(A3))

 ...
reaction(completed(A),

when Conditionsk then next(An))

The second level of workflow coordination rules enables the linkability between distributed workflow engines.
These rules promote the possibility to perform workflow composition by building up a more complex one. It is
possible to express linking conditions between workflow engines by configuring them with precondition and
postcondition rules. The idea is to manage the workflow engines by providing them with local vision about
how they are related (e.g. sequential, xor_join, and_join) with other workflow engines.
For instance, the figure 3 shows a set of 6 workflow engines (from WfE0 to WfE5), where there is an and_split
between WfE1 and WfE2, WfE3, and an and_join between WfE2,WfE3 and WfE4 .

 Figure 3. Workflow Engines Linking

In this case, the set of tuples to configure every workflow engines would be respectively:
WfE0: linking_conditions(WfE0, initial activity, sequential(WfE1))
WfE1: linking_conditions(WfE1, sequential(WfE0),and_split([WfE2,WfE3]))
WfE2: linking_conditions(WfE2, sequential(WfE1), sequential(WfE4))
WfE3: linking_conditions(WfE3, sequential(WfE1), sequential(WfE4))
WfE4: linking_condition(WfE4,and_join([WfE2,WfE3]), sequential(WfE5))
WfE5: linking conditions(WfE5, sequential(WfE4), final activity)

4. CASE STUDY

To clarify some of the ideas discussed in the previous sections, we exemplify our approach by considering a
scenario for the dynamic composition of workflows. In particular we will consider a simple example where a
user requests, via the User Agent, to buy a plane ticket to a certain destination and to rent a car in this
destination. The WFCA that receives the request has no suitable workflow in its own library to satisfy the
user’s goal, so it requests to the WFSL to find two workflows fulfilling the user’s requirements. The
requirements are expressed using a Workflow Description Format as in table 3 and their main purpose is to
constrain and to help the WFSL during the argumentation. The figure shows the workflow description scheme
provided to the WFSL for the flight ticket workflow selection, the workflow description scheme for the car
rental workflow selection will be similar.

Table 3. The workflow description scheme

<?xml version=” 1 . 0 ” encoding=”ISO?8859?1” ?>
<Workflow Description>
<Description>plane ticket</Description>
<Name> </Name>
<Address> </Address>
<Input> input (Name, Customer, Ticket, Seller,Carrier) </ Input>
<Output></Output>
<ServiceCost> 0 </ ServiceCost>
<Availability> 99 </ Availability>
<Reliability> 98 </ Reliability>
<Trust> 90 </Trust>
</Workflow Description>

As a result, two dialogues are opened in two diffent tuple centres. The table 4 shows a dialogue example
between three agents: agentA, agentB and agentC. The agentA, perceiving the request for a plane ticket
workflow selection, opens a dialogue with governing question “plane_ticket”. The other agents enter the
dialogue by using an enter_dialogue locution. Once the dialogue is opened and some constrains are
proposed, the agents propose two different workflows suitable to satisfy the requirements. At the end the three
agents agree for the first workflow, which better satisfies the requirements of the WFCA.

 Table 4. A dialogue example

1. open_dialogue (agentA, ID, plane_ticket)
2. enter_dialogue (agentB, ID, plane_ticket)
3. enter_dialogue (agentC, ID, plane_ticket)
4. propose (agentA, ID, constraint , service time)
5. propose (agentC, ID, constraint , cost)

6. propose (agentB, ID, action , buyticket1.txt)
7. propose (agentC, ID, action, buyticket2.txt)
8. ask_justify (agentA, ID, agentB, buyticket1.txt)
9. assert (agentB, ID, fact, Service Time=2)
10. prefer (agentC, ID, action , buyticket1.txt, buyticket2.txt)
11. move (agentA, ID, buyticket1.txt)
12. assert (agentB, ID, buyticket1.txt)
13. assert (agentC, ID, buyticket1.txt)
14. withdraw (agentA, ID, plane_ticket)
15. withdraw (agentB, ID, plane_ticket)
16. withdraw (agentC, ID, plane_ticket)

Once the workflows are selected, the workflow description files are delivered to the WFCA which confer
with the UA for their execution. The WFCA knows that the workflows should be executed sequentially and as
a consequence it provides the UA with the instructions about how to set the workflows engines in order to
execute the workflows. In other words, the WFCA, once the selection layer deliver to him the two workflow
execution, sends the following message to the UA:

Message: user agent message[case to start(plane ticket, Pre, Post, Address1, Address2, Input), case to
start(car rental, Pre, Post, Address2, Address2, input)]

The Pre and Post are the linking conditions as described in the sections above, Address1 is the address of the
workflow (the address of plane ticket workflow engine in the first case and the address of car rental workflow
engine in the second case) Address2 are the addresses of the activities indicated in the postcondition (here it is
the address of the car rental workflow engine), Input is the input in order to start the new case.The plane ticket
and car rental workflow coordinated by the two workflow engines is simplified in three activities to execute in
parallel. When the plane ticket workflow starts three sequential tasks are generated for the WFEA-s
(reservation, dispatch ticket and payment). When the execution of these activities conclude, the car rental
workflow provides the agents with similar activities (reservation, dispatch the car receipt and payment).

5. CONCLUSION

We have presented a multi-agent systems framework based on argumentative agent technology for the
automation of the workflow selection and execution. In this framework, workflow selection has been
coordinated by agent interactions governed by the rules of a dialogue game whose purpose has been to
evaluate the workflow's properties via argumentation. When a workflow has been selected using this process,
the workflow has been executed by dynamically configuring workflow engines that in turn coordinate the
participating agents' workflow activities. We have further exemplified our approach by showing how the
framework can be instantiated for a concrete example application implemented using the TuCSoN
infrastructure and its associated ReSpecT language. The use case described is simplified in order to explain the
concepts our approach. However, the framework is designed to execute arbitrarily complex workflows. This
includes issues such as conflict amongst agents, which would be handled during the dialogue game. If the
overall system required a more competitive agent system (rather than the collaborative one described), it would
only require a different protocol such as a negotiation protocol. The resulting execution of the workflow would
remain the same.
Future work will consider the incorporation of standardized workflow languages This will allow the
workflow selectors can incorporate trust policies related to feedbacks received from the other system which
use this workflows. More specifically, the user agent could propose modifications on the workflow description
according to a feedback received from the user. Finally, another future development regards the possibility to
consider different kind of dialogues in addition to the deliberative one, according to the kind of workflow the
agent are trying to compose. In particular, agents could perform a persuasive dialogue when a conflict of point
of view exists between them.

REFERENCES

1. Amgoud, L, Maudet, N and Parsons S, 2000, “Modeling Dialogues Using Argumentation”, Proceedings of the
Fourth International Conference on MultiAgent Systems (ICMAS-2000), p 31.
2. Curcin, V, Ghanem, M, Guo, Y, Stathis, K and Toni, F, 2006, “Building next generation Service-Oriented
Architectures using Argumentation Agents”, 3rd International Conference on Grid Service Engineering and
Management, Germany, pp 249-263.
3.Gelernter, D, 1985, “Generative communication in Linda”, ACM Transactions on Programming Languages and
Systems, vol. 7, no. 1, pp. 80–112.
4. Levesque, H.J, Cohen, P.R and Nunes, J. H.T, 1990, “On acting together”, In Proceedings of the 8th National
Conference on Artificial Intelligence (AAAI-90), Boston, MA, pp. 94-99.
5. McBurney, P, Hitchcock, D and Parsons, S, 2007, “The eightfold way of deliberation dialogue”, International
Journal of Intelligent Systems, 22(1), pp. 95–132.
6. McGinnis, J, Bromuri, S, Urovi, V, Stathis, K, 2007, “Automated Workflows Using Dialectical Argumentation”,
German e-Science Conference, Germany, to appear.
7. Omicini, A and Denti, E, 2001, “Formal respect”, Electronic Notes in Theoretical Computer Science, 48.
8. Omicini, A and Denti, E, 2001, “From tuple spaces to tuple centres”,Science of Computer Programming, vol. 40,
n.2.
9. Omicini, A, Ricci, A, Viroli, M, Castelfranchi, C, Tummolini, L, 2004, “Coordination artifacts: Environment-based
coordination for intelligent agents”, 3rd International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), New York, USA, Volume 1, pp. 286-293
10. Omicini, A, Ricci, A and Viroli. M, 2006, “Coordination artifacts as first-class abstractions for MAS engineering:
State of the research”, Software Engineering for Multi-Agent Systems IV: Research Issues and Practical Applications,
volume 3914 of LNAI, pp 71–90.
11. Omicini, A, Ricci, A and Zaghini, N, 2006, “Distributed Workflow upon Linkable Coordination Artifacts”, Lecture
Notes in Computer Science : Coordination Models and Languages, pp. 228-246.
12. Ricci, A, Omicini, A, Denti, E, 2001, “Agent Coordination Infrastructures for Virtual Enterprises and Workflow
Management”, Cooperative Information Agent V, Modena, Italy, 2182, p 235.
13. Ricci, A, Viroli, M and Omicini, A, 2005, “Environment-Based Coordination Throught Coordination Artifacts”,
Book Series Lecture Notes in Computer Science, Volume 3374, pp. 190-214.
14. Stathis, K, Kakas A, C, Lu, W, Demetriou, N, Endriss, U and Bracciali, A, 2004, “PROSOCS: a platform for
programming software agents in computational logic”, Proceedings of the Fourth International Symposium “From
Agent Theory to Agent Implementation”, Vienna, Austria, pp 523-528.
15.Van der Aalst, W, 1998, “The application of petri nets to workflow management”,The Journal of Circuits, p 21–66.
16. Walton, D and Krabbe, E, 1995, “Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning”, Suny,
USA

