
EXTENSIONS TO THE MULTIMEDIA RETRIEVAL MARKUP LANGUAGE – A
COMMUNICATION PROTOCOL FOR CONTENT–BASED IMAGE RETRIEVAL

Henning Müller, Antoine Geissbuhler

University Hospitals of Geneva
Division of Medical Informatics

Rue Micheli-du-Crest 21
1211 Geneva 4, Switzerland

henning.mueller@dim.hcuge.ch

Stéphane Marchand–Maillet

University of Geneva
Computer Vision and Multimedia Lab

Rue du Général Dufour 24
1211 Geneva 4, Switzerland

marchand@cui.unige.ch

ABSTRACT

Content–based image retrieval (CBIR) or content–based vi-
sual information retrieval (CBVIR) has been one of the most
active research fields in the computer vision domain during
the last ten years. Many different tools and programs have
been developed for the retrieval of images but there is still
a lack of a standard to access retrieval systems in a uni-
fied manner. An accepted (and simple) protocol or query
language such as SQL is in the database community or DI-
COM in the medical field has not yet been widely accepted.
This is one of the main reasons that only rarely components
are reused and it also hinders the inclusion of query en-
gines into other programs such as document management
systems. This lack of a communication protocol might also
prevent commercial success of image retrieval applications.

One of the few open protocols for accessing and query-
ing retrieval systems is the Multimedia Retrieval Markup
Language (MRML). Descriptions are available and a set of
clients as well as servers can be downloaded as open source
free of charge. Although the protocol has a variety of inter-
esting and important functions, there is still a lack in other
parts such as simple database management functions and
user/rights management.

This article gives recommendations of functions that are
useful to implement and proposes some structural changes
to build an MRML–server to handle the communication
apart from the retrieval engine. When improving the func-
tionality of MRML, some other necessities come up such as
rights- and user management and an encryption of the com-
munication because otherwise, the passwords are transmit-
ted over the network in a human–readable manner (XML).

The GNU Image Finding Tool (GIFT) is taken as an
example for implementing the changes but they are in the
same way usable for other retrieval systems implementing
MRML.

1. INTRODUCTION

A large number of commercial and academic retrieval sys-
tems exist for content–based access to visual data. Some of
the earliest are QBIC [4] and Virage [1] for the commercial
domain, Photobook [17] and Blobworld [3] as research pro-
totypes. Although systems such as Photobook can be down-
load from their web sides1, not much attention has been
spent on the reuse of components and the communication
between the actual search engine and the user interface al-
though this can make the reuse of components much easier.

A standardized and open communication between
the search engine and interface has a number of advantages
from the simple generation of meta search engines to com-
pletely automatic benchmarks [10]. Meta search engines
have also been generated with varying access protocols [2]
but with a single, open protocol, the effort can be reduced
dramatically and new search engines can be added easily.

Several communication protocols have been proposed
for the retrieval of multimedia and pictorial information.
Most of them are extensions of database management sys-
tems and deal with extending them for the retrieval of mul-
timedia data often still by exact matches of database fields.
They frequently do not cover the communication between
the user interface and the retrieval system. Only few deal
with real visual similarity retrieval which is the main sub-
ject of this paper. Pictorial SQL (PSQL) [19] is one of the
earliest protocols (1988) and mainly an extension of SQL
allowing to query pictorial data for example by spatial prop-
erties. Pictorial Query By Example (PQBE) [16] is imple-
menting the retrieval of direction relations of images that
are represented in a symbolic way as relations among ob-
jects with an order in space. This system is mainly aimed
at geographic applications where symbolic representations
of images might be easier to achieve than with general stock

1http://www-white.media.mit.edu/˜tpminka/
photobook/

photography. MOQL (Multimedia Object Query Language)
[9], based on OQL and has a large range of applications in
mind including the description of varying media types and
various applications. This includes the handling of spatial
and temporal data. Still, it is basically an extension to in-
clude Multimedia data into database management systems.

Other query languages are MMQL (Multimedia Query
Language) and CVQL (Content–based Video Query Lan-
guage) An overview of several multimedia query languages
can be found in [8]. Unfortunately, non of these protocols
has gained widespread acceptance or defined a real stan-
dard. To our knowledge, there is no software available free
of charge that implements these protocols in user interfaces
and provides tools to help other research groups with such
implementations.

With the Viper2 project and its outcome, the GNU Im-
age Finding Tool (GIFT3, [21]), a standard retrieval lan-
guage was defined, MRML4. As the software is free of
charge under a GPL license and the sources are available, it
is relatively easy to use the software to create clients and/or
servers for MRML. Several projects are underway for the
development of applications using MRML. Thus, MRML
is not simply a language to formulate queries for multime-
dia objects but covers a broader and different range than
other available protocols. It is not meant to be a query lan-
guage like SQL where the user can formulate queries but
it is meant for machine–machine communication between a
query engine and a user interface, for example.

For sure, MRML has a number of very practical and
interesting features such as the use of XML as a markup
language and the possibility that a server can configure the
interface depending on its needs (discussed in Section 2).
Still, there is a need to not only connect to a query engine
and execute queries via a standardized protocol but also to
offer more functionalities, similar to those of database man-
agement systems.

The necessary security features are discussed in Sec-
tion 3. The inclusion of database management functions
into MRML is then the subject of Section 4. Section 5 fi-
nally gives our concluding remarks on the subject.

2. MRML

MRML was originally developed to separate the retrieval
engine from the user interface. Such a standardized access
proved to be of importance for a number of other applica-
tions as well. Detailed information on MRML can be found
in [14] and a description of applications using MRML is
given in [11, 13].

2http://viper.unige.ch/
3http://www.gnu.org/software/gift/
4http://www.mrml.net/

MRML is based on XML so that standard, freely–
available parsers such as expat5 or Apache’s Xerces6 can be
used. MRML is a multi–paradigm protocol, offering fea-
tures such as query by example (QBE), choice of databases,
features or algorithms to use, and property sheets for speci-
fying algorithm–specific parameters. It is extensible, so that
private tags for special features of a system can easily be
specified (even SQL can be embedded, if desired).

So far, a number of features are supported by MRML:

� connection of a client to a server;

� response of the server to the client with its capabil-
ities; configuration of the interface according to the
server’s needs;

� query with image(s) by example, image browsing, or
query by free text;

� return of query results as URLs with relevance scores;

� closing of a connection.

These features work in practice and have shown their
utility in client applications using Java, PHP and CGI.

2.1. Example code for MRML

This section is not meant to replace the MRML definition
but it gives a couple of simplified code examples to get an
idea of MRML and its syntax. It also helps to group the
proposed changes to MRML into the context to the existing
definitions.

2.1.1. Connection to a server

When connecting to a server, the simplest command is to
ask for certain properties of the server:

<mrml>
<get-server-properties />

</mrml>

The server then informs the client of its capabilities.

<mrml>
<server-properties />

</mrml>

With a connection the user can configure a session and
transmit a user name and eventually a password. A session
opening in reality where the user asks for the available col-
lections on the server could look like this:

<mrml session-id="dummy_session_identifier">
<open-session user-name="test"
session-name="default_session" />

<get-collections/>
</mrml>

5http://www.jclark.com/xml/expat.html
6http://xml.apache.org/

A reply to a request for all collections can look like this,
where the server has one database with images (collections)
available for the user:

<mrml>
<collection-list >
<collection collection-id="c-tsr500"
collection-name="TSR500"
cui-algorithm-id-list-id="ail-inverted-file"
cui-base-dir="/databases/TSR500/"
cui-number-of-images="500"
<query-paradigm-list >
<query-paradigm type="inverted-file" />
</query-paradigm-list>

</collection>
</collection-list>

</mrml>

Using similar, simple messages, the client can request
a list of collections available on the server, together with
descriptions of the ways in which they can be queried (query
paradigms).

The client can open a session on the server, and config-
ure it according to the needs of its user (interactive client)
or its own needs (eg. benchmarking server). The client can
also request the algorithms which can be used with a given
collection:

<mrml>
<get-algorithms
collection-id="collection-1" />

</mrml>

This request is answered by sending the corresponding
list of algorithms available for collection-1. This hand-
shaking mechanism allows both interactive clients and pro-
grams (such as meta query agents or automatic benchmark-
ers) to obtain information describing the server.

2.1.2. Interface configuration

The client can request property sheet descriptions from the
server. Varying algorithms will have different relevant pa-
rameters which should be user–configurable (eg. feature
sets, speed vs. quality). Viper, for example, offers several
weighting functions [20] and a variety of methods for prun-
ing [12]. All these parameters might be irrelevant for other
search engines. Thanks to MRML property sheets, the in-
terface can adapt itself to these specific parameters. At the
same time, MRML specifies the way the interface will turn
these data into XML to send them back to the server.

Here is short example of an interface configuration:

<property-sheet
property-sheet-id="sheet-1"
type="numeric"
numeric-from="1"
numeric-to="100"
numeric-step="1"
caption="\% features evaluated"
send-type="attribute"
send-name="cui-percentage-features" />

This specifies a display element which will allow the
user to enter an attribute with the caption ”% of features
evaluated”. The values the user will be able to enter are
integers between 1 and 100 inclusive. The value will be
sent as an attribute eg. cui-percentage-features="33".
This mechanism allows the use of complex property sheets,
which can send XML text containing multiple elements.

2.1.3. Query formulation

The query step is dependent on the query paradigms of-
fered by the interface and the search engine. Here, QBE
is taken as the essential example, but MRML is also be-
ing used for browsing queries and tests are being done with
region–queries in MRML.

A basic QBE query consists of a list of images and the
corresponding relevance levels assigned to them by the user.
In the following example, the user has marked two images,
the image 1.jpg relevant (user-relevance="1") and the
image 2.jpg non–relevant (user-relevance="-1"). All
query images are referred to by their URLs.

<mrml session-id="1" transaction-id="44">
<query-step session-id="1"
resultsize="30"
algorithm-id="algorithm-default">
<user-relevance-list>
<user-relevance-element
image-location="http://viper/1.jpg"
user-relevance="1"/>

<user-relevance-element
image-location="http://viper/2.jpg"
user-relevance="-1"/>

</user-relevance-list>
</query-step>
</mrml>

The server will then return the retrieval result as a list of
image URLs along with their similarity scores. A thumbnail
URL can be transmitted as well to show the results on screen
in a faster way.

<mrml session-id="1" >
<acknowledge-session-op session-id="1" />
<query-result>
<query-result-element-list>
<query-result-element calculated-similarity=".9"
image-location="http://viper/3.jpg"
thumbnail-location="http://viper/3_thumb.jpg"/>

<query-result-element calculated-similarity=".7"
image-location="http://viper/4.jpg"
thumbnail-location="http://viper/4_thumb.jpg"/>

</query-result-element-list>
</query-result>
</mrml>

Queries can be grouped into transactions. This allows
the formulation and logging of complex queries. This may
be applied to systems which process a single query using
a variety of algorithms, such as the split–screen version of
TrackingViper [15] or the system described in [7]. It is im-
portant in these cases to preserve in the logs the knowledge
that two queries are logically related one to another.

2.2. Version control in MRML

An essential point in MRML is that new elements can be
added to the protocol without affecting old programs that do
not know these attributes. Unknown attributes are simply
ignored. Still, for this it is important to add elements in a
way that no old functionalities are affected when the new
elements are not known.

With new versions of MRML, it is essential to stay com-
patible with the older versions, so all clients and servers can
still interact although new features might thus not be avail-
able in all applications. Especially when a big change in the
structure is done, this might not always be simple. A sug-
gestion is therefore to have an explicit version control for a
certain session. The session can then completely be done in
the version defined in the beginning. Such a version control
allows to a client and server to stay compatible with a num-
ber of eventually different versions just by using a different
DTD (Document Type Definition) or XML Schema.

To implement this in an easy way, we have to think how
an MRML server can read in generic DTDs for different
versions and then control the elements based on the ver-
sion that is chosen in the session definition. This will also
make it possible to automatically generate error messages
for missing elements or badly formed queries or requests.

An element for a version number when opening a ses-
sion is proposed as follows:
<mrml mrml-version="0.0.1" session-id="1">
<open-session user-name="test"
session-name="default_session" />

<get-collections/>
</mrml>

The version number only needs to be transmitted in the
first communication phase. Then, a version number is linked
to the session number. If a system wishes to change MRML
versions a new session needs to opened.

3. PROPOSED SECURITY FEATURES

When thinking about adding database management func-
tions into MRML, two things become apparent: It is (1)
necessary to identify the user and to grant him certain ac-
cess rights, through the use of a login and a password. (2)
It is important to encrypt the communication in MRML that
is, at the moment, completely open via a socket in human–
readable XML.

Care also needs to be taken with respect to log files or
other visible parts that can contain important information
such as passwords of users. Eventually, steps towards a
more secure architecture need to be taken [6].

3.1. User management and access rights

So far, it is already possible to send passwords via MRML
although this feature is not used all the time. As the data

stream is human–readable, this does currently not make ex-
tremely much sense, either, from a security standpoint un-
less the communication is in a completely safe environment.

User management should contain global rights granted
by the root user of the GIFT system through a configuration
file. Besides users and groups that can be arranged by the
superuser, it should be possible to add certain rights to users
that are not known to the system or where the password did
not match. This is necessary to grant simple query access to
a database at a web demonstration, for example.

Two levels of access can be seen. The first one is with
respect to the creation and deletion of entire databases (doc-
ument collections) and the second one is with respect to op-
erations allowed for one particular database (collection).

3.1.1. Creating/deleting databases

The right to create a database needs to be granted by the sys-
tem administrator when creating a certain user. The creator
can then decide whether he wants to give the right to delete
the database to other users as well or if he wants to be the
only to keep that right.

Other rights that the owner can grant are with respect
to querying and adding/deleting images to a database as de-
tailed in the following section.

3.1.2. Operations on existing databases

Some of the operations on created databases exist already
in MRML such as the querying of a database. The MRML
server only needs to make a selection of databases to trans-
mit to the user based on the access right that he has and the
security settings of the databases.

The following actions need to have separated access rights
for each database:

� Execute queries with multimedia objects (ie. images)
from the database,

� submit new, private objects as queries,

� add objects to the database,

� delete objects from the database,

� start the generation of a new index based on the cur-
rently contained objects.

The submission of new multimedia objects as queries is
by default disabled in the MRML interfaces and in the GIFT
query engine because of a risk of misuse. A configuration
depending on the user and his/her access rights would be
much more effective. A simple element of the server could
grant this right to a user and if a client still tries to use this
feature, an error message could be send by the server.

3.2. Encryption

There are two big parts that are important for encryption.
First, all the files that contain important information such as
log files of the communication and the password files for the
user log on and user access rights needs to be protected so
they can only be read by the system’s super user.

Then, there is a need to encrypt the entire communica-
tion that takes place in MRML. It would be possible to only
encrypt parts of the communication but it would of course
be better to have the entire flow of communication via a se-
cure channel (SSL).

The same server can, for example, serve encrypted and
not encrypted clients depending on the operations that are
needed. This will also help to improve downwards compat-
ibility. Projects like the dataGrid [5] might also be able to
help with such a security infrastructure or middleware for
distributed data storage and access.

4. DATABASE MANAGEMENT

Database management function are necessary wherever not
only queries are made from distant clients but also the ad-
dition or deletion of images is done from different com-
puters and interfaces. This is the case for most commer-
cial applications of content–based image retrieval systems
or wherever applications are hosted by application service
providers.

In our applications this is the case for the integration of
GIFT into OpenMDV7 (the document management system
of the CERN) and into CasImage8, a medical case database
for images [18]. All these applications need the image server
to be on one machine but the clients possibly to be on other
machines. Still, the clients need to be able to submit new
images to the database regularly and update the feature file
accordingly.

4.1. Creating/deleting a database of visual documents
A command to create a new database can look like the fol-
lowing example. This takes into account that the informa-
tion for the creation of a database can be extracted from
default values (directories for files, for example).

<mrml session-id="1" >
<create-collection collection-id="c-t1"
collection-name="test"
cui-algorithm-id-list-id="ail-inverted-file">
<query-paradigm-list>
<query-paradigm type="inverted-file"/>

</query-paradigm-list>
<document list>
<document location="http://viper/pics/1.jpg/">

</document list>
</create-collection>

</mrml>

7http://mdv.sourceforge.net/
8http://www.casimage.com/

In this example, the document list is optional. In the
case of an empty list, a database is created and only the
empty structures are set up. If a list of images is transmitted,
the generation of the inverted file can be started in the same
message or manually afterwards.

The deletion of a database in the MRML syntax is even
simpler:

<mrml session-id="1" >
<delete-collection collection-id="c-t1"
collection-name="test"/>

</mrml>

Normally, the ID for the database is sufficient but we
add the collection name as another security feature to avoid
deleting something by accident.

4.2. Adding/removing images from databases
The addition of new images can be done via:

<mrml session-id="1" >
<add-document collection-id="c-t1">
<document list>
<document location="http://viper/pics/1.jpg/>

</document list>
</add-document>

</mrml>

Such an addition of documents does not necessarily have
a generation of the index file as a consequence. Generations
of index files can be done in the same step but have to be
invoked with another command. This allows to add images
regularly but only generates the index every once in a while
when there are enough new images. It can of course be
started in the same MRML message if needed.

Deleting images is done in a very similar way:

<mrml session-id="1" >
<delete-document collection-id="c-t1">
<document list>
<document location="http://viper/pics/1.jpg/">

</document list>
</delete-document>

</mrml>

The generation of the feature file is also here not auto-
matic but needs to be started with the corresponding MRML
command. Thus, we have to take care not to delete the im-
ages or thumbnails before the re–generation of the inverted
file. Otherwise invalid URLs can be transmitted for images
and thumbnails.

4.3. Generation of the inverted file
The generation of the index file for a certain database can
be invoked with the following, easy command. The system
can then test whether a new generation is necessary and in
this case start the scripts to build the inverted file.

<mrml session-id="1" >
<generate-inverted-file collection-id="c-t1"/>

</mrml>

On the server side this can, in our case, simply use the
executables of GIFT that exist for generating an inverted
file. Care needs to be taken with respect to updating the
configuration file so there are no inconsistencies.

4.4. Demand list of images

When the entire communication, including the database func-
tionalities, is done via MRML, it is necessary to have some
other commands that are useful. It is, for example, impor-
tant to be able to ask for all the URLs in a certain database.
Such a request is currently possible in GIFT by starting a
random query with a large number of images but it makes
more sense to transmit only the URLs and no additional in-
formation such as the thumbnails etc. In this case, the for-
mat can be very close to those of adding and deleting im-
ages.

Asking for a list of URLs of a certain collection:

<mrml session-id="1" >
<demand-document-list collection-id="c-t1"/>

</mrml>

The response of the server, with respecting the access
rights, might be similar to the following:

<mrml session-id="1" >
<response-document-list collection-id="c-t1">
<document-list>
<document location="http://viper/pics/1.jpg"/>

</document-list>
</response-document-list>

</mrml>

Other commands might become necessary as well when
using such an infrastructure. Another possible command is
to ask for more information on a specific database, such as
the name of the owner and access rights for specific users.

4.5. A stable MRML server

When taking a look at the current structure of GIFT/Viper, it
becomes clear that the structure with using MRML (see Fig-
ure 1) has a number of advantages. For example, the search
engine and the user interface are well separated so the inte-
gration into different programs and the reuse of components
is easy.

Still, the query engine is completely coupled with the
MRML server receiving the incoming requests of all kinds,
at the moment. There is no real test for MRML validity, ei-
ther. This means that not correctly formed MRML is treated
by the server directly which also does the query process-
ing. Unfortunately, this can lead to instabilities of the GIFT
server at the moment. Incorrectly formed queries can make
the server crash and the reinitialization takes time before the
server is accessible, again.

A separated server (that can be like a proxy) will also
make it easier for other research groups to start creating

Fig. 1. The current structure of the MRML retrieval engine
in GIFT.

MRML–based projects because the server can be an MRML
interface and call various client applications such as
command–line tools. This also means that the MRML code
needs to be decoupled from the query engine code.

To avoid such instabilities, there are two propositions.
The MRML server should be separated from the function-
ality of the query engine as much as possible and the server
should control the correctness of incoming MRML com-
mands by verifying it with a DTD or an XML schema that
describes MRML.

Fig. 2. A proposed structure to better separate the MRML
communication from functionalities of the retrieval engine.

Figure 2 shows a structure of an MRML server that is
separated from the query engine and that permits to inte-
grate the database functions as they are described in the
previous chapters by simply putting a layer in between the
MRML communication and the query engine. This allows
to treat commands for database actions separately, simply
by using the existing scripts for these actions.

The MRML server also verifies the content of the MRML
elements automatically based on a DTD or XML schema. It
can then auto correct badly formed MRML or send an er-
ror message to the sender. In case of well formed queries,
they are transmitted to the query engine that can have the
same functionality as it currently does in the GIFT system
or other retrieval systems can be incorporated via command
line executables or other communication protocols.

5. CONCLUSION

MRML has proven to be useful and necessary for the field
of content–based image retrieval for applications such as
meta–search engines, automatic benchmarks or simple to
share the same user interface with several query engines.

Still, with respect to manageability of image databases,
MRML does not have any security features or encryption
included, yet. When operating on databases with restricted
access or when using sensible data such as medical images,
these security features seem absolutely necessary. This is
as well the case when the system is supposed to be used
on multiple platforms. At the moment, the clients work on
several platforms but it is not possible to start any database
command via MRML. Functions such as adding images or
adding and removing databases based on URL lists need to
be possible.

This article proposes a structures that implements a sta-
ble MRML server that separates the incoming MRML com-
mands into database commands and queries/search engine
commands. As a by–product such a server can also make
an automatic check of validity of incoming MRML com-
mands before any actions are executed. This can lead to
a much more stable version. It is important to also watch
the closely related database field for available research and
solutions as many of the basic problems are fairly similar.

Especially for the inclusion of image retrieval systems
into various applications such an infrastructure is absolutely
necessary to be able to manage the data from a distance.
Such a security infrastructure with database functionalities
is also important for the commercial success of content-
based image retrieval systems. Standardized interfaces to
manage multimedia data can most likely help more than the
best retrieval techniques to have commercial success. The
ease in reusing existing components is another important
aspect in favor of a standard communication protocol for
image retrieval.

6. REFERENCES

[1] J. R. Bach, C. Fuller, A. Gupta, A. Hampapur,
B. Horowitz, R. Humphrey, R. Jain, and C.-F. Shu.
The Virage image search engine: An open frame-
work for image management. In I. K. Sethi and R. C.
Jain, editors, Storage & Retrieval for Image and Video
Databases IV, volume 2670 of IS&T/SPIE Proceed-
ings, pages 76–87, San Jose, CA, USA, March 1996.

[2] M. Beigi, A. B. Benitez, and S.-F. Chang. MetaSEEk:
A content–based meta-search engine for images. In
Symposium on Electronic Imaging: Multimedia Pro-
cessing and Applications - Storage and Retrieval for
Image and Video Databases VI, IST/SPIE’98, San
Jose, CA, pages 118–128, 1998.

[3] C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein,
and J. Malik. Blobworld: A system for region–based
image indexing and retrieval. In D. P. Huijsmans and
A. W. M. Smeulders, editors, Third International Con-
ference On Visual Information Systems (VISUAL’99),
number 1614 in Lecture Notes in Computer Science,
pages 509–516, Amsterdam, The Netherlands, June 2–
4 1999. Springer–Verlag.

[4] M. Flickner, H. Sawhney, W. Niblack, J. Ashley,
Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee,
D. Petkovic, D. Steele, and P. Yanker. Query by Image
and Video Content: The QBIC system. IEEE Com-
puter, 28(9):23–32, September 1995.

[5] F. Gagliardi, B. Jones, M. Reale, and S. Burke. Eu-
ropean datagrid project: Experiences of deploying
a large scale testbed for e-science applications. In
M. Calzarossa and S. Tucci, editors, Performance
Evaluation of Complex Systems: Techniques and
Tools, Performance 2002, Lecture Notes in Computer
Science, pages 480–500. Springer–Verlag, 2002.

[6] C. D. Jensen. Secure software architectures. In Pro-
ceedings of the Eigth Nordic Workshop on Program-
ming Environment Research, pages 239–246, Ron-
neby, 1998.

[7] C. S. Lee, W.-Y. Ma, and H. Zhang. Information em-
bedding based on user’s relevance feedback in image
retrieval. In S. Panchanathan, S.-F. Chang, and C.-
C. J. Kuo, editors, Multimedia Storage and Archiving
Systems IV (VV02), volume 3846 of SPIE Proceed-
ings, pages 294–304, Boston, Massachusetts, USA,
September 20–22 1999. (SPIE Symposium on Voice,
Video and Data Communications).

[8] J. Li, M. Ozsu, and D. Szafron. Query languages in
multimedia database systems. Technical report, De-

partment of Computing Science, The University of Al-
berta, Canada, 1995., 1995.

[9] J. Z. Li, M. T. Özsu, D. Szafron, and V. Oria. MOQL:
A multimedia object query language. Technical report,
Department of Computing Science, University of Al-
berta, January 1997., 1997.

[10] H. Müller, W. Müller, S. Marchand-Maillet, D. M.
Squire, and T. Pun. A web–based evaluation system
for content–based image retrieval. In Proceedings of
the 9th ACM International Conference on Multimedia
(ACM MM 2001), pages 50–54, Ottawa, Canada, Oc-
tober 2001. The Association for Computing Machin-
ery.

[11] H. Müller, W. Müller, D. M. Squire, Z. Pec̆enović,
S. Marchand-Maillet, and T. Pun. An open framework
for distributed multimedia retrieval. In Recherche
d’Informations Assistée par Ordinateur (RIAO’2000)
Computer–Assisted Information Retrieval, volume 1,
pages 701–712., Paris, France, April12–14 2000.

[12] H. Müller, D. M. Squire, W. Müller, and T. Pun. Ef-
ficient access methods for content–based image re-
trieval with inverted files. In S. Panchanathan, S.-F.
Chang, and C.-C. J. Kuo, editors, Multimedia Stor-
age and Archiving Systems IV (VV02), volume 3846
of SPIE Proceedings, pages 461–472, Boston, Mas-
sachusetts, USA, September 20–22 1999.

[13] W. Müller, H. Müller, S. Marchand-Maillet, T. Pun,
D. M. Squire, Z. Pec̆enović, C. Giess, and A. P.
de Vries. MRML: A communication protocol for
content–based image retrieval. In International Con-
ference on Visual Information Systems (Visual 2000),
pages 300–311, Lyon, France, November 2–4 2000.

[14] W. Müller, Z. Pec̆enović, H. Müller, S. Marchand-
Maillet, T. Pun, D. M. Squire, A. P. D. Vries, and
C. Giess. MRML: An extensible communication pro-
tocol for interoperability and benchmarking of mul-
timedia information retrieval systems. In SPIE Pho-
tonics East - Voice, Video, and Data Communications,
pages 961–968, Boston, MA, USA, November 5–8
2000.

[15] W. Müller, D. M. Squire, H. Müller, and T. Pun. Hunt-
ing moving targets: an extension to Bayesian methods
in multimedia databases. In S. Panchanathan, S.-F.
Chang, and C.-C. J. Kuo, editors, Multimedia Stor-
age and Archiving Systems IV (VV02), volume 3846
of SPIE Proceedings, pages 328–337, Boston, Mas-
sachusetts, USA, September 20–22 1999. (SPIE Sym-
posium on Voice, Video and Data Communications).

[16] D. Papadias and T. Sellis. A pictorial query-by-
example language. Journal on Visual Languages and
Computing, 6(1):53–72, 1995.

[17] A. Pentland, R. W. Picard, and S. Sclaroff. Photo-
book: Tools for content–based manipulation of image
databases. International Journal of Computer Vision,
18(3):233–254, June 1996.

[18] A. Rosset, O. Ratib, A. Geissbuhler, and J.-P. Vallée.
Integration of a multimedia teaching and reference
database in a PACS environment. RadioGraphics,
22(6):1567–1577, 2002.

[19] N. Roussopoulos, C. Faloutsos, and T. Sellis. An
efficient pictorial database system for psql. IEEE
Transactions on Software Engineering, 14(5):639–
650, 1988.

[20] G. Salton and C. Buckley. Term weighting approaches
in automatic text retrieval. Information Processing
and Management, 24(5):513–523, 1988.

[21] D. M. Squire, H. Müller, W. Müller, S. Marchand-
Maillet, and T. Pun. Design & management of mul-
timedia information systems: Opportunities & chal-
lenges. In Design & Management of Multimedia Infor-
mation Systems: Opportunities & Challenges, chap-
ter 7, pages 125–151. Idea Group Publishing, London,
2001.

