
Towards Runtime Support for Norm-Governed Multi-Agent Systems

Visara Urovi*, Stefano Bromuri*, Kostas Stathis*, Alexander Artikis**
*Department of Computer Science, Royal Holloway, University of London, UK.
**Institute of Informatics and Telecommunications, NCSR Demokritos, Greece.

Abstract

We present a knowledge representation framework with an
associated run-time support infrastructure that is able to com-
pute, for the benefit of the members within a norm-governed
multi-agent system, physically possible and/or permitted ac-
tions current at each time, as well as sanctions that should be
applied to violations of prohibitions. Experimental results on
a benchmark scenario indicate how by distributing norms we
can provide run-time support to large-scale, norm-governed,
multi-agent systems.

Introduction
Norm-governed multi-agent systems (Artikis, Sergot, and
Pitt 2009) are open multi-agent systems that are regulated
according to the normative relations that may exist between
member agents, such as permission, obligation, and insti-
tutional power, including sanctioning mechanisms dealing
with violations of prohibitions and non-compliance. De-
spite the proliferation of knowledge representation frame-
works for norm-governed systems, these frameworks often
focus on the expressive power of the formalism proposed
and typically abstract away from the computational aspects
and experimentation. If the computational behavior is stud-
ied, then this often happens in isolation, at times theoret-
ically only, and in many occasions leaves unexplored any
experimental evaluation.

Our work aims at using existing Event Calculi (Kesim and
Sergot 1996; Bromuri and Stathis 2009) to support agent
permissions, prohibitions and sanctions at run-time. We as-
sume that agents cannot compute these normative relations
on their own because of computational constraints, incom-
plete knowledge about the application state and primarily
preoccupation with their agendas. The novelty of our ap-
proach is the ability to formulate the distribution of the phys-
ical and social environments of a norm-governed application
in order to efficiently compute their corresponding physical
and social states.

The Open Packet World
To exemplify our approach we use Packet World (Weyns,
Helleboogh, and Holvoet 2005), see Fig. 1(a)(i), where a set
of agents situated in a rectangular grid pick colored packets

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(squares) and deliver them in destinations (circles) match-
ing a packet’s color. Agents see only part of the grid (e.g.
the square around agent a2 in Fig. 1 is its perception range),
so they collaborate through teams and use of flags to indi-
cate already explored areas known to have no packets. Also,
agents are powered by a battery that discharges when agents
move. Recharging the battery requires a charger (located at
(7,8) of Fig. 1). The charger emits a gradient perceivable at
any grid location; a small/large value implies that the dis-
tance from the charger is close/far respectively.

We introduce a competitive version of the above scenario,
the Open Packet World (OPW), where agents win points
when they deliver packets and may have to gain if they ob-
struct others e.g. by putting a flag in an area that is unex-
plored. To avoid unsocial behavior, in OPW we introduce
norms, i.e. an agent is not permitted to flag an unexplored
area as it will mislead others to think that there are no pack-
ets in this part of the grid. Violation of norms results in
sanctions, for example, the reduction of points of the violat-
ing agent.

We experiment with our scenario using the GOLEM agent
platform1. GOLEM supports the deployment of agents -
cognitive entities that can reason about sensory input re-
ceived from the environment and act upon it, objects - re-
sources that lack cognitive ability, and containers - virtual
spaces containing agents and objects and capturing their on-
going interactions in terms of an events-based approach.

The simplest way to model the OPW in GOLEM is shown
in Fig. 1(a). Here we deploy a container representing the
world (Bromuri and Stathis 2007) extended with an active
object which we call Social Calculator. This object will
contain the norms, will encapsulate the state of the physi-
cal container in order to check for violations in it, extend it
with a social state by storing possible violations, while at the
same time serve agents who would want to know what their
permissions are at a specific time.

To represent the state of a GOLEM container we use the
object-based notation of C-logic, a formalism that describes
objects as complex terms (Chen and Warren 1989). For sim-
plicity, the term below represents the state of a 2 x 2 packet
world showing only one agent, packet, destination and bat-
tery:

1http://golem.cs.rhul.ac.uk



Figure 1: Open Packet-World as a Norm-Governed System

packet world:c1[
address⇒ “container://one@134.219.7.1:13000”,
type⇒ open,
grid⇒ {square:sq1, square:sq2, square:sq3, square:sq4}
entities⇒ {picker:ag1, packet:p1, dest:d1, battery:b1}]

Object instances belong to classes (e.g. packet world), are
characterized by unique identifiers (e.g. c1), and have at-
tributes with single values (e.g. address) or multiple values
(e.g grid). The representation of the 8 x 8 grid of Fig. 1
is similar but larger, i.e. more agents, packets, destinations,
and squares.

Complex objects evolve as a result of events happening in
the state of a container (Bromuri and Stathis 2009). To query
the value Val of an attribute Attr for an entity Id of container
C at a specific time T, we will use the definition:

solve at(C, Id, Class, Attr, Val, T)←
holds at(C, container, entity of, Id, T),
holds at(Id, Class, Attr, Val, T).

holds at/5 extends the Event Calculus with an object-based
data-model (Kesim and Sergot 1996). The extension de-
scribes how the value Val of an attribute Attr for specific
Class instance identified by Id hold at a particular time T.
For details the reader is referred to (Kesim and Sergot 1996).
With this extended Event Calculus we specify physical pos-
sibility for the OPW as:

possible(E, T)←
do:E [actor⇒ A, act⇒ move, location⇒ SqB],
solve at(this, A, picker, position, SqA, T),
adjacent(SqA, SqB),
not occupied(SqB, T).

The rule states that it is possible for an agent to move to an
adjacent position as long as it is not occupied. The keyword
this is used here to refer to the identifier of the current con-
tainer.

We can now formalize the social state as a C-logic struc-
ture that extends the physical state with social attributes to

hold information about any current sanctions imposed on
any of the agents and the points agents have collected so
far. An example snapshot of a social state for the OPW is
shown below:

packet world social state: s1 [
physical state⇒ packet world:c1,
sanctions⇒ {sanction:s1 [agent⇒ a2, ticket⇒ 5]},
records⇒ {record:r1[agent⇒ a1, points⇒ 35],

record:r2[agent⇒ a2, points⇒ 25]}]

The term above states that agent a2 has been sanctioned with
5 points. We show the records of two agents only to save
space. Agent a1 has collected 35 points, while a2 has col-
lected 25 after the sanction is applied. The social state con-
tains rules for what is permitted and what is forbidden :

permitted(Event, T)← not forbidden(Event, T).

forbidden(E, T)←
do:E[actor⇒ A, act⇒drop, object⇒flag, location⇒SqA],
solve at(this, Id, packet, position, SqB, T),
adjacent(SqA, SqB).

In OPW what is permitted is defined generically while what
is forbidden domain specifically. When a forbidden act has
taken place, the Social Calculator raises a violation. More
complex permissions and sanctions can be formalized simi-
larly.

An alternative way to model the OPW is to split the phys-
ical state of a single container into smaller states that we dis-
tribute in different containers. Fig. 1(b)(i) shows four 4 x 4
adjacent containers for OPW together with their correspond-
ing Social Calculators (see Fig. 1(b)(ii)). GOLEM supports
this feature with the Ambient Event Calculus (AEC) (Bro-
muri and Stathis 2009). Given a container C and a starting
Path, we can query a maximum number of neighbors Max,
returning a final Path∗ where an object identifier Id, class
Cls, attribute Attr, and value Val hold at time T:

neighbouring at(C, Path, Path∗, Max, Id, Cls, Attr, Val, T)←
Max >= 0,
locally at(C, Path, Path∗, Id, Cls, Attr, Val, T).

neighbouring at(C, Path, Path∗, Max, Id, Cls, Attr, Val, T)←
holds at(C, container, neighbour, N, T),
not member(N, Path),
Max∗ is Max - 1,
append(Path, [C], New),
neighbouring at(N, New, Path∗, Max∗, Id, Cls, Attr, Val, T).

The first clause checks whether the object is in the local state
of a container. locally at/8 checks with holds at/5 to find the
object in the container’s state, including sub-containers2, if
any. The second clause looks for neighbors. If a new neigh-
bor N is found, this neighbor is asked the query but in the
context of a New path and a new Max∗.

We are now in a position to customize our representation
for distributing the physical and social state by redefining the
solve at/6. The definition below has the effect of changing
all the physical and social rules so that they can work with
distributed containers:

2We refer the interested reader to (Bromuri and Stathis 2009)
for a definition of locally at/8.



solve at(C, Id, Class, Attr, Val, T)←
neighbouring at(C, [], , 1, Id, Class, Attr, Val, T).

The empty list [] above states that the initial path is empty,
the underscore ‘ ’, that we are not interested in the result-
ing path, and the number 1 indicates that we should look
at all neighbors whose distance is one step from the current
container. In this way, we can query all the neighbors of a
container in the OPW of Fig. 1(b).

Experimentation
To test how our framework would behave in norm-governed
applications with a large number of agents we have per-
formed two sets of experiments: one where the OPW is de-
ployed in one container and another where it is deployed
in many distributed containers. In both sets of experiments
we measured the time needed for an action to be physically
possible and permitted. We also varied the number of agents
playing in the OPW, observe the number of events in the
system, and observed how these parameters affect the per-
formance of the system in both experimental settings. We
also tested whether our original intuition that the distributed
version will perform better than the centralized was valid.

In the first set of experiments, we tested the OPW in a
centralized container deployed on an Intel Centrino Core 2
Duo 2.66GHz with 4GB of RAM. The environment was rep-
resented by a 40x40 grid and 100 packets were collected by
the agents and released into one of the 8 destinations in the
grid. We run the first test with 10 agents, the second test
with 30 agents and the third test with 50 agents. In all of the
runs, the agent “minds” (reasoning components) were de-
ployed in a separate machine and were remotely connected
with their “bodies” (action execution components) deployed
in the GOLEM container. We found that the time Tc needed
to compute the social and physical state for a centralized
container is characterized by the following equation:

Tc = a ∗ E + t0 with a ∼ Ne/Na

where Ne is the number of entities in the system, Na is the
number of active entities performing events, E is the number
of events in the system and t0 is intial time to register the en-
tities in the container. The equation states that as the number
of agents increases, then Na increases, which means that the
a decreases, which results in better performance.

In the second series of experiments we distributed the
OPW grid (40x40) first into two containers (20x40) and then
into four (20x20) different containers. For the distribution
of the containers we used an Intel Centrino Core 2 Duo
2.66GHz with 4GB of RAM and an Intel Centrino Core Duo
1.66Ghz with 1GB of RAM. Agents were deployed in dis-
tributed containers and were mobile (Bromuri and Stathis
2009). Now we found that the time to compute the physical
and social state distributed over many containers is defined
by the equation:

Td = Tc
d

+ i× c ∼ Ne
d×Na

× E + t0
d

+ i× c

where Tc is the time to compute the same experiment with
a centralised container, d is number of containers used in
the decentralized version, i is the number of interactions be-
tween containers and c is the cost of container interaction.

In other words, when we distribute the agent environment
in multiple containers, the time to compute the physical and
the social state is inversionally proportional to the number of
containers, thus improving the performance. However, there
is an additional delay to compute the physical and social
state which is due to the interactions between the containers.
A more detailed discussion on our experimental evaluation
and the implementation can be found in (Urovi et al. 2010).

Conclusions and Future Work
We have presented a knowledge representation framework
with an associated run-time infrastructure that is able to
compute, for the benefit of the members within a norm-
governed multi-agent system, physically possible and per-
mitted actions current at each time, as well as sanctions that
should be applied to violations of prohibitions. We exempli-
fied the ideas by applying the infrastructure on a benchmark
scenario for norm-governed multi-agent systems. Through
experimentation we have explored how to use the knowledge
representation framework to distribute parts of the infras-
tructure so that we can provide run-time support to larger-
scale multi-agent systems regulated by norms.

In the future we plan to include obligations, rights and
institutionalized power in our framework. We also plan
to perform larger scale experimental evaluations comparing
‘query time’ versus ‘update time’ trade offs of our infras-
tructure across different applications.

References
Artikis, A.; Sergot, M. J.; and Pitt, J. V. 2009. Specify-
ing norm-governed computational societies. ACM Trans.
Comput. Log. 10(1).
Bromuri, S., and Stathis, K. 2007. Situating Cognitive
Agents in GOLEM. In Engineering Environment-Mediated
Multi-Agent Systems, EEMMAS 2007, volume 5049/2008
of Lecture Notes in Computer Science, 115–134. Springer.
Bromuri, S., and Stathis, K. 2009. Distributed Agent En-
vironments in the Ambient Event Calculus. In DEBS ’09:
Proceedings of the third international conference on Dis-
tributed event-based systems. New York, NY, USA: ACM.
Chen, W., and Warren, D. S. 1989. C-logic of complex
objects. In PODS ’89: Proceedings of the eighth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, 369–378. New York, NY, USA: ACM.
Kesim, F. N., and Sergot, M. 1996. A Logic Programming
Framework for Modeling Temporal Objects. IEEE Trans-
actions on Knowledge and Data Engineering 8(5):724–
741.
Urovi, V.; Bromuri, S.; Stathis, K.; and Artikis, A.
2010. Run-time support for norm-governed systems.
CS Technical Report CSD-TR-10-01, Royal Holloway.
http://golem.cs.rhul.ac.uk/TR/CSD-TR-10-01.pdf.
Weyns, D.; Helleboogh, A.; and Holvoet, T. 2005. The
packet-world: A testbed for investigating situated multia-
gent systems. In Software Agent-Based Applications, Plat-
forms, and Development Kits. Birkhauser Verlag, Basel -
Boston - Berlin. 383–408.


