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Abstract. We investigate the application of a logic-based framework
representing an agent environment as a composite structure that evolves
over time. Such a complex structure contains the interaction between
two main classes of entities: agents and objects. Interactions between
these entities are specified in term of events whose occurrence is governed
by a set of physical laws specifying the possible evolutions of the agent
environment, including how these evolutions are perceived by agents and
affect objects and processes in the agent environment. We illustrate the
work using GOLEM1, a protype platform whose aim is to implement
the framework to build situated cognitive agents in a distributed agent
environment.

1 Introduction

It is widely acknowledged in the agent literature the need to model the agent
environment in which agents are situated [1, 2, 3]. Early attempts to engineer
MAS applications involved a MAS platform that implemented such an agent
environment by enabling agents to interact with each other by sending and
receiving messages [4, 5]. However, these early attempts in modeling the agent
environment as a message transport system (or broker infrastructure) has been
criticized to be inadequate for complex applications [6] requiring the treatment
of an agent environment as a first class entity [7, 8].

1.1 Motivation

We are concerned with situating cognitive agents in an agent environment. In-
formally, by an “agent environment” we mean the virtualisation of an electronic
or real environment inside an agent middleware, in such a way that agents de-
ployed in the agent middleware can access virtual or real resources by means
of standard interfaces and abstractions. As a running example, we consider the
electronic environment of a virtual world called Packet-World [9]. This example
has been proposed to evaluate the behaviour of Multi-Agent Systems (MAS)
in which agents are explicitly situated in an environment. As shown in Fig. 1,

1 GOLEM stands for Generalised Onto-Logical Environment for Multi-agent systems



Fig. 1. The Packet-World [9].

the basic setup of the Packet-World consists of a number of differently coloured
packets inside a rectangular grid, whose destination is a circle with the same
colour. Each agent living in the Packet-World has a battery that discharges as
the agent moves in different locations in the grid. The battery can be recharged
using a battery charger. This charger emits a gradient whose value is larger if
the agent is far away from the charger and smaller if the agent is closer to the
charger. To locate the battery charger an agent must follow the direction of de-
creasing gradient values. The agents have the goal to bring the packets to the
collection points and can communicate with other agents to create collaborations
or to ask information about the position of the collection points.

Shortcomings of previous work In an attempt to situate cognitive agents
built according to the KGP model of agency [10] we have developed in previous
work the PROSOCS platform [11]. The main assumption behind PROSOCS is
that an agent must have a logical mind [12] that is situated in the distributed
environment of network via a body [11]. For the agent’s mind PROSOCS sup-
ported a developer with the generic reasoning capabilities of KGP, which had to
be programmed to allow an agent to act in the environment it was situated. For
example, in the context of the Packet World, a rule of the form:

[ self(Picker),
observed(see(packet(P, Colour, Position)), T),
my_position(MyPosition),
is_close(P, Position, MyPosition),
destination_for(Colour, Dest)

] implies
[ assume_happens_after_once(do(Picker, pick(P)), T)].



would make a picker agent to perform a pick action, provided the agent has ob-
served a packet that is close to its position and the agent knows the destination
for packets of this colour. In the rest of this paper, we will refer to agents that
are capable of processing this kind of rules as cognitive agents. To support this
basic kind of cognition PROSOCS relied upon the CIFF proof-procedure (see
[13] for details). CIFF enabled KGP agents to react and plan within the envi-
ronment in which they were situated, including support for temporal reasoning.
A summary of the reasoning capabilities of KGP agents and their computational
characteristics, as implemented in PROSOCS, are described in [14].

PROSOCS also provided the middleware for agents to be deployed and com-
municate with each other by sending and receiving messages via their body.
Two implementations of the middleware were developed: (a) one built on top
of the JXTA peer-to-peer infrastructure and (b) another based on the TuCSON
blackboard-based infrastructure. What characterised PROSOCS from other plat-
forms of its time was that generic sensor and effector components were linked
to an agent’s body to enable the agent send and receive messages, including
support with physical interactions between agents and objects. Experimenta-
tion with the platform [15] showed that although the development of a reusable
middleware to enable communicative interaction was generally straightforward,
providing general rules for the interaction between agents and objects for differ-
ent applications was more a limitation than a strength. The issue here was that
different applications imposed different requirements on how agents and objects
need to be manipulated and coordinated. A more acceptable solution was to
allow the developer to specify the low-level physical interaction for different ap-
plications, as if this developer designed the agent environment and programmed
its middleware to serve the purpose of the application.

Contribution, Scope, and Significance This paper develops a logic-based
framework representing an agent environment as a composite structure that
evolves over time. Such a complex structure contains the interaction between two
main classes of entities: agents and objects. Interactions between these entities
are specified in term of events whose occurrence is governed by a set of physical
laws specifying the possible evolutions of the agent environment, including how
these evolutions are perceived by agents and affect objects and other agents in
the environment. The emphasis of the work is to specify the representation of the
agent environment declaratively, in a logic-based way, so that the programming
of the agent environment is easy to understand and change. To specify what
is perceived in the agent environment we use of the notion of affordances, to
enable cognitive agents to perceive the external states of objects and other agents
in order to interact with them. Through affordances a designer specifies what
is possible in the agent environment at a level that can be processed directly
by cognitive agents. We show how to turn the overall representation from a
specification to an implementation that we call GOLEM, which is a general
and reusable platform across applications and whose features are examplified
by the Packet World simulation in the context of this paper. The significance



of the implemented system is that it can support complex applications through
the deployment of cognitive agents situated in a distributed environment over a
network.

1.2 Organisation

Section 2 introduces the general architecture of GOLEM, following the ideas
presented in [16]. Section 3 shows how to represent interaction in a GOLEM
agent environment on top of an extension of the Event Calculus based on objects
[17], including any implementation issues. Section 4 places our research in the
context of existing literature and compares it to related work. We summarise
our effort in Section 5 where we also chart out directions for future work.

2 Description of Environment Affordances

We propose to investigate the design of the agent environment using the con-
cept of affordances. This concept is normally taken to describe “all the action
possibilities latent in the environment, objectively measurable, and independent
of an agent’s ability to recognise those possibilities” [18]. As with research in
HCI [19], we rely upon perceived affordances where entities of an environment
“suggest” to agents (whether artificial or human) how they should interact with
them. In other words, we do not expect our agents to learn how to interact with
an object by randomly taking actions [20] according to previous experience[21].
Instead, we propose an agent’s environment to be designed in advance, assum-
ing a particular ontology, very much like an interactive system, with the aim to
treat cognitive agents like we treat users. This does not prevent an agent from
learning how to use the object, because knowing the interface of the object, the
agent could just try to explore the functionality by observing an action’s effect
on the agent environment.

We answer what the developer needs to design by relying on the conceptual
framework described in [16]. This defines an agent environment as a container
where agents interact with other agents and objects using sensors and effec-
tors. We expand this preliminary work by providing a framework stating how to
specify logically these entities and their interaction using events. Events describe
what happens in the agent environment as a result of actions being executed by
effectors. According to the happening of an event the agent environment notifies
those sensors capable of perceiving the action of the event. For the purposes
of this paper we distinguish between three types of acts embedded in an event:
speech acts - to allow agents to communicate with other agents and users; sensing
acts - to allow an agent to perceive the environment actively; and physical acts -
to allow the agent to interact with other entities, in particular objects, but also
agents as well. To simulate these acts we will rely upon different kinds of sensors
and effectors the agent should possess to capture the interaction in the agent
environment. Our primary concern is to provide a computable specification of
the interaction rather than a formal definition; the latter is beyond the scope of
this paper.



2.1 Objects

GOLEM uses a particular architecture for objects shown in Fig. 2. As part of
this architecture the object is described in terms of the perceived affordances.
To present these perceived affordances we use the object-based notation used
by C-logic [22], a formalism that allows the description of complex objects. A
description of the form:

packet: p1[ colour ⇒ red,
methods ⇒ {pick, drop, hit},
position ⇒ square:sq1,
receptors ⇒ { receptor:r1 },
emitters ⇒ { emitter:em1 }

]

states that p1 is a complex term of class packet, with a functional attribute
describing that the colour is red, a multi-valued attribute methods stating that
the actions afforded by the object the term represents are pick, drop, and hit, a
functional attribute asserting that the position of the packet is in square sq1, a
multi-valued attribute receptors containing one receptor sensor r1, and a multi-
valued attribute emitters containing one emmiter effector em1. Some of the at-
tribute values are complex terms themselves, for example, sq1 is a complex term
containing information such as the coordinates of the packet in the Packet-World
grid. The C-logic syntax to represent the perceived affordances of an object as
a complex term has a first-order logic translation, as we can see for a packet
object below:

is a(p1, packet). method of(p1, hit). attribute(packet, colour, single).
colour(p1, red). position(p1, sq1). attribute(packet, method, multi).
method of(p1, pick). receptor of(p1, r1). attribute(packet, receptors, multi).
method of(p1, drop). emitter of(p1, em1). attribute(packet, emitters, multi).

In this way, we represent all the related information that is perceived of an
object, including its relationship with other entities in the agent environment.

The idea behind having receptor sensors for an object is that they receive
notifications from the agent environment as a results of actions executed on that
object. In general, the receptor sensor of an object can only capture notifications
of physical acts performed on the object by entities in the agent environment
that are capable of executing these actions. To represent events that receptors
can capture we use complex terms too. The term:

do:e1 [actor ⇒ agent:ag1 [effector ⇒ ef1], act ⇒ hit, object ⇒ packet:p1]

describes an event e1 where the effector ef1 of agent ag1 performs a physical
act hit on packet p1. Such an event will be captured by the receptor of the
object via notification sent to the object by the environment. Then the object’s
processor will call a method of the internal object. The general idea behind the
internal object is that it wraps in it a resource of the external environment, thus



Fig. 2. A GOLEM object whose receptor S is receiving a notification of an event Ev1
at time T1 and whose emitter attempts to make event Ev2 happen at time T2.

hiding from the agents the complexity of interfacing with the external resource.
In other words the object abstraction can be a virtual entity, as for objects in
Packet World, or a virtualisation of an external resource of the external real
environment. The method call will typically result in the output of the call
transmitted as another event via the object’s emitter effector. As before, emitted
events are complex terms. To simulate a packet’s reaction to the physical act
represented by e1, the event description:

hearing:e2 [emitter ⇒ packet:p1 [effector ⇒ em1], sound ⇒ packet hit]

showing the kind of event emitted by the object. Events may be emitted by the
processor also upon conditions determined entirely upon the state of the internal
object and not necessarily as a reaction to an external trigger. The details we
omit as these events can be described similarly, the only part that changes is the
type and content of the event.

2.2 Cognitive Agents

GOLEM agents are organised as an extension of the PROSOCS anthropomor-
phic architecture of an agent [11], shown in Fig. 3. In this architecture an agent
has a body whose affordances can be perceived by other agents. A description of
the form:

picker: ag1[ understands ⇒ ontology:o1,
sensors ⇒ {sight:s1, hearing:s2, smell:s3},
effectors ⇒ {speak:ef1, arm:ef2, arm:ef3},
position ⇒ square:sq3,
activity ⇒ idle

]

states that ag1 is a packet picker understands the ontology o1 (of packet world),
has sensors of class sight, hearing and smell, and effectors of class speak and arm,



its position is square sq3 in the container, and it is currently idle. The position of
the agent describes a set of relative terms relating the agent with other entities in
the agent environment. As with objects, the effectors of an agent attempt to exe-
cute physical actions in the agent environment. Similarly, agent sensors respond
to event notifications by the agent environment. These notifications enable an
agent’s sensors to passively observe the agent environment [10]. Alternatively,
sensors actively observe the agent environment through sensing acts, giving rise
to active observations [10]. Active observation is expressed as a sensing act that
attempts to perceive certain properties of the agent environment. For example,
the term below shows how agent ag1 focuses on a specific part of the agent
environment:

sensing:e3 [actor⇒ ag1[sensor⇒ s1], act ⇒ look, focus ⇒ p1[color⇒ X]]

by looking with sensor s1 to find the colour of packet p1, denoted by the variable
X. The outcome of such a request will result in an asynchronous call to the agent
environment to return the variable substitution, as we will see later in section
3.2.

Apart from situating the agent in the agent environment, the body contains
a brain to connect the various sensors attached to it. The brain also provides
an interface to the mind, a cognitive component giving the agent the ability to
reason logically and make decisions. This mind-brain separation allows different
cognitive models of agency to be interfaced to the body, thus making the archi-
tecture more flexible. From an agent environment perspective, a user can use an
agent’s body to access the electronic environment, in which case the brain of the
agent provides simply a convenient interface for the user to select actions using
his own mind.
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Fig. 3. The anthropomorphic agent architecture in GOLEM (adapted from [11]).



2.3 Containers

An agent environment in GOLEM is a first class entity referred to as a set of
containers. As shown in Figure 4 the container has a state that acts as a di-
rectory of all the present agents and objects in it, including information about
their topology and configuration. Interactions between the entities of an agent
environment are governed by a set of physical laws. These laws specify the possi-
ble evolutions of the container, including how these evolutions are perceived by
agents and affect objects and processes in the environment.

PHYSICAL LAWS

                                      PERCEIVED ENVIRONMENT

CONTAINER MONITOR 

Object Agent

INTERNAL STATE

Process

Fig. 4. A GOLEM Container

As with agents and objects, the container has its own perceived affordances
that include the ways in which an agent can configure itself (or other basic,
object, agent, and containers) to became part of the container’s internal state.
For example the description:

container:c1[address ⇒ “container://one@134.219.7.1:13000”,
laws ⇒ physics:pw1,
type ⇒ open,
entities ⇒ {agent:ag1, packet:p1, packet:p2, destination:d1, battery:b1}

]

describes a container whose address is container://one@134.219.7.1:13000, its
laws are represented by another object pw1 of class physics, it is an open con-
tainer in that any agent can enter it, and whose internal state contains five
entities, one agent (ag1), two packets (p1, p2), a destination for packets (d1),
and a battery (b1). Before an agent enters the container it can inspect the laws
attribute containing the physics for the Packet-World, further specified as:

physics:pw1[name ⇒ ”PacketWorld”



mediates ⇒ {see, speak, listen, do},
entities ⇒ {agent, object},
processes ⇒ {pheromon evaporation},
ontology ⇒ {”PacketWorldOntology”}

]

By examining a physics term such as pw1 above, an agent can perceive the
container by looking at the classes of events a container mediates, and other
information regarding the kind of entities that the container contains, and the
ontology specifying the features of these entities.

3 Interactions in a GOLEM Environment

The main task of our work has been to describe an agent environment in a form
that is usable by the cognitive agents situated in it. So far we have discussed
how a domain application can be described in terms of the perceived objects and
agent bodies that are part of a container that acts as the agent environment. We
have also shown how such a container can be represented as a complex term. In
this section, we show how to describe the evolution of a container as an event
calculus theory extended with a part that enables objects and agents to interact.
We close the discussion with a summary of our implementation.

3.1 The agent environment and its evolution

To represent how phenomena change the state of a GOLEM container we use
the object-based event calculus (OEC) described by Kesim and Sergot in [17].
The OEC extends the data model of the original event calculus with one that
describes how instances of complex terms evolve over time. This framework
allows the developer of a GOLEM application to specify the effects of actions
to/from objects and agents as events. A subset of the clauses describing the OEC
is given in Fig. 5.

Clauses C1-C2 provide the basic formulation of OEC deriving how the value
of an attribute for a complex term holds at a specific time. Clause C3 describes
how to represent derived attributes of objects treated as method calls computed
by means of a solve at/2 meta-interpreter as specified in [23]. C4-C5 support
a monotonic inheritance of attributes names for a class limited to the subset
relation. As C1-C2 describe what holds at a specific time, C6-C7 determine how
to derive the instance of a class at a specific time. The effects of an event on
a class is given by assignment assertions; the clause C8 states how any new
instance of a class becomes a new instance of the super-classes. Finally, deletion
of objects is catered for by clauses C9-C11. C9 deletes single valued attributes
that have been updated, while C10-C11 delete objects and dangling references.

To describe how the affordances in the agent environment evolves as a result
of events happening in it we need to define domain specific initiates and terminates
clauses. For example, to describe an agent moving in the Packet-World grid, we
write:



(C1) holds at(Id, Class, Attr, Val, T)←
happens(E, Ti), Ti ≤ T,
initiates(E, Id, Class, Attr, Val),
not broken(Id, Class, Attr, Val, Ti, T).

(C2) broken(Id, Class, Attr, Val, Ti, Tn)←
happens(E, Tj), Ti < Tj ≤Tn,
terminates(E, Id, Class, Attr, Val).

(C3) holds at(Id, Class, Attr, Val, T)←
method(Class, Id, Attr, Val, Body),
solve at(Body, T).

(C4) attribute of(Class, X, Type)←
attribute(Class, X, Type).

(C5) attribute of(Sub, X, Type)←
is a(Sub, Class),
attribute of(Class, X, Type).

(C6) instance of(Id, Class, T)←
happens(E, Ti), Ti ≤ T,
assigns(E, Id, Class),
not removed(Id, Class, Ti, T).

(C7) removed(Id, Class, Ti, Tn)←
happens(E, Tj), Ti < Tj ≤ Tn,
destroys(E, Id).

(C8) assigns(E, Id, Class)←
is a(Sub, Class),
assigns(E, Id, Sub).

(C9) terminates(E, Id, Class, Attr, )←
attribute of(Class, Attr, single),
initiates(E, Id, Class, Attr, ).

(C10) terminates(E, Id, , Attr, )←
destroys(E, Id).

(C11) terminates(E, Id, , Attr, IdVal)←
destroys(E, IdVal).

Fig. 5. A subset of the Object-based Event Calculus from [17]

initiates(E, picker, A, position, Pos, T) ←
do:E [actor ⇒ A, act ⇒ move:M [destination⇒ Pos]].

To complete with describing the effects of the event we also need to terminate
the attribute holding the old position of the agent, in this case, this is handled
by the general rule described in clause C9.

3.2 Representation of Interaction

Given the OEC to support the evolution of the agent environment’s state we use
on top of it a set of logic programs that work together with the event calculus,
to represent the interactions in a GOLEM environment. In what follows, we are
presenting extracts of our formulation, to exemplify the approach.

Action Execution As we discussed in section 2, the execution of actions in
GOLEM are represented as attempts. Attempts are the same as what Ferber
[24] calls influences, we prefer the use of attempt because it captures better our
intention, namely the action that is about to occur as an event in the agent
environment. Attempts are described by assertions of events at a specific time.
We keep the description of events separately from attempts. Suppose for instance
that an agent (ag1) is attempting to make a move to square sq3 at time 120. In
GOLEM this will be represented by an attempt as shown below:

attempt(e14, 120).
do:e14 [actor ⇒ ag1, act ⇒ move:m1 [destination⇒ sq3]].



Such an attempt causes the event of moving to happen, provided the event
described in the attempt is possible according to the physics of the agent envi-
ronment. There are two ways we propose to define this:

(H1) happens(Event, T)← (H2) happens(Event, T)←
attempt(Event, T), attempt(Event, T),
possible(Event, T). not impossible(Event, T).

Definition H1 suggests that we must describe for every agent environment when
an event is possible at a specific time. Often, as the number of events that
happen is large, H2 suggests that it would be easier if we described what events
are impossible at a specific time. Depending on the application, the developer
of an agent environment can choose between H1 or H2. In the Packet-World, for
example, we have found easier to describe what is impossible rather than what is
possible, and rely upon the use of negation-as-failure to handle what is possible
by default. As an example of an impossible event description, consider how to
define what is impossible when an agent attempts to move to a square in the
grid that is occupied already:

impossible(E, T)←
do:E [actor ⇒ A, act ⇒ move:M [destination⇒ Pos]],
holds at(Pos, square, status, occupied, T).

We need to define similarly additional impossible/2 constraints of this kind to
deal with situations where an agent is trying to move outside the grid, for ex-
ample. Impossibility constraints can also be used to handle more than one event
attempted at the same time, thus making the approach quite expressive.

Using the definition H1, a developer has also the option to combine possi-
ble/impossible constraints if the following general rule is added:

possible(E,T)← not impossible(E,T).

This new definition makes H1 more general, since the developer is now in a
position to specify both domain specific rules of both what is possible or what is
impossible, case by case, thus allowing representations that are more expressive.

Passive Perceptions When an event happens, it is notified instantaneously
to all types of sensors that are capable of detecting it. Put another way, certain
types of sensors will be filtering out specific kind of perceptions. This fact is
reflected in the definition of event notification that takes into consideration the
type of event that happens. For passive perceptions we need to check that the
event does not contain a sensing action, so the notification is defined as:

notify(E, S, T) ←
happens(E, T),
not sensing(E),
detectable(E,S,T)
not interfered(E, S, T).



We assume that event types contain, as part of their description, the sensor types
that can detect it. We use the notion of detectable as possibility for percepts.
For the packet world we define it as:

detectable(E,S,T) ←
E [is detected by ⇒ SensorClass],
instance of(S, SensorClass, T),
holds at(S, SensorClass, status, open, T).

The definition of notify/3 also checks that when an event is notified it is not
interfered by an obstacle. Interference is a domain specific constraint that for
some applications may remain undefined. To exemplify it in the Packet-World,
we try simulate the fact that some events will not be possible to perceive because
there is an entitiy (object or agent) that hides its occurrence. To do this we define
the following rule:

interfered(E, S, T) ←
E [coordinates ⇒ XYe],
instance of(S, sight, T),
holds at(A, picker, sensor of, S, T),
holds at(A, picker, coordinates, XYa, T),
holds at(Entity, entity, coordinates, XYent, T),
in between(XYent, XYa, XYe).

In other words, a notification is interfered only when there is an entity between
the position of the agent and the location in which the event happened.

Active Perceptions Agents in GOLEM are enabled to actively perceive objects
in the agent environment. Such perceptions assume that the agent has attempted
to perform a sensing act with a specific focus query for the object. This is
initiated by an attempt of an sensing act with a particular focus. We specify this
as:

perceive(E, S, T) ←
happens(E, T),
sensing(E),
detectable(E, S, T),
E [sensor of⇒ S, focus⇒ Focus],
solve at(Focus, T).

The call to solve at is assumed to be an asynchronous call to the agent environ-
ment which returns the variable substitutions to the Focus, if any. It is important
to note that the time T is not instantiated by the agent who is trying to perceive,
but by the agent environment who receives the call.



3.3 Implementation issues

We have implemented GOLEM according to the reference model of Fig. 6. In
this figure actions coming from containers, agents, objects, or internal Processes,
are collected by an Attempts module. Attempts of action are mediated by a
Physics component ensuring that these actions are possible before they happen
as events in the state. The physics module is in charge to mediate the three
kind of events described in section 2. As a consequence, physics acts, speech acts
and sensing acts are mediated before taking place in the agent environment, or,
in other words, the agent environment allows to define laws of interaction for
these three kind of events. The physics also describe how events cause changes
to the perceivable state of the agent environment. Once an event has happened,
it is directed by the notification module to the Passive Perception module that
notifies the sensors of agents and objects.

Fig. 6. The GOLEM Reference Model.

Active perceptions of agents on objects are handled by the Active Perception
module that accesses the state of the agent environment to support the requested
perceptions. Containers are recursively deployed as objects, so that the agents
in the agent environment can access a container from another container. The
use of a Connector component allows the agent environment to forward/receive
messages to/from other containers via the transportation layer.



We have implemented our framework according to the above reference model
using tuProlog [25] and Java. Using this combination we use Java to imple-
ment Agents, Objects and the Container. The container has inside a Physics
component that uses tuProlog to define the logic-based agent environment. To
implement the specification we need to slightly change some of the rules spec-
ified earlier. For example, the rule H1 is rewritten so that attempts become
agent environment calls that assert event descriptions in the state of the agent
environment:

attempt(Event, T):- not impossible(Event, T), add(happens(Event, T)).

Agents, objects, containers, or internal processes will instantiate the Event at
the time of the call, while the time T is instantiated by the agent environment.
add/2 asserts separately the happening of the event from the event’s description.

Other features of the tuProlog/Java combination include allowing a developer
to support asynchronous communication and primitives to register Java objects
inside a Prolog context, using the Java Reflection API [26]. We use these facilities
to define declaratively how to deploy agents, objects, agent sensors and services
to create the GOLEM distributed environment. Defining the rules of the agent
environment using a Prolog theory is particularly helpful when a developer needs
to change the interaction inside a container. With the GOLEM’s toolset, we
allow a platform administrator to open a container, inspect it, and subsequently
change the physical laws governing it. There are a number of issues that we
have to take into consideration here, in particular, ensuring consistency of the
physics and the atomicity of action execution. A detailed discussion of these
issues, however, is beyond the scope of this paper.

To allow a container’s affordances to be discovered within a distributed en-
vironment, we translate our complex terms describing a GOLEM container to
WSMO [27] ontologies and concepts. This mapping is straightforward as there
is a syntactic link between OEC and F-logic[28] upon which WSMO relies. For
example, a picker agent description in GOLEM can be translated to a WSMO
concept as follows:

concept Picker subConceptOf Agent
UnderstandOntology ofType (1 1) iri
hasSensors ofType Sensor
useEffectors ofType Effector
hasPosition ofType Square
hasActivity ofType (1 1) string

The motivation behind the use of WSMO is to use it as a standard for
allowing agents from other platforms to discover and use resources of GOLEM.
A cognitive agent that looks at the affordances of an entity, knows immediately
the messages to interact with the entity, as well as its observable properties. Fig.
7 shows an example of execution where GOLEM entities and their affordances
are described in WSMO.



Fig. 7. A container node with Packet World inside

4 Related Work

There is a growing research and development effort on how to model situ-
ated multi-agent systems, see [6] for a discussion. Our work is inspired by the
influence-reaction model by Ferber and Müller [2] and its extensions as for-
malised by the work of Weyns and Holvoet [29]. In our framework influences are
represented as attempts of events and reactions as environment notifications.
However, in this work we are not concerned with synchronisation issues as [2]
and [29] but rather with how to specify interaction in computational logic, thus
providing executable specifications of agent environments. Despite an apparent
similarity of our container with the description of the agent environment in [8],
at a closer look the two approaches rely upon different reference models.

Our representation of active perception relates naturally to the work of Weyns
et al [30] who divide an agent’s perception in three parts: sensing, interpreting
and filtering. Our work is really about the first part, namely, the mapping of the
external environment to a symbolic representation suitable for the agent using
what we called sensing acts. As in Weyns et al, the agent can select a set of foci
that enables an agent to direct its perception and perceive only specific types of
information, simulating a kind of artificial sight for agents. The interpretation
part of the perception mechanism of Weyns et al maps the representation of the



agent environment in the actual percept of the agent. These percepts have the
function to describe the sensed agent environment in the language understood
by the agent. In our approach, we have tried to minimize interpretation and
standardize it to be logical terms. We have left filtering outside the framework
as this part concerns the way sensors work, which is beyond the scope of this
work.

Vizzari in [31] models the concept of environment as a multi-layer multi-
agent situated system (MMASS). The environment is composed by a set of
graphs interconnected by interfaces, forming thus a multilayered structure with
some interfaces among layers. Every layer, and thus every graph, may represent
a specific aspect of agents’ environment: for instance one of them may represent
an abstraction of agents’ physical environment, while other ones may be related
to other conceptual topologies such as organization charts or dependency graphs.
In GOLEM, instead of defining layers, we define rules. Different sets of rules can
then describe different layers of the agent environment. What we have presented
here is only a framework for the physical interaction where attempts for ac-
tion result in events, which for Vizzari generate fields, signals capable to diffuse
through the layers, according to the interfaces between these layers. In addition,
signals in Vizzari’s framework can be perceived by agents according to specific
rules of perception based on functions such as diffusion, composition and com-
parison. For us diffusion is notification, composition is complex term creation,
while comparison is our use of having different sensors capturing different types
of events.

The coordination artifact theory [32] defines as an abstract model that takes
inspiration from concrete objects supporting the interaction of physical entities.
Agents perform their activities in the environment helped by coordination arti-
facts, generally passive entities that defines a usage interface, a set of operating
instruction and a coordination behaviour specification. For an agent to under-
stand how to interact with an artifact one has to understand the interfaces of that
artifact. GOLEM follows the TuCSoN idea that the infrastructure must be pro-
grammable. While coordination artifacts for agent interaction take inspiration
from actual concrete objects of the real world, our approach brings the metaphor
of agent environment to the extreme by taking into account spatio-temporal fea-
tures. These features are represented (possibly in an explicit way) and have an
influence on perception, interaction and as a result on agent behaviour.

A more recent technology supporting the coordination artifact model is called
CartAgO, proposed by Ricci et al in [33], which is in the process of being in-
tegrated with Jason [34]. This technology proposes a model of perception and
actions that is similar to the one proposed by Weyns et al in [30]: Agents can
have sensors that perceive well-defined kind of perceptions and filter them at
runtime. The notion of workspaces contain artifacts and agents, used also to de-
fine the topology of the working environment. Through workspaces it is possible
to model a notion of locality, in terms of the artifacts that an agent can use and
observe.



There are many similarities of GOLEM with CArtAgO: they both use sen-
sors and effectors for agents, as PROSOCS did [11], CArtAgO workspaces corre-
spond to GOLEM containers, and as in CArtAgO we distinguish between speech
acts, physical acts, and sensing acts. Moreover the Jason integration offers the
possibility to defines user defined agent environments specifying pre-conditions,
post-conditions and effects of the action in the environment, as well as offering a
language to define BDI agents acting in the agent environment. However, there
are many differences as well, the most important being that in GOLEM we keep
the rules of the physical environment in the container, not in the artifacts, and
we expect the implementation to enforce them in a distributed manner. Finally,
instead of manuals keeping operating instructions for artifacts GOLEM uses
affordances.

Affordances are also strongly related with the work reported by Platon et al.
in [35], [36], and [37]. As in PROSOCS, this work puts forward the use of an agent
soft body which has a state that is public and available to an observer. The act
of observing such a state in the Platon et al. framework is based on the notion of
oversensing [35] and overhearing [36]. In our work the oversensing/overhearing
acts are modelled as active perception on the affordances of environment enti-
ties. Other differences with the Platon et al. work are that GOLEM affordances
express more than a simple state, they express also the interaction interface of
both agents and objects, rather than only agents.

5 Conclusions

We have presented a logic-based framework representing an agent environment as
a composite structure that evolves over time. Such a complex structure contains
agents and objects in containers, whose interaction is specified in term of events.
Occurrence of events is governed by a set of physical laws specifying the possible
evolutions of the environment, including how these evolutions are perceived by
agents and affect objects and processes in the environment.

We have implemented the framework in GOLEM, a prototype platform ex-
emplified here using the Packet-World. The benefits of our approach can be
summarised as follows. By using a declarative approach we define the rules that
constrain the interactions in an agent environment and then update them at run
time, without the need to restart the application (an important issue if we want
to incrementally introduce patches to an application environment). We do not
need to translate the perceptions from the environment to the mind of the agent
as the agent environment and mind of an agent use the same representation
language, thus making the situating of cognitive agents easier. By introducing
the idea of affordances and wrapping external resources in objects we hide the
complexity of how an agent can interact with the external world; knowing the af-
fordances of an object the agent has the interface of that object standardised by
the use of ontologies. Finally, by keeping a history of events we can easily play-
back interactions and therefore debug an application through a log, in the case



that the agent environment models a simulation that does not involve external
resources, wrapped in the object abstraction.

We are currently studying the benefits of our approach in the ArguGRID
project [38], where the mind of the agent is defined using argumentation [39].
Now interaction with objects is interaction of agents and/or users with semantic
web-services defined in WSMO. As part of this work we are seeking to build upon
the lemma generation mechanism discussed in [23] to improve the scalability of
the GOLEM’s approach.
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[34] Hübner, J.F., Bordini, R.H.: Jason, a java-based interpreter for an extended
version of agentlink. http://jason.sourceforge.net/

[35] Platon, E., Sabouret, N., Honiden, S.: Oversensing with a softbody in the envi-
ronment - another dimension of observation. In: Proceedings of Modelling Others
from Observation’05. (2005)

[36] Weyns, D., Parunak, H.V.D., Michel, F., eds.: Environments for Multi-Agent
Systems II, Second International Workshop, E4MAS 2005, Utrecht, The Nether-
lands, July 25, 2005, Selected Revised and Invited Papers. In Weyns, D., Parunak,
H.V.D., Michel, F., eds.: E4MAS. Volume 3830 of Lecture Notes in Computer Sci-
ence., Springer (2006)

[37] Platon, E., Sabouret, N., Honiden, S.: Tag interactions in multiagent systems:
Environment support. In Gleizes, M.P., Kaminka, G.A., Nowé, A., Ossowski, S.,
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