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Abstract

We present a distributed systems architecture that uses
Grid computing to combine basic nodes of wireless sen-
sor networks with complex sensor nodes of wired networks.
Three kinds of complex sensor nodes are identified: objects,
agents and containers. The decision making capabilities of
the complex nodes are then combined with a quality of ser-
vice (QoS) framework for gathering data from the wireless
sensor nodes. The resulting combination provides a pow-
erful conceptual framework for developing ambient intelli-
gence and ubiquitous computing applications on the Grid.

1. Introduction

Sensor networks [1] are computer networks of many,
spatially distributed sensor nodes that allow the network
to monitor wirelessly a variety of physical conditions or
parameters, possibly at different geographical locations.
Nodes in a sensor network are small and inexpensive de-
vices, so that they can be produced and deployed in large
numbers. One implication of this is that their resources in
terms of energy, memory, computational speed and band-
width are typically severely constrained by the underlying
hardware used. Due to power and transmission range lim-
itations, data dissemination in sensor networks is typically
carried out as a collective operation, in which sensors col-
laborate to get data from different parts of the sensor net-
work to the information sinks, or collection centers [1].

A typical multi-hop sensor network is presented in Fig-
ure 1, where usually there exists a local collection center
where sensors send their collected data for further process-
ing and decision making. The collection center can com-
municate via a wireless or wired infrastructure with a re-

Figure 1. A wireless sensor network

mote monitoring station for execution of more complex
tasks. Sensor networks become increasingly important in
new ubiquitous computing and ambient intelligence appli-
cations such as environment monitoring, robotics, intelli-
gent cars and traffic systems, smart homes, health monitor-
ing and industrial automation [1].

As part of a platform we are developing in ARGUGRID
[2], we investigate extensions of Grid computing that enable
applications to access and affect the physical environment
via the Grid. We are motivated by the fact that today’s exist-
ing infrastructures have focused on computational and data
Grids. These address the requirements for high computa-
tional power and data storage for applications with increas-
ing demands in fields like high energy physics, meteorology
and biomedical computations. However, recently Instru-
mentation Grids have emerged which focus on the creation
of a coherent collection of services that can allow the remote
configuration of partitions and controls of a physical instru-
ment and a better integration with the computational Grid.
Our work here mainly refers to Sensor Grids, which can be



viewed as an instance of Instrumentation Grids, whereby
wireless sensor networks are integrated within a distributed
computing/storage resource sharing environment. In this
context we propose an architecture that integrates wire-
less sensor networks with wired environments of interacting
cognitive agents. The emphasis in this paper, with respect
to the Grid, is given to the extension of the Grid paradigm to
add sensors as new type of resources in the network that are
part of more complex sensor nodes called objects, agents
and containers. This consideration and integration is mo-
tivated by the fact that in a sensorized universe there is a
great amount of data collected and partially processed by
sensors, that needs to be further analyzed, processed and
stored using the computational and data storage resources
of the Grid. Such a powerfull combination would enable
the development and deployment of several useful applica-
tions and systems, such as early warning natural disaster
systems or intelligent transportation systems. A significant
integrated feature of our work, apart from the architecture of
objects, agents and containers, is the inclusion of a quality
of service (QoS) paradigm in support of practical ubiquitous
computing and ambient intelligence applications[13].

The rest of the paper is structured as follows. In section
2 we present the main components of a distribusted systems
architecture, referred to as Sensor Network Grid. Such a
Grid motivates the need for a QoS paradigm, the details of
which are presented in section 3. The intergration of the
rest of the architecture with the proposed QoS paradigm is
presented in section 4, while section 5 concludes the paper.

2. Sensor Network Grids

A Sensor Network Grid (SNG) is a proposed Grid in-
frastructure [4] aiming at connecting wired computers of
the kind employed in local collection points or remote base
stations. The main purpose of an SNG is to interface sensor
nodes communicating via a wireless network with virtual
sensor nodes communicating via a wired network. The ba-
sic element of an SNG is the notion of compound sensor
nodes (CSNs), virtual entities that are characterized by (a) a
unique identifier, (b) a presence that can be sensed by other
CSNs in the wired environment supported by the SNG, and
(c) a specific internal organization. Three types of CSNs are
proposed: object nodes, agents, and containers.

2.1 Object Nodes

An object node is organized as shown in Figure 2. We as-
sume a message-based communication model between ob-
ject nodes and the Grid in which these nodes are created and
discovered as resources. Messages between object nodes
are received by triggers and sent by emitters; these act as
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Figure 2. An object node

low-level channels that transport messages in a wired net-
work like the internet. We also assume that the object node
wraps an internal object whose functionality can be ac-
cessed via the object node. It is through such an internal
object that the node would link with the base station of a
Wireless Sensor Network (WSN), as described in [3]; we
use an object node pattern to implement this. In the same
way the node accesses other objects or Web Services.

To ensure asynchronous and bidirectional communica-
tion, we define a component called processor, that manages
the system calls received by the object node (either by the
trigger part of the node or by the internal object); the pro-
cessor returns immediately the control to the caller. Mes-
sages received by the trigger result in the processor calling
a method and its input parameters. The method call will typ-
ically result in the output of the call to the caller transmitted
as a message via the emitter. Alternatively, the processor
can receive messages by the internal object, in which case
a message will be typically transmitted to the environment
via the emitter.

After a method is executed the object’s internal state
changes. We distinguish between the invisible from the vis-
ible part of an object node, thus separating what can or can-
not be sensed of the node in the environment. Changes in
the internal part may cause changes to the external state
of the node. Such a state contains a set of properties and
the affordances of the object, a description of the perceived
methods that are public to other nodes at any one time.

2.2 Agent nodes

Object nodes are not autonomous in that their processor
executes methods as long as they have been called by an-
other object in the system. In some applications, therefore,



we would need to have special kinds of nodes that can take
decision for themselves, without necessarily serving all the
“methods” that are requested of them. To accommodate this
requirement we introduce nodes that are agents.
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Figure 3. An agent node

An agent node is organized as an extension of the
PROSOCS agent architecture [12], as shown in Figure 3.
We use virtual sensors and virtual effectors as the agent
interface towards an environment and we attach them in
a complex component that we call the body of the agent.
The body situates the agent within an environment and con-
tains a brain to connect the various sensors attached to it.
The brain also provides an interface to the mind, a cognitive
component giving the agent the ability to reason logically
and make decisions. This mind-brain separation allows dif-
ferent cognitive models of agency to be interfaced to the
body and make this kind of node more flexible. A user can
use an agent’s body to access the electronic environment, in
which case the brain of the agent provides simply a conve-
nient interface for the user to select actions using his own
mind.

2.3 Container nodes

Complex nodes such as objects and agents are deployed
within compound nodes that we call containers. As shown
in Figure 4 the container has a state that holds a directory
of all the agents, objects, and sensors in it, including infor-
mation about their topology and configuration. Interactions
and communication within the container is managed by the
container’s environment monitor. This component ensures
that interaction and communication within the component
follows the physical laws specifying the way communica-
tion and coordination is implemented in the container.

Another important component is the interface of a con-
tainer with the external environment. Firstly, this needs to
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Figure 4. A container node

specify the anchoring between the external environment in
which the container is situated from the internal state of the
container. To provide this anchoring we assume a connector
managing signals and messages in and out of the container.
To achieve this we rely upon a transportation layer so that
when something happens in the container can be sensed by
the external environment and vice versa. Hence, the con-
nector is the part of the middleware supporting agents to
communicate with other agents in different containers. The
connector also relies upon a registry with the references of
other agents, object nodes and containers. Assuming a com-
mon communication framework between components, this
interface can support the integration of heterogeneous com-
ponents by linking them to form a more complex system. In
addition, the interface is used to publicize the external state
of the container to outside connectors. This external state
too can be understood as a set of properties describing the
container and the container’s affordances. These include the
ways in which an agent node can configure itself (or other
basic, object, agent, and container nodes) to became part of
the container’s state.

2.4 The SNG Universe

The design of a complex multi-agent system environ-
ment can now be composed as a complex SNG of heteroge-
neous container, agent, object, and basic sensor nodes. The
overall system is identified by a top-most container that we
refer to as the universe. Figure 5 revisits the original sensor
network of Figure 1 as a universe of artificial and human
agents. These agents interact with other agents and objects
seemlessly, while their interactions is facilitated by blend-
ing sensor nodes in a mixed (virtual and physical) global
environment.
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3. A QoS paradigm for data gathering in SNGs

The combination of wireless sensor networks and of the
Grid infrastructure can find many uses, particularly where
real-time applications require data provided by the sensor
nodes to perform complex computations and decision mak-
ing, such as adjusting the parameters of an experiment, or
controlling the traffic of vehicles within a specific area.
However, the unique characteristics of the wireless sensor
networks have to be taken into consideration on scheduling
the gathering of data. Data collected by the sensor nodes
are transmitted to the local collection center and then made
available to agents, objects or the containers by the middle-
ware. In some cases, mainly due to the limitations and con-
straints of the energy resources of sensor nodes, each sensor
can either be in active mode gathering and forwarding data
or in sleep mode, thus defining a measurement epoch. In
that case a sensor node may be synchronized to turn on for
a specific period of time (depending on the application), to
collect data and send them to the base station or collection
center. After this task is completed, the node may turn off
for some period of time. In this scenario when an agent ac-
cesses the object node, the object node responsible to be a
wrapper round the sensor node should return the last mea-
surement epoch to the agent. By allowing that, each sensor
conserves energy thus extending the overall lifetime of the
sensor network. All sensor measurements are also stored
into a repository, which could be either a common Grid
repository or an object, so as applications have access to
all data, including past gathered measurements.

Because of the limited energy resources of the sensor
nodes, data aggregation is performed along the transmis-
sion to the collection center. In-network processing has
been considered and addressed several times in the liter-
ature in similar environments, however in most cases the
QoS requirements are not taken into consideration [9], [10].
In our architecture, in order to provide an energy efficient

data gathering and dissemination while satisfying QoS we
propose a two phase approach. During the first phase, a
leveling algorithm is used to define the different levels of
the network that the sensor nodes belong to and during the
second phase a modified Q-DAP algorithm [15] is used to
perform the data aggregation.

3.1 Phase 1: The leveling algorithm

In order to decide which nodes are located closer to the
local collection center we use the notion of network levels
[11]. A simple algorithm for computing the different levels
is adopted [14]. Initially the collection center has the low-
est level (0), and all the other nodes infinite (unknown).
Moreover, a simple rule is used to establish the definition
of levels: if the lowest level of a given’s node neighbor is
i, then the local’s node level is i+1. In this way a tree is
established that is used for the collection of data in each
gathering round.

At the beginning of the algorithm, each node broadcasts
a HELLO message with the following fields: a) level(i) - the
level of the transmitted node, b) my ID - the local’s node
identification medium access control (MAC) address, and
c) parent ID - the identification (MAC) address of the des-
ignated parent of the localnode.

Level Neighbour Child flag Parent flag

i− 1

ID1(i− 1)
ID2(i− 1)

...
IDj(i + 1)

0
0

...
0

1
0

...
0

i

ID1(i)
ID2(i)

...
IDj(i)

0
0

...
0

0
0

...
0

i + 1

ID1(i + 1)
ID2(i + 1)

...
IDj(i + 1)

1
0

...
1

1
0

...
1

Table 1. A neighboring status table.

Throughout the operation of the algorithm a local node
updates its level(i) according to the level information that
receives from its neighbors. The field parent ID is the
node’s ID from which the local node obtained its level. If
more than one node reported the same level to the local
node, a node is used arbitrarily to be its parent node. In
such cases the identification of the parent node could be also
based on more sophisticated techniques, that take into ac-
count different parameters such as available battery or dis-
tance between the nodes.

Based on the rules described above, each node builds
a neighboring status table as shown in Table 1. Note that
the nodes with ID1(i+1) and IDj(i+1) are the local node’s



children and the node with ID1(i-1) is its parent. More-
over, the rest of the nodes at level i-1 are candidates to be
its parent in case its parent node fails. Situations where the
parent node fails may occur either when a sensor node has
exhausted its energy, or the link is lost due to bad channel
conditions, or some nodes are entering into sleep mode for
energy conservation purposes. In that way, regular recre-
ation of the tree is not necessary. The sensor nodes peri-
odically or upon request of the collection center and/or the
application transmit their sensed data by relaying it to their
parents until it reaches the final destination.

3.2 Phase 2: Data gathering

The approach described in this section presents a dis-
tributed and effective method to perform in-network pro-
cessing in order to conserve energy as data traverse the sen-
sor network, while at the same time we satisfy the QoS
constraints posed by the application. Data from neighbor-
ing nodes are expected to present significant correlation
and therefore data aggregation is performed to reduce the
amount of data traversing the network. Each sensor node is
assumed to generate its own packet of data and sends this to
the collection center. At the same time a node is responsi-
ble to forward the data packets of its neighbors. The choice
of whether or not a node performs data aggregation or just
relays the packet to the next hop neighbor, according to the
QoS constraints, is made independently and in a distributed
manner. The quality constraint to be met is the end-to-end
delay constraint D, which we assume is posed by the appli-
cation. Alternatively, similar delay constraints could be im-
posed by limitations that stem from the measuremet epoch
duration. It is noted that the choice of the delay as a con-
straint is not exclusive and additional QoS constraints may
be imposed as well (e.g. packet loss constraint).

When a sensor node receives a packet from one of its
neighbors, it has the choice to perform data aggregation.
The following cases may occur:
a) If the delay D can be met, with probability γ the node
waits (i.e. packet is deferred) for a certain time interval τ
for other packets to arrive and aggregates the data received
forming one single packet. When the time interval expires
it forwards the data to the next sensor node where the same
procedure is followed until the data reaches the collection
center. With probability (1 − γ) the node simply forwards
the data.
b) The node evaluates if the delay D can be met only if the
packet is not deferred, and forwards it to the next hop.
c) The node evaluates if the delay D cannot be satisfied in
any case, and discards the packet.

If a packet of collected data is delivered to the collec-
tion center within the given constraint D, it is considered
to be a successful delivery. Otherwise, the data is obso-

lete and therefore is discarded. This approach succeeds in
decreasing the communication load of the network by not
transmitting the obsolete data [15]. Parameter γ is a con-
figurable parameter of the network, while τ depends on the
node’s placement in the network. Intuitively, the closer a
sensor node is to the collection center the longer has to wait
in order to gather data packets from more distant nodes, and
form a single packet to transmit to the collection center.

4 Integration scenario

A Sensor Network Grid provides a platform that en-
ables intelligent decisions concerning the sensor networks
and corresponding applications, especially when the infras-
tructure is equipped with heterogeneous sensor nodes, while
various applications with diverse and dynamic requirements
are supported. According to the infrastructure introduced in
this paper, the objects are virtual sensor nodes and represent
the status of the actual sensors in the network. Agents can
communicate with the objects, becoming aware of the sen-
sor nodes’ status and characteristics, through the object’s
affordances part and consequently make decisions concern-
ing the application.

Let us consider a scenario where the user requests for the
periodic collection of specific data from sensor nodes that
are distributed throughout the network with a predefined
QoS requirement, e.g. posing a certain delay constraint D
from the time of the data generation until the point that the
data reach their final destination. The QoS requirement in-
formation is passed to the agents of the network, which in
turn have to assess an energy efficient data gathering plan
for the sensor sub-networks. Considering the data gather-
ing scheme described in section 3, the agents can determine
an appropriate value for the τ parameter for every sensor
node, depending on their placement in the sensor network
(e.g. level of the sensor node within the sub-network).

More specifically, since agents can obtain global knowl-
edge of the sensor network or sub-network, each node’s
level(i) as well as the depth of the tree and the average data
transmission and propagation time can be obtained, and us-
ing the following relation the appropriate τ parameter for
every node at a given level i can be calculated as:

τ = levelmax − level(i) ∗ savg + e
where levelmax is the total amount of levels in the tree,
level(i) is the local’s node level, savg represents an aver-
age value for the transmission and the propagation duration
between two neighbouring nodes and e is the timing param-
eter to prolong the deferred period in case of collisions, so
that to avoid them.

After the appropriate values of parameter τ are defined
by the agents, they are transmitted to the objects that rep-
resent the given sensor sub-network, and then through the
collection center of the sensor sub-network these values are



distributed to the sensor nodes. The data gathering is then
accomplished following the procedure described in phase
2 of the previous section. Following this procedure, we
achieve not only to transmit fewer packets to the collection
center through the wireless part of the network and as a re-
sult less energy is depleted in the sensor network, but at the
same time we manage to provision and apply certain QoS
requirements requested by the applications. Furthermore
the proposed framework provides the flexibility to support
over the same infrastructure different applications and sce-
narios that may present diverse QoS requirements.

5. Concluding remarks and future work

We have presented a distributed systems architecture
seeking to integrate a QoS paradigm in wireless sensor net-
works with a Grid of virtual sensor nodes called objects,
agents and containers. This QoS paradigm supports suit-
able combination of complex nodes to access the physical
environment according to constraints set by a user or agent.
This in turn allows our system to have the potential to in-
tegrate heterogeneous multi-agent systems environments of
increased complexity.

Our approach complements existing proposals where
agents are directly related with the nodes of a sensor net-
work (e.g. see [8], [7], and [6]). The rationale for our choice
is based on pragmatic constraints that are normally imposed
on a sensor node and the conflict between these and compu-
tational requirements of cognitive agents that must do sym-
bolic processing and exhibit logical reasoning. We also dif-
fer from attempts to combine wireless sensor networks and
the Grid, for example [5], in that our Grid contains agents,
objects, and containers as additional nodes.

An initial implementation of the proposed architecture
has being developed in ARGUGRID [2]. Sensor networks
will be incorporated as Grid resources where users will have
access to gather data and monitor the environment. The em-
phasis will be mainly placed on the agents and how they
use sensor networks to provide services that users have re-
quested, taking into consideration the specific QoS posed.
Internal reasoning and decision making within and between
agents are envisioned to play a key role in the delivery of
services.
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