Toward a Modular Architecture of
Argumentative Agents to Compose Services*

Maxime Morge!, Jarred McGinnis?, Stefano Bromuri?, Francesca Toni®, Paolo
Mancarella!, and Kostas Stathis!

! Dipartimento di Informatica
Universita di Pisa
via F. Buonarroti, 2 I-56127 Pisa, Italy
{morge,paolo}@di.unipi.it,
2 Department of Computer Science
Royal Holloway, University of London
McCrea Building, Egham, Surrey TW20 0EX, UK
{jarred,stefano,kostas}@cs.rhul.ac.uk
3 Department of Computing
Imperial College London
South Kensington Campus, London SW7 2AZ, UK
ft@doc.ic.ac.uk

Abstract. In this paper, we present a model of agents which use ar-
gumentation to select and compose services in open and distributed en-
vironments. For this purpose, we propose a modular agent architecture
using three main modules, dedicated, respectively, to decision making,
communication, and negotiation. We deploy a simple “virtual” travel
agent example to illustrate how our agents select and compose services,
focusing on the functionalities of the modules within the agents.

1 Introduction

The notion of service provides a useful programming metaphor for components
of open and distributed systems. Service-oriented architecture are modular, since
each service offers an interface between providers and requestors. This interface
allow autonomous agents to provide complex services with added value, based
upon the composition of atomic services [2].

Argumentation, simply stated, focuses on interactions where parties plead for
and against some conclusion [3]. It provides a powerful framework for interacting
agents making decisions, assessing the validity of information they become aware
of, or resolving conflicts and differences of opinion. It is an essential ingredient
of decision making [4], inter-agent communication [5], and negotiation [6].

In this paper we propose an argumentative agent model and architecture
whereby agents can reason and make decisions, and can communicate and nego-
tiate with other agents with the aim of supporting service selection and composi-
tion, as envisaged in the ARGUGRID project #. The reasoning, communication,

* This paper was already published in a french conference [1].
4 http://www.argugrid.eu/

and negotiation capabilities of agents can support the selection and integration
of services in an open and distributed environment. The user requesting a ser-
vice, as a result, is only required to specify an abstract description of her needs
for this service, possibly with some constraints and preferences about it. Simi-
larly, providers of services are only requested to specify an abstract description
of their goals, with constraints and preferences. The task of selecting this service
(and its provider), and possibly, in the case of a complex service, integrating
different atomic services, is then assigned to the agents.

The main focus and contribution of this paper is to provide an in-depth report
on the architecture of our agents, and in particular on its mind component. This
mind is divided in three modules: (i) the individual decision making module,
allowing to shift from the goals, preferences, and constraints provided by the user
to an abstract representation of the required (integrated) services; (ii) the social
decision making module, allowing to shift, by means of negotiation, from this
abstract representation to a concrete one, in terms of concrete services and their
parameters; and (iii) the social interaction module, managing the communication
given social rules of interaction. The consequence is the orchestration of the
services is done at the agent level using argumentations techniques.

The rest of this paper is structured as follows. Section 2 gives an overview of
the agent architecture. Section 3 outlines a simple example of service selection,
requiring composition. Section 4 describes the individual decision making mod-
ule. Section 5 provides the social decision making module. Section 6 outlines the
social interaction module. Then, Section 7 illustrates the service composition
process in the context of our illustrative example, by describing the operation
of the various modules in coordination. Section 8 discusses related work and, fi-
nally, Section 9 concludes by summarising our proposal and discussing our plans
for the future.

2 Architecture

In this section, we outline the mind/body architecture of our agents, focusing
on the mind component.

Our agent architecture, pictured in Figure 1, is adapted from the mind/body
architecture of PROSOCS agents [7]. The body senses what is external to it by
using the Communication Module (CM), which can access the external world,
i.e. the events generated by the Graphical User Interface (GUI) 5 as well as the
messages coming from other agents. Messages received are then stored in the
Incoming Message Queue (IMQ). Similarly, the messages that the agent wants
to send are stored in the Outgoing Message Queue (OMQ). These message queues
are accessed by the mind which is effectively treated as a process that produces
speech acts for other agents and events for the GUI. More importantly, the mind
and the body can function as co-routines, thus allowing the reasoning process of
the mind to be performed concurrently with the body’s (communicative) action
execution and sensing of the environment.

® The GUI is external to the agent in order to provide agents that are lightweight.

In our architecture, the mind of the agent is divided into three modules, with
separate concerns.

The first module is the Individual Decision Making Module (IDMM), rea-
soning about the kind of services which can be provided/requested. The IDMM
is supported by the concrete data structures in the Individual Knowledge Base
(IKB). Concretely, if the agent is looking for services, the IKB may contain the
abstract representation of the required services, possibly organised in workflows,
expressing some constraints. Decisions are made according to the knowledge and
the goals of the user, the alternative types of services, and the preferences over
them (cf section 4).

The second module is the Social Decision Making Module (SDMM), reasoning
about the concrete instances of services which can be provided/requested. The
SDMM is supported by the concrete data structures in the Social Knowledge
Base (SKB). Concretely, if the agent is looking for services, the SKB may contain
the concrete representation of individual services or workflows of services, and
typically the representation of corresponding service providers. Decisions are
made according to this knowledge, the goals of the agent, the alternative concrete
services, and preferences over them (cf section 5). Both knowledge bases, IKB
and SKB, change as new information comes in from the agent’s interactions with
the user and other agents.

The third module is the Social Interaction Module (SIM), driving the so-
cial interactions. The SIM is supported by the concrete data structures in the
Protocol Library (PL), containing a representation of the interaction protocols.
Decisions which are required to conduct the interaction according to the proto-
cols of the SIM are provided by the SDMM. The communication module (CM)
handles the low level issues concerning the physical passing of messages between
the user, the agent’s IDMM and SIM and the multiagent system.

As suggested by [8], agents, which have their own private representations,
record their interlocutors’ commitments. Commitments are data structures which
contain propositional and action commitments involving the agent, namely with
the agent being either the debtor (called external commitments) or the creditor
(called individual commitments). These data structures are shared by the SIM
and the SDMM. While the SIM updates all commitments, the SDMM evaluates
the external commitments.

3 Walk-through example

We consider here a simple service composition problem for booking a vacation.

In order to be successful, a booking requires a proper understanding of all
relevant aspects. Detailed needs for the booking such as destination, cost, and
quality of service need to be taken into account. Moreover, any prior knowledge
about the services, such as safety of the transport service and features/location
of accommodation, are also of vital importance.

The agent is responsible for suggesting a suitable complex service, based on
the explicit users’needs and the agent’s knowledge. The main goal (go), that con-

Mind

F—— Module reads data

o— Module writes data

~— Module reads/writes data
- = Interaction between Modules
’ N
’ AN Interaction with externalities

\
1
,I Data Structure Data
1

Other agents

Body

Fig. 1. The modular architecture of agents

sists in booking the vacation, needs to be addressed by some decisions, e.g. on
some alternative transport services and on some alternative accommodations.
The main goal (go) is split into independent sub-goals: the vacation must be
cheap (g1), the destination must be attractive (g2), and the quality of service
must be high (g3). This sub-goal is reduced to further sub-goals: the quality of
service depends on the quality of accommodation (g4) and the quality of trans-
port (gs). While the high-level goals are abstract, i.e. they just reflect the user’s
needs, the low-level goals are concrete, as they provide criteria for evaluating
different alternatives. The information held by the agent about location may
be expressed by means of predicates such as: Public(z) (accommodation z is
accessible by public transports), and Safe(z) (transport x is safe).

Figure 2 provides a simple graphical representation, called influence diagram,
of the decision problem for this example. The elements of the decision problem
values (represented by rectangles with rounded corners), decisions (represented
by squares) and knowledge (represented by ovals) are connected by arcs where
predecessors are independent and affect successors. The problem is a multi-
attribute decision problem captured by a hierarchy of values where the abstract
values (represented by rectangles with rounded corner and double line) aggregate
the values in the lower levels.

The influence diagram displays the structure of the decision problem, and is
kept within the TKB of the agent in our model (see next Section). In addition, the
GUI allows the user to communicate user-specific details of the decision making,
in particular preferences (e.g. Paris is the most preferred destination) and some

Vacation ((
o

{Cost @1)} [Attraetivc (gz)}

Ac 0S (ga)

Accomodation

Fig. 2. Influence diagram to structure the decision

constraints (e.g. the user’s budget). These preferences are also recorded in the
agent’s IKB and reasoned upon by the IDMM.

In order to support the matching of service descriptions and concrete ser-
vices offered by providers, it is obvious that the services offered by the providers
have to carry sufficient descriptive information to support automated search and
composition. For this purpose, the Web Service Modeling Ontology (WSMO) [9]
provides a conceptual framework and a formal language for semantically describ-
ing all relevant aspects of (Web) services in order to facilitate the automation
of discovering, combining and invoking electronic services, in particular over the
Web.

In our example, the “Vacation” ontology, defining a trip and underlying con-
cepts, can be represented in WSML, which is a language to describe ontologies
and semantics for Web Services [10]. The definition of the ontology is based on
the “International Train Ticket” ontology from the WSMO Use Case “Virtual
Travel Agency” [11]. Our ontology defines vacation by plane. It reuses the flight
concept and adapts it to define the accommodation concept and some different
sub-concepts such as hotel and IYH (International Young Hosteling). Figure 3
represent a WSMO goal, i.e. an abstract representation of the type of service
requested by the user.

In the remainder of the paper, we will focus on the viewpoint of the agent
requesting/searching for the composite service.

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-core"

namespace {_"http://www.argugrid.eu/travel/goal#",
d0 _"http://www.argugrid.eu/travel/domainOntology#",
dc _"http://purl.org/dc/elements/1.1#"}

goal
nfp
dc#title hasValue "Goal"
dc#contributor hasValue "WG2"

dc#description hasValue

"Express the goal of buying a plane ticket"

"http://www.argugrid.eu/travel/goal.wsml"

endnfp

importsOntology _"http://www.argugrid.eu/travel/domainOntology.wsml"
capability goalCapability

postcondition

definedBy

?ticket[

dO#from hasValue ?from,

dO#to hasValue 7to,

dO#cost hasValue 7cost

] member0f dO#Ticket.

Fig. 3. Domain Ontology “Vacation” namespace

4 Individual Decision Making

The first module is the Individual Decision Making Module (IDMM), support-
ing the reasoning about the kind of services which can be requested. The IDMM
is supported by the concrete data structures in the Individual Knowledge Base
(IKB). Decisions are made according to the user’s requirements about the ser-
vices, the alternative types of services, and the users’ preferences and constraints.

In ARGUGRID, the IDMM is built using a concrete argumentation frame-
work for practical reasoning [12], which in turn adopts the dialectical, argumen-
tation tools of [13,14]. The implementation of this argumentation framework,
called MARGOS, uses the implementation of [13,14] in the CaSAPI system [15].

In MARGO, a logic-based language is used as a concrete data structure for
holding the knowledge, goals, and available decisions of the agent. Priorities are
attached to these items corresponding to the probability of the knowledge, the
preferences between goals, and the expected utilities of decisions. These concrete
data structures consist of information providing the backbone of arguments. Due
to the abductive nature of decision making, arguments are built by reasoning
backwards. To be intelligible, arguments are defined as tree-like structures. Since
an ultimate choice amongst various admissible sets of alternatives is not always
possible, we have adopted a “credulous” semantics [13].

The user also provides, through the GUI, users’ preferences and constraints.
For example, the user may specify that the cost (g1) is more important to the
user than the quality of service (g3) as far as the vacation (go) is concerned.
Priorities are attached to goals, decisions and knowledge in an influence diagram
to represent the preferences over goals, the expected utilities of decisions, and
the uncertainty of the knowledge.

Influence diagrams and priorities are recorded within the agent’s IKB and
reasoned upon by the IDMM. The concrete data structures in the IKB con-
tain the abstract representation of service(s), i.e. some single (or a workflow of)
abstract or partially instantiated services. The selection of abstract services is
made according to the knowledge, the goals of the user, the alternative types of
services, and the priority over them. For instance, the IKB corresponding to the
influence diagram of Figure 2 will contain the three following rules:

70123 : Jo < 91,92, 93

7012 - go < 91,92

T023 * go < 92,93
expressing that achieving g1, g2, and g3 is ideally required to reach go (cf 79123),
but this can be relaxed: according to rgi12 (resp. ro23), achieving the goal ¢y
(resp. g3) and the goal gs is enough to reach gg. Priorities amongst goals, namely
that g1 matters more than g3 to the user, is represented in MARGO by means
of priorities over rules, namely rg123 has priority over rgi2 which has priority
ro23. The priority of such rules corresponds to the relative importance of the
combination of (sub)goals in the body as far as reaching the goal in the head is
concerned.

6 http://margo.sourceforge.net

The IDMM interact with the GUI, through the CM, by being informed that
a workflow must be set up, and by presenting this workflow which is (or is
not) set up. The IDMM interact with the SDMM by asking the instantiation of
the abstract or partially instantiated workflow, and by being informed when a
concrete workflow is (or is not) set up.

In this way, the IDMM module shifts from the goals, the preferences, and
the constraints provided by the user to an abstract representation of services in
a workflow (or a single service, as appropriate). For instance,

(go, [Transport(z)], [Safe(x)]) is an argument concluding that the goal related to
the vacation is reached if we suppose that the transport is safe. This is then

turned into a concrete representation (choice of x fulfilling the constraint) by
the SDMM.

5 Social Decision Making

The second module is the Social Decision Making Module (SDMM), reasoning
about the concrete instances of services which can be requested. Decisions are
made according to user’s requirements about the service providers, the alterna-
tive concrete services, and preferences over them. For this purpose The SDMM is
supported by the concrete data structures in the Social Knowledge Base (SKB)
and in the Commitments.

The commitments are internal data structures which contain propositional
and action commitments involving the agent, namely with the agent being ei-
ther the debtor or the creditor. These data structures are shared by the SIM
and the SDMM. Concretely, the commitments may contain the concrete repre-
sentation of atomic or composite services and the representation of the partners
exchanged during the dialogues, while the SKB contains the concrete representa-
tion of atomic or composite services provided by the agent. Moreover, the SKB
contains preferences about the services and the partners. The selection (resp.
the suggestion) of concrete services is made according to the user’s requirements
(resp. competencies) about the alternative concrete services, the information
about the partners, and preferences over them. In ARGUGRID, the SDMM,
like the IDMM, is built upon MARGO.

The SDMM interacts with the IDMM by being informed that an abstract
workflow must be instantiated, and by informing it when a concrete workflow is
(or is not) set up. The SDMM interacts with the SIM, by notifying it that the
agent needs to play a certain role in an interaction, by being informed by the
SIM when some offers/proposal must be evaluated, by informing the SIM when
the offers/proposals are evaluated, and finally by being informed by the SIM of
the final result of an interaction.

In this way, the SDMM reasons and takes decision about the concrete in-
stances of services which can be provided.For instance: (g4, [Transport(c)], [Safe(c)])
is an argument concluding that the goal related to the quality of the transport
service is reached if we suppose that the concrete service c is safe.

6 Social Interaction

The third module, the Social Interaction Module (SIM), drives the communica-
tion and interactions by the adherence to protocols. These protocol are concrete
data structures and are stored in the Protocol Library (PL).

In ARGUGRID, the SIM uses the Lightweight Coordination Calculus (LCC),
a logic-based language allowing to drive all social interactions [16]. For this pur-
pose, the concrete data structures in the Protocol Library (PL) contain the LCC
representation of the interaction protocols. Decisions required to conduct the in-
teraction are provided by the SDMM. For those readers unfamiliar with LCC, it
may be helpful to note that the LCC is a declarative logic programming language
in the style of Prolog, augmented with CCS (a process calculus for communicat-
ing systems). The usefulness of interaction protocols as first-class computational
entities is discussed in [17]. Though the use of dynamic interactions protocols is
possible, we restrict ourselves to static ones.

P € Protocol == (S, A K)

A € AgentClause =0 :: op.

0 € AgentDefinition agent(R,Id)

op € Operation no op

—0

(Precedence) —(op)
(Send) —M =0
(Receive) —M <=0
(Sequence) —opl then op2
(Parallelization) —opl par op2
(Choice) —opl or op2
(Prerequisite) —(M =0)—
(Consequence) — — (M =0)

M € message = (m, P)

Fig. 4. An Abstract Language of the Protocol Language

Figure 4 defines the syntax of the LCC protocol language. A protocol consists
of a set of agent clauses, A{"}. An agent clause is the series of communicative
actions expected to be performed by an agent adopting the role defined by the
agent definition. This agent definition consists of a role (R) and unique identifier
(Id). The agent definition is expanded by a number of operations. Operations
can be classified in three ways: actions, control flow, and conditionals. Actions
are the sending or receiving of messages, a no op (i.e no action is taken), or
the adoption of a role. Control flow operations temporally order the individual
actions. Actions can be sequentially ordered, performed simultaneously without
regard to order, or given a choice point. The definition of the double arrows
denote messages M being sent and received. On the left-hand side of the double
arrow is the message and on the right-hand side is the other agent involved in
the interaction.

Constraints can fortify or clarify the semantics of the protocols. Those occur-
ring on the left of the < are post-conditions and those occurring on the right are
preconditions. The symbol ¢ represents a first order proposition. For example,
an agent receiving a protocol with the constraint to believe a proposition s upon
being informed of s can infer that the agent sending the protocol has a particular
semantic interpretation of the act of informing other agents of propositions. The
operation (M = 6) <« 1 is understood to mean that message M is being sent
to the agent defined as 6 on the condition that ¢ is satisfiable. The operation
¥ — (M = 6) means that once M is received from agent, ¢ holds.

Figure 5 represents the set of clauses for the requesting agent in the well-
known Contract Net Protocol. The clause for the provider role is the complement
of the requestor’s. The role being used is requester (Providers,X), Providers
being a list of potential providers of the service X. A cfp is sent to the first
provider in the list and the requester waits for a response. When he gets one,
the role recurses on the tail of the list of providers, a(requester(T,X) ,Req).
The actions of the requestor are split into two clauses to enable control over the
recursion over the list of potential providers. Hence, when the list is exhausted,
he moves to the next role a(requester1(Providers1,X) ,Req). The constraint
interestedparties(Providersl) returns the list of providers who tendered
proposals. This is the responsibility of the SDMM. The second clause
a(requesterl(Providers1,X),Req) now handles the next stage of the con-
tract net protocol, i.e. the rejection and acceptance of the proposals given.
Similar to the last clause, this is done by recursing over the list of Providers,
Providersl. After this, we go to the final stage defined by the clause
a(requester2(WinningProvider,X) ,Req). This clause defines the requesters
behaviour as waiting for the provider to send the results of the provision of the
service.

In this way, the SIM manages the sequence of messages defined by the pro-
tocol.

7 Scenario

Figure 6 represents the sequence diagram associated with the service requestor
in the example outlined in Section 3. The IDMM is informed by the GUI that
a workflow must be set up. The IDMM builds the abstract workflow and asks
the instantiation of this abstract workflow to the SDMM. The SDMM receives
the abstract workflow from the IDMM and calls the SIM for it to enable the
agent to play the role of requestor in an interaction. In order to play this role in
a Contract Net Protocol, the SIM informs (resp. is informed by) the CM when
some messages must be sent (resp. are received). The SDMM is informed by the
SIM when some offers must be evaluated, evaluates the offers and selects the
best one, acceptable wrt the constraints. Being informed by the SDMM when
the evaluation is done, the SIM updates the commitments stores, drives the
interaction and informs the SDMM of the final result.

a(requester(Providers,X),Req) ::=

(cfp(X) = a(provider(X),Prov) < Providers = (Prov—T) then
(refuse(X) < a(provider(X),Prov)

or assert(propose(Prov,X)) « propose(X) = a(provider(X),Prov))
then a(requester(T,X),Req))

or a(requesterl(Providersl,X),Req) <« interestedparties(Providersl).

a(requester2(WinningProvider,X),Req) ::= failure <= a(provider(X),Prov)
or inform-result(X) < a(provider(X),Prov)
or inform-done <= a(provider(X),Prov).

a(provider(X),Prov) ::= cfp(X) < a(Y,Req) then (refuse(X) = a(Y,Req)
or (propose(X) = a(Y,Req) then

reject-proposal(X) < (requesterl(Providers1,X),Req)

or (accept-proposal(X) < a(requesterl(Providersl,X),Req)

then failure = a(requesterl(Providers2,X),Req)

or inform-result(X) < a(requesterl(Providers2,X),Req)

or inform-done < a(requesterl(Providers2,X),Req)))).

Fig. 5. Representation of the ContractNet Protocol

In the concrete scenario depicted here, the IDMM is informed by the SDMM
that the workflow cannot be instantiated since the IYH in Paris is fully booked.
The IDMM modifies the abstract workflow to choose any cheap hostel and asks
the instantiation of this new workflow to the SDMM. At the end of this process,
the IDMM is informed that the workflow is instantiated and forwards the out-
come to the GUI. Since the sequence diagram associated with a service provider
is similar, we will not detail it.

8 Related work

A plethora of models and architectures for building agents are already avail-
able [18,19]. This renders the task of reviewing all the related work in this area
gigantic. As a result, to make our task more manageable, in this section we
identify only a subset of existing models that we believe to be most relevant to
compare with our agent model and architecture.

The Belief-Desire-Intention (BDI) model of agency is the best known model
of agents [20]. However, the simplifying assumptions made to implement modal
logic specifications of BDI agents meant that they lack of a strong theoretical
underpinning [21].

The KGP model [22] adopts Knowledge, Goals, and Plans as the main com-
ponent of an agent state. Contrary to the BDI model, there is no gap between
the logical specification of KGP agents and their implementations. For this pur-
pose, this model uses computational logic frameworks, extending, in many cases,
logic programming with dynamic priorities [23]. However, it deals only partially
with priorities as required by service composition applications, namely only with

play
role=requester

id=consuner
‘ ‘

delegate service=Flight

Gt
| | |
i F‘] instantiate > partner=p;, ps, ps ! !
| i T cfp
| |
! propose
i
! refuse
| propose
| evaluate the best offer
<
evaluation of the best offer | accept
|
! reject
I
|
I
! - inform
‘ py |
role=requester | |
i
id=consumer ! !
service=accomodation ! !
partner=p, ! . !
7] ctp
|
| _— » L]
! L I reject
j not found - T J
‘ T instantiate i } i
instantiate
j found [-f-mmmmmm T >
1 S 1 1
CH present]

Fig. 6. Sequence diagram of the service requestor

preferences amongst goals, but not with probability of knowledge and expected
utilities of alternative services. For this purpose, we have provided here a suitable
revised representation of knowledge, goals and actions built upon the approach
of [13,14].

An important characteristic of our architecture is that it provides a set of
tools supporting the individual reasoning, the social reasoning, and the man-
agement of the interactions with other agents for free. Many FIPA-compliant
platforms, for example FIPA-OS [24], or ZEUS [25], do not commit to a model
of agency but support only the interaction of the agent with the environment.
In such platforms the programmer has to develop from scratch the reasoning
capabilities of the agent. Other FIPA compliant approaches, such as JADE [26]
and 3APL [27], make use of tools that support the reasoning capabilities of the
agent. Unlike our logic-based approach which is closer to the specification of an
agent, JADE can be used with Jadex [28] to implement the BDI model using
a Java API. On the other hand, 3APL uses a logic-based language which, like
BDI, is linked to a modal-logic framework [27].

An approach similar to our is the recent development of the Jason [29] plat-
form that implements AgentSpeak(L) agents. Like Jason agents, our agents at-
tempt to narrow the gap between the specification and executable model of an
agent. Also like Jason agents, agent interactions can be verifiable because our
model is based on a formal computational framework for individual reasoning,
social reasoning and social interactions. However, our agents differ from Jason
agents in that AgentSpeak(L) is based on the BDI model.

9 Conclusions and future work

In this paper, we have adopted an argumentative model of agents able to select
and compose services. For this purpose, we have proposed a modular agent
architecture using three main modules dedicated respectively to decision making
(the individual decision making module), negotiation (the social decision making
module), and communication (the social interaction module). We have outlined
how this architecture is instantiated in the ARGUGRID project, by means of
the argumentative decision making tool MARGO (for the first two modules) and
by the LCC tool for enforcing protocol conformance (for the last module). We
have illustrated our architecture and its operation in the context of a virtual
travel agency example.

We have only presented one model of the agent’s mind. However the frame-
work is designed to allow agents with different mental models and created by
third-parties to participate in the system. However, even in such an open system,
our assumption that the agents share ontologies and dialogical framework (i.e
interaction protocols) remains.

Future investigations will consider argumentative protocols for rendering the
negotiation capabilities of the agents more powerful. Moreover, we are currently
developing a model of internal dialectic between the individual decision making
module and the social decision making module. In our example, the instantia-
tion of the first workflow fails, since the IYH is fully booked. This information
could be useful for the individual decision making module to provide a new ab-
stract workflow. Additionally, we are currently researching the ability of agents
to negotiate new interaction protocols and issues associated with trust and rep-
utation.

Acknowledgements

This work is supported by the Sixth Framework IST programme of the EC,
under the 035200 ARGUGRID project.

References

1. Morge, M., McGinnis, J., Bromuri, S., Toni, F., Mancarella, P., Stathis, K.: Vers
une architecture modulaire d’agent argumentatif pour la composition de services.
In: in Proc. of the of 15th Journées Francophones sur les Systéemes Multi-Agents
(JFSMA). (2007) 10 pages A paraitre.

2. Singh, M.P., Huhns, M.N.: Service-Oriented Computing. Semantics, Processes,
Agents. Jonh Wiley & Sons, Ltd (2005)

3. Prakken, H., Vreeswijk, G.: logical systems for defeasible argumentation. In:
Handbook of Philosophical Logic. Volume 4. Kluwer Academic Publishers (2002)
219-318

4. Morge, M., Mancarella, P.: The hedgehog and the fox. An argumentation-based de-
cision support system. In: Proc. of the Quatrieme Journées Francophones Modeles
Formels de 'Interaction. (2007) 357-364

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Morge, M.: Systme dialectique au travers duquel les agents jouent et arbitrent.
vers une prise de dcision collective et dbattue. In: Actes des Journes Francophones
sur les Systmes Multi-Agents, Herms (2005) 115-127

Amgoud, L., Dimopoulos, Y., Moraitis, P.: A unified and general framework for
argumentation-based negotiation. In: Proc. 6th International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS’07), Honolulu, Hawaii
(2007)

Bracciali, A., Demetriou, N., Endriss, U., Kakas, A., Lu, W., Stathis, K.: Crafting
the mind of PROSOCS agents. Applied Artificial Intelligence 20(2—4) (2006) 105—
131

Fornara, N., Colombetti, M.: Operational specification of a commitment-based
agent communication language. In: Proc. of the 1st international joint conference
on autonomous agent and multi-agent systems, ACM Press (2002) 535-542
Lausen, H., Polleres, A., Roman, D.: Web service modeling ontology (WSMO).
Technical report, W3C (2005) http://www.w3.org/Submission/WSMO/.

de Bruijn, J., Fensel, D., Keller, U., Kifer, M., Lausen, H., Krummenacher, R.,
Polleres, A., Predoiu, L.: Web service modeling language (wsml). Technical report,
W3C (2005) http://www.w3.org/Submission/WSML/.

Stollberg, M., Lara, R.: D3.3 v0.1 WSMO use case "virtual travel agency”. Tech-
nical report, WSMO (2004) http://www.wsmo.org/2004/d3/d3.3/v0.1/.

Morge, M., Mancarella, P.. The hedgehog and the fox. An argumentation-based
decision support system. In: Proc. of the Fourth International Workshop on Ar-
gumentation in Multi-Agent Systems. (2007) 55-68

Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-
based, admissible argumentation. Artificial Intelligence 170(2) (2006) 114-159
Dung, P.M., Mancarella, P., Toni, F.: A dialectic procedure for sceptical,
assumption-based argumentation,. In: Proc. of the 1st International Conference
on Computational Models of Argument (COMMA 2006), IOS Press (2006)
Gartner, D., Toni, F.: CaSAPI: a system for credulous and sceptical argumen-
tation. In Simari, G., Torroni, P., eds.: Proc. Workshop on Argumentation for
Non-monotonic Reasoning. (2007) 80-95

Robertson, D.: Multi-agent coordination as distributed logic programming. In
Springer-Verlag, ed.: Proc. of the 20th International Conference on Logic Pro-
gramming (ICLP), Saint-Malo, France (2004) 416—430

Miller, T., McGinnis, J.: Amongst first-class protocols. In: in Proc. of ESAW 2007,
Athens, Greece (October 2007)

Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F., eds.: Multi-Agent Pro-
gramming. Kluwer Academic Publishers (May 2006)

Ricordel, P.M., Demazeau, Y.: From analysis to deployment: A multi-agent plat-
form survey. In: Engineering Societies in the Agents World: First International
Workshop, ESAW 2000. Volume 1972/2000 of Lecture Notes in Computer Sci-
ence., Berlin, Germay, Springer Berlin / Heidelberg (February 2000) 93-105

Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture.
In Allen, J., Fikes, R., Sandewall, E., eds.: Proc. of the 2nd International Con-
ference on Principles of Knowledge Representation and Reasoning (KR), Morgan
Kaufmann publishers Inc.: San Mateo, CA, USA (1971) 473-484

Rao, A.S.: Agentspeak (1): BDI agents speak out in a logical computable language.
In Hoe, R.V., ed.: in Agents Breaking Away, 7th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW’96). Number 1038 in
Lecture Notes of Computer Science, Springer-Verlag (1996) 42-55

22.

23.

24.

25.

26.

27.

28.

29.

Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The KGP model of
agency. In: Proc. of ECAIL (2004) 33-37

Prakken, H., Sator, G.: Argument-based logic programming with defeasible prior-
ities. Journal of Applied Non-classical Logics 7 (1997) 25-75

Poslad, S., Buckle, P., Hadingham, R.: The fipa-os agent platform: Open source
for open standards. In: Proc. of PAAM’00. (2000) 255-368

s. Nwana, H., Ndumu, D.T., Lee, L.: Zeus: An advanced tool-kit for engineering
distributed multi-agent systems. In: Proc. of the Practical Application of Intelligent
Agents and Multi-Agent Systems, London (1998) 377-392

Fabio Luigi Bellifemine, Giovanni Caire, D.G.: Developing Multi-Agent Systems
with JADE. Wiley (February 2007)

Dastani, M., van Riemsdijk, B., Dignum, F., Meyer, J.J.: A programming language
for cognitive agents: Goal directed 3APL. In: Proc. of the First Workshop on
Programming Multiagent Systems: Languages, frameworks, techniques, and tools
(ProMASO03). (July 2003)

Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: Implementing a BDI-
infrastructure for JADE agents. EXP - in search of innovation (Special Issue
on JADE) 3(3) (9 2003) 76-85

Rafael H. Bordini, Jomi Fred Hubner, M.W.: Programming Multi-Agent Systems
in AgentSpeak using Jason. Wiley (August 2007)

