IADIS International Journal on Computer Science and Information Systems
Vol. 3, No. 2, pp. 110-125
ISSN: 1646-3692

AUTOMATING WORKFLOWS USING
DIALECTICAL ARGUMENTATION

Visara Urovi* , Stefano Bromuri*, Jarred McGinnis*, Kostas Stathis* and Andrea
Omicini**

*Royal Holloway University of London, McCrea Building, Egham, Surrey, TW200EX, United Kingdom
**Alma Mater Studiorum-Universita di Bologna, Via Venezia 52, 47023 Cesena (FC), Italy

email: visara@cs.rhul.ac.uk

ABSTRACT

This paper presents a multi-agent framework based on argumentative agent technology for the
automation of the workflow selection and execution. In this framework, workflow selection is
coordinated by agent interactions governed by the rules of a dialogue game whose purpose is to evaluate
the workflow's properties via argumentation. Once a workflow is selected using this process, the
workflow is executed by dynamically configuring workflow engines to coordinate the participating
agents' workflow activities. We illustrate the overall framework with an example of workflow
composition that allows an agent to book an appropriate ticket and rent a car.

KEYWORDS

Workflow Management, Agent Dialogues, Argumentation, Tucson, Prosocs.

1. INTRODUCTION

The complexity of business processes is increasing along with the complexity of the
computational systems that are designed to handle them. The design and development of such
systems mandates for new methodologies, technologies and tools, but firstly it requires high-
level metaphors to model and organize them. Multiagent Systems (MAS) and the related
abstractions and technologies are today a promising approach for automating the solution to
complex computational problems. In the context of MAS, one of the most effective
approaches is to interpret complex computational problems as social / organizational issues,
and re-cast them in terms of autonomous agents collaborating within a social framework to
achieve individual as well as global goals.

110

IADIS International Journal on Computer Science and Information Systems

In this paper, we focus on automated workflow management in the context of service-
oriented architectures for virtual enterprise interoperability. By adopting MAS as the
reference paradigm, we interpret workflow selection as a social problem involving workflow
participants represented as agents. Thus, dialogue and argumentation among individual agents
become essential tools: participants of a workflow have to talk and discuss in order to select
toward the most effective workflow configuration. The use of MAS infrastructure allows the
dynamic configuration of workflow engines [20]. The ability to discuss the workflow using
deliberative dialogue games [11] and argumentation [1,3] is a promising approach for
workflow participants. In this paper we present just such a MAS framework based on
argumentative agent technology for the automation of the workflow selection and execution,
where the workflow engines are dynamically configured according to the execution needs.

The reminder of this paper is organized as follows. Section 2 describes the general
approach and architecture of our framework. Section 3 describes in details the implementation
of the deliberative dialogue and of the workflow engines, and Section 4 presents a case study.
Finally, future works and conclusions are presented in Section 5.

2. APPROACH

In our approach we utilize the Agents and Artifacts meta-model [19], where artifacts are
computationally reactive entities aimed at the agent use, supporting agent social activity and
their coordination. As a Workflow Management Systems (WfMS), coordination artifacts
[17,18] naturally play the role of workflow execution engines [23]. By assigning activities of
the workflow to the agents, workflow execution is coordinated by the artifact and allow
dynamic configuration. The technologies and models used for our proposed approach are the
following: the TUCSoN infrastructure [16] to provide tuple centers as coordination artifacts
and workflow execution engines, the PROSOCS agent platform [26] and dialogue games [12,
1] to coordinate the interactions of the argumentative agents.

In developing this approach, we have made no assumptions about participating agent's
decision making strategies or algorithms. Instead one of our goals is to allow heterogeneous
populations of agents to share, understand and utilize a coordination mechanism regardless of
internal design.

2.1 Workflows

The term workflow refers to the specification of a work procedure or a business process in a
set of atomic activities and relations between them. These rules capture the expected flow of
work coordinating participants and the activities they need to perform. A participant can be a
human user, a software agent playing a specific role, a device, or a program. The workflow
specification defines how activities are linked together by identifying a logic of execution
between them. As shown in Fig. 1, workflow activities are executed using transition patterns:
® Sequential: Two or more activities are executed one after another.
® Parallel: Two or more tasks are executed concurrently. Concurrent activities identify
two conditions: and-split between activities which allow them to be concurrent
activities or and-join which synchronize parallel flows.

111

AUTOMATING WORKFLOWS USING DIALECTICAL ARGUMENTATION

® Loop: The execution of a set of activities a certain number of times.

® Conditional: Choice of an activity to be executed from a set of alternatives.
Conditional activities identify two conditions: xor-join none of the alternative
branches is executed in parallel, xor-split based on a condition only one branch is
chosen.

o ®
° @

initial-activity final-activity

O

N
J

DI
/W/H/ </ N~
V\H\ ~)

ISRV f\>ﬂ R
S NS anddeim

Figure 1. Workflow primitives

Using these primitives, arbitrary complex workflows are created defining the control flow
between atomic activities in a workflow engine.

We define workflow engines using the coordination mechanisms of TuCSoN tuple
centers and ReSpecT’s reactive rules. The use of TUCSoN coordination mechanisms to
coordinate agent's activities has been suggested in [20], where Omicini et al. show that
TuCSoN's tuple centers can be deployed to work as workflow engines to coordinate agent's
activities.

We extend this approach by identifying a set of generic operators for executing arbitrarily
complex workflows. We also show how to link workflows that are executed in different tuple
centers, thus ensuring modularity of workflow execution. The resulting logic-based approach
is used to develop software agents that select and execute workflows, thus enabling for a
distributed, automated and dynamic Workflow Management System (WfMS).

2.2 Architecture

Our agent-based architecture is based on a layered approach where every layer defines agent
roles and infrastructural services to provide agents with what they need to achieve their goal.
Four main roles are identified in our system:

— Workflow Composition Agent (WFCA): The Workflow Composition Agent implements
services for composing workflows according to its goals and plans. It specifies the needed
services to the Workflow Selection Agents, building up workflow properties corresponding to
these services.

112

IADIS International Journal on Computer Science and Information Systems

— Workflow Selection Agent (WFSA): The Workflow Selection Agent implements services
for argumentation based on dialogues games. It has the ability to argue with other agents
about known

workflows proposed as suitable for the service that the WFCA is searching.

— User Agent (UA): The User Agent is the user representative, acting as intermediary
between the user and

the system. It is able to use the services as composed by the WFCA, starting the workflow
execution.

— Workflow Execution Agents (WFEA): The Workflow Execution Agent has the
responsibility to execute workflow activities selected by WFSA agents.

These four agents are then distributed in three layers as shown in figure 2.

Workflow Composition Layer ‘-
—
WFCA
Warkflow Selection Laysp———.__~" D
i 7 ¢ o 4 + o
-Deliberative Dialogue. ~Deliberative Dialogie
S \ 3 4 Sk
| S A | L |
s L] AL " WFSAF
\WESAA™ 7™ pwrsa/ |\ WFSAD £
W\ Q" ' AN $‘f|.‘J i/
9] T
“WFSA B~ WFSAE
o b'u'or_iéﬁuﬁEiﬁgine 1 ; R

Workflow Execution Layer le) Workflow Engine 2 ——,

Lol

\ S
{ Workflow Engine 3 ‘i\‘fﬂ‘ﬁﬂ"’-’ Engine 4
) ()

UA

Figure 2. The layered MAS architecture

The first layer is the Workflow Composition Layer (WFCL). In this layer agents have
internal goals and and generate plans to achieve these goals. The agents in the WFCL ask
agents in the second layer, the Workflow Selection Layer (WFSL), to find workflows with
certain characteristics. We assume that WFCA has the ability to reason about which services
are needed to achieve its goal. It is able to provide to the WFSL a workflow description
scheme, which has a mapping with the workflow description file, indicating constrains over
the workflow to be selected. A service may require the ordered execution of two or more
workflows; the kind of ordering may vary and is often referred to as sequential, and-split, and-
join, xor-split, and xor-join [29]. By providing the WFSL with a workflow scheme it
constrains the structure of a particular workflow selected to fit in the general service
composition. For example, the WFCA needs a service to buy a plane ticket and rent a car in
the destination place. It constrains the WFSL to consider only car rental services offering the

113

AUTOMATING WORKFLOWS USING DIALECTICAL ARGUMENTATION

service in the destination place of the plane ticket company (this example will be explained
with more detail in section 4).

In WFSL, agents use deliberative dialogues to select the workflow required from the
WFCA. The WFSA is

an agent capable of interacting with other agents playing dialogue games and proposing
workflows which satisfies the WFCA requirements. This type of agent argues using
deliberative dialogues in order to share workflow knowledge, to find the best workflows
given the workflow schema, to identify hidden dependencies or to build trust concepts over
workflows e.g: an agent may express a preference between two workflows because one is
more trusted.

The third layer is the Workflow Execution Layer (WfEL) and it executes the workflow
previously selected and composed. In the framework, workflow engines are provided to
coordinate workflow activities and allow run time linking with other workflow engines. The
UA starts the required service by initiating the workflow execution and configuring the
workflow engines. The linking conditions and the input structure of the workflow engine are
provided by the WFCA to the UA. The workflow is designed as a set tasks distributed to
WFEA-s which, by coordinating together, realizes a social goal.

3. WORKFLOW SELECTION LAYER

The particular deliberative dialogue utilized by the WFSA is described in [11] and
implemented in [12]. The dialogue defined by McBurney is composed by a set of stages
(Open, Inform, Propose, Consider, Revise, Recommend, Confirm or Close) in which it is
possible to express a set of locutions (open_dialogue, enter_dialogue, withdraw_dialogue,
propose, assert, prefer, ask_justify, move and retract) according to the current stage of the
dialogue game.

The locutions allow agents to argument by expressing statements and the kind of
proposition they are stating (e.g. question, action, goal, fact). The agents play the game in
respect to the dialogue rules which states what moves (locutions) are possible to perform at
certain stage.

Their moves determine the new dialogue state. The figure 3 represents the dialogue as a
push down automata. Although it does not express all the possible path between stages or all
the possible locutions that make the dialogue changing its state, it is a general picture of how
the dialogue changes when two or more agents argue by using the locutions.

The dialogue begins at the Open stage where agents register the interest in the solution to a
governing question (i.e. a problem to be solved by the selection of a workflow). In the Inform
stage, agents establish

their positions, biases, facts and constraints. The proposed workflows are passed during
the Propose phase. The agents can specify preferences between the workflows proposed in the
Consider stage. The Revise stage allows agents to modify any proposals or preferences they
have made. At a certain point a proposed workflow is Recommended for execution.
Afterwards, during the Conform stage, a poll is taken amongst the players of the dialogue to
find if there is a consensus on a workflow to be executed. Once that consensus is reached the

dialogue moves to the Close stage.

114

IADIS International Journal on Computer Science and Information Systems

The changes of stages reflect moves made by the players and the moves available are
dictated by the current stage.

withdraw
enter withdraw
| e TS
; w prefer By
open | open Consider | | Close |
N T move
" assert . —
8 prefer . ¥
assert — ™ withdraw
___r‘g;_‘_...--"'a'sUust'rn_r_'_ T
. ropose | move / assert
| Inform | propose | Propose | »Recommend » Confirm
— ~— ,_‘ ~—‘
ask Justi propose - -
oty . assert withdraw
retract
Revise
N’
propose

Figure 3. The Dialogue Game

Certain locutions carry with them obligations. These are expressed in publicly verifiable
commitments that disambiguates the requirement for the agents' interaction and makes the
semantics of the conversation and the subject of that conversation clearer. For this dialogue
game, the reactive game rules on the communication medium update the commitment store
upon the utterance of assert,retract, reject, and prefer.

4. WORKFLOW EXECUTION LAYER

The agents in our system are developed using the PROSOCS platform presented in [26]. This
platform is integrated with coordination artifacts which can be conceived as persistent entities
specialized to provide services in Multi Agent Systems [17, 24] and used to model services
for the social activities of agents. By encapsulating services inside coordination artifacts, we
allow agents to abstract away from how the service is implemented. Both PROSOCS and the
coordination artifacts that we use are implemented on top of TUCSoN [16], a coordination
infrastructure which provides the reification of the coordination artifact concept. Coordination
is based on the tuple center model, empowered with the ability to determine its behavior in
response to communication events according to the specific coordination needs. Agents
access tuple centers associatively by using simple communication operations such as assert
(out), blocking reading (rd), blocking retract (in), retract (inp), and reading (rdp). The
communication language between agents is tuple based [6]. The behavior of a tuple center can
be modeled addressing the application needs by defining a set of specification tuples

115

AUTOMATING WORKFLOWS USING DIALECTICAL ARGUMENTATION

expressed in the ReSpecT language [15], which define how a tuple center should react to
incoming communication events. A ReSpecT program takes the form of a set of reactions:

reaction (Event, [Guard], Body))
where Event is a tuple centre event, Guard is an optional sequence of predicates on the event
properties, Body is a set of operations typically inspecting and changing the content of the
tuple set, by inserting, retrieving or reading associatively tuples.

4.1 Modeling Dialogues Using ReSpecT

In particular, the deliberative dialogue defines a set of constructive rules to shape the social
deliberative dialogue activity. Using ReSpecT it is possible to define a set of rules which
capture how the dialogue state changes when a locution is made. The dialogue protocol can be
described as a set of rules stating:

Deliberative Dialogue Protocol:
reaction(out(Locutionl),
when Conditionsl then Stagel).
reaction(out(Locution2),
when Conditions2 then Stage2).

reaction(out(Locutionj),
when Conditionsj then Stagej).

These rules describe the effects on the dialogue state and commitments due to the
utterances of locutions by

the agents . Every locution made by the agents is maintained in the locution history. The
transition of stages is also recorded. Conditionsj expresses how the dialogue progresses from
a state to another according to the current stage and admissible moves. Table 1 shows one of
the dialogue rules. The rule states that if any of the participants makes a propose locution and
the dialogue has been in the Open stage, then the new dialogue state is Inform stage. The
other rules for the deliberation dialogue game are defined similarly. For example, the dialogue
cannot start from Consider stage if the participants have not firstly opened, shared information
and exchanged proposal for actions.

Table 1. Example of a Dialogue rule in ReSPecT

OPEN TO INFORM

reaction(out(propose(AID,ID,Type,Q)), (
in(propose(AlD,ID,Type,Q)),
X is propose(AID,ID, Type,Q),
in(dialogue_history(ID,GQ,Sh,Lh)),
isearch(open,Sh),
append(Sh,[inform],NewsSh),
append(Lh,[X],NewLh),
out(dialogue_history(ID,GQ,NewSh,NewLh)),
out(dialogue_changed(1D)))) .

116

IADIS International Journal on Computer Science and Information Systems

Once the dialogue goes through Open, Inform, Propose agents are free to access Revise,
Consider, Recommend, Confirm and Close stage. If necessary, the agent may return to one of
the three initial stages.

The Close stage concludes the workflow selection. The dialogue's progression from one
stage to another depends on the history of the stages and on the history of the locutions. We
use commitment stores [9, 30] to track locutions that create obligations between agents. This
allows the agent to reason about the expectations it has about others and what others expect of
it. When agents communicate a locution that commits an agent, the ReSpecT rules update the
Commitment Store. The locutions that creates commitments are the assert locution when its
type is question, goal, constraint, perspective, fact or evaluation, the move locution and the
retract locution. In the retract locution, the agent indicates an assert or move or prefer
locution to be removed from the commitment store. Although the locution will be removed,
the trace of the locutions retracted will remain in the locution history. The agents can inspect
the Commitment Store and they will have all a coherent view of each participant's obligations.

4.2 Modeling WFMS Using ReSpecT

The deliberative dialogues rules model a protocol for the agents” communication, and
coordinates agents during their workflow selection. Once the selection occurs the workflow
should be executed in the specified order. This section explains how coordination artifacts can
be specialized as workflow engines to provide coordination of workflow activities.

It is possible to model two levels of workflow coordination rules. The first level specifies
the coordination of a single workflow, seen as an atomic service (e.g. booking a ticket). As
described in [23], the ReSpecT rules embedded in tuple centers are an alternative way to
model workflow engines which coordinates workflow activities. The coordination artifact
orchestrates the activities of the workflow by telling agents for which activities they are
responsible.

As shown in Table 2 the workflow procedure starts with a start(l) event whose reactions
generate the first activity by writing in the tuple space the next activity denoted by next(Al).
Once an activity Ai is completed, the event completed(Ai) must happen, which in turn
activates new reaction rules. The above specification requires that the implementation of
workflow execution must take care of the synchronization of activities and shared variables
(e.g. in and join) or mutual exclusion (e.g. in xor split).

Table 2. Execution of workflow A1A2. . .An(l, O). The terms A1,A2,. . .An denote workflow activities
whose execution produce output O when supplied with input I.

Activity Relation: Event ReSpecT Expression Rules
Initial start(l) when Conditions then next(Al)
Final completed(An) when Conditions then result(O)
Loop completed(Ai) when Conditions then next(Ai)
completed(Ai) when not Conditions then next(Ai+1)

117

AUTOMATING WORKFLOWS USING DIALECTICAL ARGUMENTATION

Sequential completed(Ai) when Conditions then next(Ai+1)

And_join completed(Ai) when contains(synchronize([Ai,L, . . . ,Ai,j]), Ai)
and Conditions
then update(Completed)

completed(Ai) when Completed is [Ai,L, ... ,Ai,j]
then next(Ai+1)

completed(Ai,1) when Conditions then next(Ai+1)
Xor_join
completed(Ai,2) when Conditions then next(Ai+1)

completed(Ai,j) when Conditions then next(Ai+1)

And_split completed(Ai) when Conditions then next(Ai,1)
next(Ai,2)

next(Ai,j)
Xor_split completed(Ai) when Conditionsl then next(Ai,1)

completed(Ai) when Conditions2 then next(Ai,2)
completed(Ai) when Conditionsj then next(Ai,j)

The second level of workflow coordination rules enables the linkability between
distributed workflow engines. These rules provide coordination between worklfow procedures
that enable the linkability between distributed WfEs to support workflow composition. It is
possible to express linking conditions between workflow engines by configuring them with
precondition and postcondition rules. The idea is to manage the workflow engines by
providing them with local vision about how they are related (e.g. sequential, xor_join,
and_join) with other workflow engines.

We express linkability between WfEs by assertions of the form: wfe link (Current,
Previous, Next). Assertions of this kind state that when the Previous WTE has reached its final
state the Current WfE must start, which after it finishes, the Next WfE should be informed to
continue for the composite workflow to complete. Thus, we coordinate WfEs by providing
them with a local view of how they are related with each other. We also expect that the
parameters Previous and Next to be supplied as follows:

Previous ::= initial | sequence(WfE) | and join(WfEs) | xor join(Conditions, WfES).
Next ::= final | sequence(WTE) | and split (WfEs) | xor split (Conditions, WfES).

118

IADIS International Journal on Computer Science and Information Systems

For instance, the figure 4 shows a set of 6 workflow engines (from WfEOQ to WfE5), where
there is an and_split between WfE1 and WfE2, WfE3, and an and_join between WfE2,WfE3
and WfE4 .

WFED — WFE1 WE4 WIES

Figure 4. Workflow Engines Linking

In this case, the set of tuples to configure every workflow engines would be respectively:
WIFEOQ: wfe_link(WTED, initial, sequence(WfEL)).
WIfEL: wfe_link(WfE1, sequence(WfEOQ), and_split([AddrWfE2,WTFE3])).
WIFE2: wfe_link(WfE2, sequence(WfE1), sequence(WfE4)).
WIFE3: wfe_link(WfE3, sequence(WfE1), sequence(WfE4)).
WfE4: wfe_link(WfE4,and_join([WfE2,WTfE3]), sequence(WTES)).
WIES: wfe_link(WfE5, sequence(WfE4), final).
And a set of similar rules as defined in table 2 are are defined to link the different WTE.
These reactive rules make use of the ReSpecT operation out tc defined to enable the
communication between two tuple centers.(See [20] for more details).

5. CASE STUDY

To clarify some of the ideas discussed in the previous sections, we exemplify our approach by
considering a scenario for the dynamic composition of workflows. In particular we will
consider a simple example where a user requests, via the User Agent, to buy a plane ticket to a
certain destination and to rent a car in this destination. The WFCA that receives the request
has no suitable workflow in its own library to satisfy the user’s goal, so it requests to the
WEFSL to find two workflows fulfilling the user’s requirements. The requirements are
expressed using a Workflow Description Format as in table 3 and their main purpose is to
constrain and to help the WFSL during the argumentation. The figure shows the workflow
description scheme provided to the WFSL for the flight ticket workflow selection, the
workflow description scheme for the car rental workflow selection will be similar.

Table 3. The workflow description scheme

<?xml version=""1. 0 ” encoding="1SO?8859?1” 7>

<Workflow Description>

<Description>plane ticket</Description>

<Name> </Name>

<Address> </Address>

<Input> input (Name, Customer, Ticket, Seller,Carrier) </ Input]

119

AUTOMATING WORKFLOWS USING DIALECTICAL ARGUMENTATION

<Output></Output>
<ServiceCost> 0 </ ServiceCost>
<Availability> 99 </ Availability>
<Reliability> 98 </ Reliability>
<Trust> 90 </Trust>
</Workflow Description>

5.1 Simple Workflow

We exemplify how we use the logic rules illustrated in section 2 with the workflow book
plane ticket workflow procedure depicted in figure 5. In this example a user requests a plane
ticket. This generates a query on the availability of the ticket. It notifies the user and
terminates if it does not find results, otherwise it generates the booking of the ticket.
Afterwards a payment is required, if the requester of the service authorize the payment, a
payment request is generated, otherwise the booking is made invalid and the user is notified
and the procedure is terminated. If the payment procedure terminates successfully a ticket is
send to the user which is notified and the procedure terminated.

Start (@)

request .!)

Availability (£}

-4

book %

Reserve | no_results ——
B

payment F."q no_payment

Pay [C } ['"-D\'}Jnreserve

success 1 po_success
* AT

Send_ticket IE}I 'L'F_JFailure_procedlre
A vl —

notify :F notify notify

Motification
finish

Stop

Figure 5. Book Plane Ticket Workflow Procedure

The following listing shows how we specify the logic rules for the start of this procedure
and an and split procedure using ReSpecT rules. The procedure starts with a request(Input)
made by a user agent or as part of the linking of the workflow engines.

120

IADIS International Journal on Computer Science and Information Systems

START

reaction(out(start(request(Input))),(
check_input(Input, Data),
generate_id(Input,ld),
out(wf(ld)),
out(next(availability(ID,Data))))).

AND_SPLIT

reaction(out(completed(availability(ID,Data))),(
in(completed(availability(ID,Data))),
out(next(reserve(ID,Data))),
out(next(natification(ID,Data))))).

5.2 Dynamic Selection of Workflows

As a result, two dialogues are opened in two diffent tuple centres. The table 4 shows a
dialogue example between three agents: agentA, agentB and agentC. The agentA, perceiving
the request for a plane ticket workflow selection, opens a dialogue with governing question
“plane_ticket”. The other agents enter the dialogue by using an enter_dialogue locution.
Once the dialogue is opened and some constrains are proposed, the agents propose two
different workflows suitable to satisfy the requirements. At the end the three agents agree for

the first workflow, which better satisfies the requirements of the WFCA.

Table 4. A dialogue example

. open_dialogue (agentA, ID, plane_ticket)

. enter_dialogue (agentB, 1D, plane_ticket)

. enter_dialogue (agentC, ID, plane_ticket)

. propose (agentA, ID, constraint , service time)

. propose (agentC, 1D, constraint , cost)

. propose (agentB, ID, action , buyticketl.txt)

. propose (agentC, ID, action, buyticket2.txt)

. ask_justify (‘agentA, ID, agentB, buyticketl.txt)
. assert (agentB, 1D, fact, Service Time=2)

10. prefer (agentC, ID, action , buyticketl.txt, buyticket2.txt)
11. move (agentA, ID, buyticketl.txt)

12. assert (agentB, 1D, buyticketl.txt)

13. assert (‘agentC, ID, buyticketl.txt)

14. withdraw (agentA, ID, plane_ticket)

15. withdraw (agentB, ID, plane_ticket)

16. withdraw (agentC, ID, plane_ticket)

O©Coo~NOoO o wWNE

Once the workflows are selected, the workflow description files are delivered to the

WECA which confer

with the UA for their execution. The WFCA knows that the workflows should be executed
sequentially and as a consequence it provides the UA with the instructions about how to set
the workflows engines in order to execute the workflows. In other words, the WFCA, once

121

AUTOMATING WORKFLOWS USING DIALECTICAL ARGUMENTATION

the selection layer deliver to him the two workflow execution, sends the following message to
the UA:

Message: user agent message[case to start(plane ticket, Pre, Post, Address1, Address2,
Input), case to start(car rental, Pre, Post, Address2, Address2, input)]

The Pre and Post are the linking conditions as described in the sections above, Addressl is
the address of the workflow (the address of plane ticket workflow engine in the first case and
the address of car rental workflow engine in the second case) Address2 are the addresses of
the activities indicated in the postcondition (here it is the address of the car rental workflow
engine), Input is the input in order to start the new case.The plane ticket and car rental
workflow coordinated by the two workflow engines is simplified in three activities to execute
in parallel. When the plane ticket workflow starts three sequential tasks are generated for the
WFEA-s (reservation, dispatch ticket and payment). When the execution of these activities
conclude, the car rental workflow provides the agents with similar activities (reservation,
dispatch the car receipt and payment).

6. RELATED WORK

Combining service-oriented computing and architectures with software agents is an active
area of research for intelligent systems [21]. More specifically, current visions of web-services
and agent computing predict important implications in the engineering of complex distributed
systems [7] in general and GRID [5] and ubiquitous [8] computing in particular. A large part
of this effort focuses on the service composition problem [22], where a computational logic
approach is playing an important role, for example see Mcllraith and colleagues [13,14],
Baldoni et al [2], and Lomuscio et al [10].

The advantage of using dialectical argumentation, compared with approaches that do not,
is that agents can provide supporting arguments for selecting a service, thus being in a
position to provide reasons about why a particular service has to be selected instead of
another.

The use of coordination artifacts for the definition of distributed workflow is not new: in
[20] Omicini et al. propose a framework where distributed coordination artifacts coordinates
the activity of a MAS to provide a distributed workflow management system. The difference
between [20] and our approach is that we consider a layered architecture where workflows are
dynamically composed using dialectical argumentation according to the preferences of a user.

A similar approach to the one of coordination artifacts is the one based on games proposed
by Stathis in [25,27,28], where agents play a complex logical interaction protocol on top of an
umpire agent that keeps the state of the game between two participants. The added value of
our approach with respect to [25, 27,28] is that we have a distributed approach where we can
link multiple societies of argumentative agents playing complex protocols in order to fulfill a
workflow proposed by a workflow composition agent. In the second place our approach based
on coordination artifacts allows us to have a society of agents playing a collaborative
argumentation dialogue, so in a certain way our approach tries to generalise the approach
presented in [25, 27, 28] by introducing the concept of coordination artifact.

122

IADIS International Journal on Computer Science and Information Systems

From the infrastructure point of view, our approach is similar to the one proposed by
Electronic Institutions [4], where the activities inside a multiagent environment are seen in
terms of multiple, concurrent dialogical activities. For every activity the interaction between a
group of agents happens inside scenes, that allows well-defined communication protocols.
Multiple connected scenes defines a performative structure in which the norms define the
commitments, obligations and rights of the participant agents as well as defining the rules of
transition between one scene to another.

In our approach the scenes can be seen as the societies of agents belonging to the
Workflow Selection Layer, and the performative structure can be seen as the workflow
proposed by the workflow composition layer, while the norms and protocols are defined by
the respect theories within every society of the Workflow Selection Layer. The added value of
our approach with respect of El is the fact that our infrastructure allows agents to play
collaborative dialogues using dialectical argumentation. At the same time, the outcome of the
deliberative dialogues can be composed at the Workflow Composition Layer and instruct the
Workflow Execution Layer to execute the overall workflow in a dynamic coreography created
by linking the coordination artifacts of the Workflow Execution Layer.

7. CONCLUSIONS

We have presented a multi-agent systems framework based on argumentative agent
technology for the automation of the workflow selection and execution. In this framework,
workflow selection has been coordinated by agent interactions governed by the rules of a
dialogue game whose purpose has been to evaluate the workflow's properties via
argumentation. When a workflow has been selected using this process, the workflow has been
executed by dynamically configuring workflow engines that in turn coordinate the
participating agents' workflow activities. We have further exemplified our approach by
showing how the framework can be instantiated for a concrete example application
implemented using the TuCSoN infrastructure and its associated ReSpecT language. The use
case described is simplified in order to explain the concepts our approach. However, the
framework is designed to execute arbitrarily complex workflows. This includes issues such as
conflict amongst agents, which would be handled during the dialogue game. If the overall
system required a more competitive agent system (rather than the collaborative one
described), it would only require a different protocol such as a negotiation protocol. The
resulting execution of the workflow would remain the same.

Future work will consider the incorporation of standardized workflow languages. This will
allow the workflow selectors can incorporate trust policies related to feedbacks received from
the other system which use this workflows. More specifically, the user agent could propose
modifications on the workflow description according to a feedback received from the user.
Finally, another future development regards the possibility to consider different kind of
dialogues in addition to the deliberative one, according to the kind of workflow the agent are
trying to compose. In particular, agents could perform a persuasive dialogue when a conflict
of point of view exists between them.

123

AUTOMATING WORKFLOWS USING DIALECTICAL ARGUMENTATION

ACKNOWLEDGMENTS

The work was supported by the EU IST-6 ArguGRID project.

R

1.

2.

9.

10.

11.

12.

13.

14.

EFERENCES

Amgoud, L, Maudet, N and Parsons S, 2000, “Modeling Dialogues Using Argumentation”,
Proceedings of the Fourth International Conference on MultiAgent Systems (ICMAS-2000), p 31.

Baldoni, M, Baroglio, C, Martelli, A, and Patti,V, 2004, “Reasoning About Interaction Protocols for
Web Service Composition”, Electr. Notes Theor. Comput. Sci. 105, pp. 21-36.

. Curcin, V, Ghanem, M, Guo, Y, Stathis, K and Toni, F, 2006, “Building next generation Service-

Oriented Architectures using Argumentation Agents”, 3rd International Conference on Grid Service
Engineering and Management, Germany, pp 249-263.

. Esteva, M, Rodriguez-Aguilar, J. A, Sierra, M, Garcia, P and Arcos. J.L, 2001, “On the formal

specifications of electronic institutions”, Agent Mediated Electronic Commerce, The European
AgentLink Perspective, Springer-Verlag, London, UK, pp 126-147.

. Foster, 1. T, Jennings, N. R, and Kesselman, C, 2004, “Brain Meets Brawn: Why Grid and Agents

Need Each Other”, 3rd International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004), New York, NY, USA, pp. 8-15.

. Gelernter, D, 1985, “Generative communication in Linda”, ACM Transactions on Programming

Languages and Systems, vol. 7, no. 1, pp. 80-112.

. Ghanem, M., N. Azam, M, Boniface, and Ferris, J, 2006, “Grid-enabled workflows for industrial

product design”, Proc. of the 2nd IEEE International Conference on e-Science and Grid Computing
(e-Science’06).

. Huhns, M. N, Singh, M. P, Burstein, M. H, Decker, K. S, Durfee, E. H, Finin, T. W, Gasser, L,

Goradia, H. J, Jennings, N. R, Lakkaraju, K, Nakashima, H, Parunak, H. V. D, Rosenschein, J. S,
Ruvinsky, A, Sukthankar, G, Swarup, S, Sycara, K.P, Tambe, M, Wagner, T, and Gutierrez, R. L. Z,
2005, “Research Directions for Service-Oriented Multiagent Systems”, IEEE Internet Computing
9(6), p.p 65-70.
Levesque, H.J, Cohen, P.R and Nunes, J. H.T, 1990, “On acting together”, In Proceedings of the 8"
National Conference on Artificial Intelligence (AAAI-90), Boston, MA, pp. 94-99.

Lomuscio, A, Qu, H, Sergot, M. J, and Solanki, M, 2007, ‘Verifying Temporal and Epistemic
Properties of Web Service Compositions’. In: B. J. Krdmer, K.-J. Lin, and P. Narasimhan (eds.):
Service-Oriented Computing - ICSOC 2007, Fifth International Conference, Vol. 4749 of Lecture
Notes in Computer Science. Vienna, Austria, pp. 456-461.

McBurney, P, Hitchcock, D and Parsons, S, 2007, “The eightfold way of deliberation dialogue”,
International Journal of Intelligent Systems, 22(1), pp. 95-132.

McGinnis, J, Bromuri, S, Urovi, V, Stathis, K, 2007, “Automated Workflows Using Dialectical
Argumentation”, German e-Science Conference, Germany, to appear.

Mcllraith, S. A. and Son,T. C, 2002, “Adapting Golog for Composition of Semantic Web Services”,
D. Fensel, F. Giunchiglia, D. L. McGuinness, and M.A. Williams (eds.): Proceedings of the Eights
International Conference on Principles and Knowledge Representation and Reasoning (KR-02).
Toulouse,France, pp. 482-496.

Mcllraith, S. A, Son, T. C, and Zeng, H, 2001, ‘Semantic Web Services’. IEEE Intelligent Systems
16(2), 46-53.

124

IADIS International Journal on Computer Science and Information Systems

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Omicini, A and Denti, E, 2001, “Formal ReSpecT”, Electronic Notes in Theoretical Computer
Science, 48.

Omicini, A and Denti, E, 2001, “From tuple spaces to tuple centres”,Science of Computer
Programming, vol. 40, n.2.

Omicini, A, Ricci, A, Viroli, M, Castelfranchi, C, Tummolini, L, 2004, “Coordination artifacts:
Environment-based coordination for intelligent agents”, 3" International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), New York, USA, Volume 1, pp. 286-
293

Omicini, A, Ricci, A and Viroli. M, 2006, “Coordination artifacts as first-class abstractions for
MAS engineering: State of the research”, Software Engineering for Multi-Agent Systems 1V:
Research Issues and Practical Applications, volume 3914 of LNAI, pp 71-90.

Omicini, A, Ricci, A, and Zaghini, N, 2008, “Artifacts in the A&A Meta-Model for Multi-Agent
Systems”, Autonomous Agents and Multi-Agent Systems 17(3), pp. 432-456.

Omicini, A, Ricci, A and Zaghini, N, 2006, “Distributed Workflow upon Linkable Coordination
Avrtifacts”, Lecture Notes in Computer Science : Coordination Models and Languages, pp. 228-246.
Payne, T. R, 2008, “Web Services from an Agent Perspective”, IEEE Intelligent Systems 23(2), pp.
12-14.

Rao, J. and Su,X, 2005, “A Survey of Automated Web Service Composition Methods”, Semantic
Web Services and Web Process Composition, Vol. LNCS 3387/2005. Springer, pp. 43-54.

Ricci, A, Omicini, A, Denti, E, 2001, “Agent Coordination Infrastructures for Virtual Enterprises
and Workflow Management”, Cooperative Information Agent V, Modena, Italy, 2182, p 235.

Ricci, A, Viroli, M and Omicini, A, 2005, “Environment-Based Coordination Throught Coordination
Avrtifacts”, Book Series Lecture Notes in Computer Science, Volume 3374, pp. 190-214.

Stathis, K, 2000, “A game-based architecture for developing interactive components in
computational logic”, Journal of Functional and Logic Programming,(5).

Stathis, K, Kakas A, C, Lu, W, Demetriou, N, Endriss, U and Bracciali, A, 2004, “PROSOCS: a
platform for programming software agents in computational logic”, Proceedings of the Fourth
International Symposium “From Agent Theory to Agent Implementation”, Vienna, Austria, pp 523-
528.

Stathis, K, Lekeas, G, Kloukinas, C, 2006, “Competence checking for the global e-service society
using games”, ESAW, pp. 384-400.

Stathis, K,Sergot, M. J, 1996, “Games as a metaphor for interactive systems”, in: BCS HCI, pp. 19—
33.

29.Van der Aalst, W, 1998, “The application of petri nets to workflow management”,The Journal of

30.

Circuits, p 21-66.
Walton, D and Krabbe, E, 1995, “Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning”, Suny, USA

125

