
A Virtual E-retailing Environment in GOLEM

Stefano Bromuri, Visara Urovi, Pedro Contreras, Kostas Stathis

Department of Computer Science. Royal Holloway, University of London
{stefano, visara, pedro, kostas}@cs.rhul.ac.uk

Abstract
We present a prototype multi-agent system whose goal is
to support a 3D application for e-retailing. The prototype
demonstrates how the use of agent environments can be
amongst the most promising and flexible approaches to en-
gineer e-retailing applications. We illustrate this point by
showing how the agent environment GOLEM uses seman-
tic web concepts to develop the e-retailing application. In
this context we describe the features of GOLEM that allow
a user to become an avatar and explore the environment by
searching and dynamically discovering new products and
services.

Keywords: Semantic Web Services, 3D Agent Environ-
ment, GOLEM.

1 Introduction
E-retailing is a common and widespread class of applica-
tions used by retailers to sell products and services to users
on the Web. Although such class of applications is devel-
oped with traditional web-based tools and techniques, there
is increasing interest to revisit them by using (a) Semantic
Web technologies [2] to allow computer programs support
for (semi) automatic selling for retailers or buying for users,
and (b) virtual environments such as Second Life [11] to
provide users with a more engaging experience to the exist-
ing home page metaphor supported by HTML browsers.
We present a new way of looking at the interaction for e-
retailing that is engineered using the notion of agent en-
vironment [15] as a first-class abstraction. We extend the
agent environment abstraction to support the deployment
and discovery of businesses and generally e-retailing ser-
vices visualised by a 3D virtual environment interface.
Our developed prototype uses GOLEM (Generalized Onto-
Logical Environment for Multi-agent systems) [4] as the
agent environment. GOLEM supports the semantic descrip-
tion of services and interactions among user, agents and ser-
vices.
The significance of the implemented prototype is that it il-
lustrates how agent technology based on 3D virtual agent
environments can be used to develop the next generation
e-retailing. The work contributes showing how by using
GOLEM, e-retailing services are deployed as shops of a 3D
scene and semantically localised through their descriptions.
Support to e-retailing is then a consequence of the interac-
tion between agents in charge of services and users repre-
sented via agent avatars. With respect to popular techn-
logies like Second Life, which hard code the interaction

using a proprietary language that has both the responsibil-
ity to deal with the graphical part and with the interaction,
our prototype separates the visualisation part from the log-
ical part of the virtual environment, embedding the graph-
ical part in a standard ontological description based on the
WSML language [18], and dealing with the interaction ac-
cording to the agent environment metaphor. This brings the
advantage that if the visualisation part changes, the under-
lying system can remain the same.
The remainder of this paper is organised as follows. In sec-
tion 2 we present the use case which motivates our proto-
type. In section 3 we discuss a GOLEM extension to deal
with e-retailing services, agents, objects and the 3D visual-
isation. In section 4 we describe how the interaction takes
place inside the agent environment. In section 5 we show a
virtual environment execution relying on GOLEM. Section
6 presents related work and section 7 presents conclusions
and future work.

2 Motivation: E-Retailing Use Case

Our e-retailing application is motivated by a use case sce-
nario exemplified by the situation where a user wants to
buy a mobile phone. In this context, usually the user visits
the mobile phone web-site and looks for the nearest mo-
bile shop. There are four problems to overcome with this
setting.
The discovery problem: the user needs to locate in a map the
nearest shops that sell a particular brand of mobile phones.
The current practice is to use a search engine which relies
on a keyword based algorithm. As keyword based search is
not intended to be semantic, the search engine would return
a large item list with the word “mobile” in it. The overall
result is that the user spends a lot of time to understand
which shops sell what he really needs.
The best route problem: provided that the required shop
is found the user may want to find the best route to visit it.
Assuming that the user may not have a car or may have mo-
bility difficulties the cost of the route may be considerably
different according to the mobility requirements of the user.
We assume a virtual environment that faithfully reflects a
real one. We consider a database organised in such a way
that roads and shops are semantically annotated with costs
related to the mobility of the user, thus the discovery algo-
rithm is more general and more extendible. Moreover the
route provided by the search engine does not provide refer-
ence points which the user may use when trying to reach a
destination. Despite the route is provided, due to this lack of
reference points, the user can get completely lost when try-

ing to reach the destination in the real world. In this case, a
3D virtual environment would enhance the user experience,
allowing him to have a better understanding of the route.
The requirement problem: once the shops are discovered
and reached in the virtual environment, the user may not
know exactly which product to buy. In this case a virtual
environment with shopkeeper agents may help with infor-
mation or selling products. In particular, if the user is a
frequent buyer in the virtual shop, the shopkeeper may re-
member him and propose some good deals according to the
previous interaction history.
The on demand personalisation problem: the actual
browser by definition has no intelligence embedded in it.
As a result the whole interaction is lead by the user search-
ing for resources without any real feedback. In our view the
experience of the user may benefit from a browser profiling
him also when he is off-line, representing him as an active
and persistent avatar in the virtual environment.

3 3D E-retailing in GOLEM

GOLEM is a framework to design agent environments en-
abling users or software agents to interact over a distributed
network. The resulting multiagent system environment can
be annotated semantically so that agents can perceive the
interactions and act upon them to satisfy their goals. The se-
mantic annotations model the notion of affordances as pre-
sented in [6], to capture the idea that objects and agents are
perceivable in the agent environment, and that their seman-
tic description “suggests” how to interact with them and
also presenting their current state.

3.1 Container Logic Architecture

In GOLEM a container represents an atomic part of the
agent environment, which is distributed as a GRID of
containers. Containers provide the support for deploying
agents, objects, processes and environmental services in-
side a declarative context, which constraints the interaction
of the entities according to a set of declarative rules, that
we call physics of the agent environment. On one hand
the processes in the environment makes it an active entity
which evolves over time without necessarily having agents
performing actions in it. On the other hand the services of
the environment offers complex functionalities to explore
and communicate in the environment.
Figure 1 shows the logical architecture of one GOLEM con-
tainer. For 3D e-retailing, we have extended our previous
work in [4] in four ways. The first is to allow web services
to be interpreted as interacting with objects in the agent en-
vironment context. The second is to embed an avatar agent
representing the user in the environment. The third is to de-
velop a semantic registry containing entities’ descriptions,
that can be used for discovery purposes, as explained in sec-
tion 4.2. The fourth is to develop a positioning system ser-
vice, which we explain later in section 4.3.
The user deploys its own avatar in the agent environment
by means of a client that connects to a GOLEM container.
Through the interface provided by the client, the user can

Container

Deployment Context

Core Services:
Naming
Lifecycle

Connector

 Mediation Services:
Agent&Object Registry

Processes
Positioning

Avatar Avatar Avatar

Mediation Laws
Possibility
Causality

USER INTERFACE
3D View3D View

Apache
Web Services

XML/SOAP

Other
ContainersACL

Semantic
Registry

P
A

USER INTERFACE
3D View3D View

USER INTERFACE
3D View3D View

Figure 1: GOLEM Logic Architecture

visualise and interact with the entities populating the virtual
environment.
Every container in the GRID communicates with other con-
tainers using the messaging facilities. This is done using the
mediation services, which provide the linking conditions
between the different containers, according to the topology
of the distributed agent environment. Agents, avatars and
objects interact according to declarative rules that govern
their interaction, i.e. agents vs. agents, agents vs. objects,
objects vs. objects, and agents vs. core/mediation services.
This rule-set defines an agent environment physics, coordi-
nating, constraining and enhancing the interaction in a con-
tainer. The discovery service, that we call connector ser-
vice, provides a link to a semantic registry containing the
descriptions in WSML (Web Service Modelling Language)
[18] of the entities populating the system. The general idea
is that such a registry answers to the agents’ queries about
the position of the other entities of interest, like agents,
avatars, objects and containers. The connector provides
also the message core service, which is an interface to com-
municate by means of speech acts using an ACL (Agent
Communication Language), with entities residing in other
containers. Finally the agent and object registry contains
the description of agents and objects residing in the con-
tainer. This can be accessed by agents via PA (Physical
Actions).

3.2 Objects in the Virtual Environment

In GOLEM objects are passive-reactive entities encapsu-
lating functionalities that can be exploited by the agents.
The GOLEM objects can interact with the environment by
means of their triggers and emitters: the triggers are acti-
vated by the events happening in the environment, while the
emitters produce events in the environment as a reaction to
events triggering the bevaviour of the object. Affordances
of objects inside GOLEM are ontological descriptions pro-
viding to an observer the interface of interaction and the
characteristics of the object. In other words, the affordances
are used to specify both the interface of the objects in terms
of methods and the attributes of the object, as its position,
its relations to other objects in the distributed agent environ-
ment and its 3D appearance. Such a semantic description

is used by the user client to represent the appeareance of
the agent environment, allowing the developer to create its
own representation of the virtual environment, taking into
account the standardised description of the entities.

Web_service_proxy
-position:3Dtuple
-appearence:String
-owner:Shopkeeper

E-retaling Service
-description:String
-Shopkeeper:Agent
-building:Building
-sellinggoods:String[]
-web_site:String
-name:String
#getInfo():String

Object
-ID: String
-tr1:Trigger
-em1:Emitter
-container:IRI
#getID():String

Edge
-nodefrom:Node
-nodeTo
-EuclideanCost

0..n

2

Road
-description:String
-appearence:String
-position:3Dtuple
-costForDisabled
-costWalking
-costWithCar

Building
-description:String
-appearence:String
-position:3Dtuple
#enter():void
#exit():void

Node
-InboundEdgeList:List
-OutboundEdgeList:List
#getOutBoundEdgeList:List
#getInBoundEdgeList:List

Figure 2: Environment Ontology

In the particular case of the e-retailing application, the ob-
jects represent buildings and roads of a virtual environment
as well as the content of the shops. Such buildings are logi-
cally organised as a distributed convex graph, whose struc-
ture is derived by the affordances of the buildings and the
roads. The rationale behind this topology is that the object
affordances can be used to derive the best path towards a lo-
cation. Buildings can be both simple scenery or e-ratailing
services represented as shops where the user can interact
with a shopkeeper agent. The ontology hierarchy represent-
ing the objects in the virtual environment is described by
the diagram in figure 2. The object affordances are struc-
tured as instances of WSML concepts, internally translated
in GOLEM to form instances of the environment’s state us-
ing C-logic [5], see [4] for details. The C-logic description
below shows the instance of a e-retailing service:

er service: s1 [
sellinggoods⇒ {string:g1, string:g2,string:g3}
methods⇒ {getInfo, enter, exit}
web site⇒ string:ws1,
triggers⇒ {receptor:r1},
emitters⇒ {emitter:em1},
appearance⇒ string:str1,
position⇒ 3Dtuple:tup1,
outboundEdge⇒ {Edge:e1,Edge:e2},
inboundEdge⇒ {Edge:e3, Edge:e4},
description⇒ string:d1
]

The objects inside the virtual environment that are not
buildings or roads, can wrap an interface towards a web-
service deployed outside the container providing distributed
functionalities in the agent environment. In this case the
object works as a proxy to hide the complexity to inter-
face with a web-service, which can be accessed as an object
from the virtual environment. In figure 3, two shopkeepers
in the agent environment interact with objects representing

web services in order to satisfy the user’s request.

APACHE Web Server

ERetailing Service 1

ERetailing Service 2

IIS Web Server

user shop keeper

shop keeper

GOLEM Container

user

SOAP/XML
Physical Actions

Speech Acts

Figure 3: Shop Keeper Agents interacting with objects
The object works as a proxy towards the web service, thus
having the same perceivable interface from the point of
view of the agent, it is possible to integrate different tech-
nologies in the same agent environment.

3.3 Agent Architecture

A 3D client provides a user with an interface to log its own
avatar in a GOLEM environment. The avatar is deployed as
an agent body with a set of sensors and a set of effectors.
On one hand, the client receives the sensors’ perceptions
and displays them in a view of the 3D environment, ac-
cording to the semantic descriptions of agents and objects
perceived. On the other hand the client can produce actions
that are attempted in the agent environment by means of the
avatar’s effectors. The avatar agent helps the user with the
retailing process. It contains a product preference profile
based on what the user searches and purchases in order to
provide suggestions of interest for the user. The mind of
the avatar agent is built following the reactive agent model
with preferences over the actions as specified in [17]. Fig. 4
shows the architecture of the avatar and shopkeeper agents,
extended from [4].

Agent Body

effector

effector

 Perceived affordances

notify(Ev1, S, T1)

attempt(Ev3, T3)

attempt(Ev4, T4)

attempt(Ev2, T2) see

revise

s
act

Sensor

Effector

Event

Perception
Queue

Declarative
Mind

Brain
Interface

Agent Body

Agent
Affordances

Mind
Module

Internal
State

Figure 4: Agent Architecture
GOLEM agents perceive the environment by means of their
sensors and effectors, which communicate with a declara-
tive mind through the brain interface implemented in Java.
The cycle which explains the agent behaviour is specified
in Prolog as follows:

cycle(Brain)←
see(Brain, Percept),
revise(Percept),
act(Action),
execute(Brain,Action),
cycle(Brain).

The above cycle assumes a set of sensors and effectors con-
nected to the brain component. During the see stage, the
agent takes the perceptions from the agent sensor, previ-
ously notified by the environment about the events occurred
in it. The agent sensor has the responsibility to internalise
the perceptions which have occured in the agent environ-
ment and filter them according to the internal state of the
sensor, previously set by the agents (see [4] for further de-
tails). The see function selects the sensor from the sensor
list and produces a perception in the agent mind taking it
that we define in Prolog as follows:
see(Brain,Percept)←

getSensors(Brain,Sensors),
getPercepts(Sensors,Percept).

The above Prolog predicate implements a simple first-in
first-out queue that is filled every time a new perceivable
event happens in the agent environment. The revision stage
takes the perception and the previous state of the agent and
maps it to a new internal state. We implement it in Prolog
through a set of revise predicates as the example below:
revise(do(user,speech act,Needs))←

Needs = user needs(catalogue(A, X)),
X = item([H|T]),
update profile(item([H|T])).

The action stage considers two different kind of actions,
action on the environment like physical actions and speech
acts, and perception acts. The act function below selects
the action to perform according to its priority and according
to the agent state. After the action is selected, the excute
function calls the brain interface to perform a physical ac-
t/speech act using the effectors, or to perform a perception
act using the sensors.
act(Act)←

findall(select(Label, Act), select(Label, Act), Acts),
highest priority(Acts, Act).

An example of a selection rule is given below:
select(r1,Act)←

state(user needs(catalogue(A, item([H|T]))),
X = speech act(MyID,A,catalogue(A,item([H|T]))),
myID(ID),
Act = act(mouth, do(ID, speech act, X)).

The rule above specifies that the avatar agent executes a
speech act towards a shopkeeper agent if the user needs a
catalogue of products, where the term item([H|T]) specifies
that the user wants a catalogue of item described by the list
of words [H|T].
As for the objects, agents are described by means of their
affordances. The agent affordances define what is perceiv-
able of the agent, declaring the state of the agent at any
time. Such affordances are also used to define the relation-
ship between the e-retailing services and the shopkeeper in

charge of them, as well as defining the relationship between
the objects that works as an interface towards web services
and the agents owning them in the virtual environment.

3.4 Feedbacks between Avatars, Users and
Shopkeepers

In order to help the user with the e-retailing process, the
avatar agent keeps track of the user interaction. In par-
ticular, to achieve this goal the avatar agent considers the
queries performed by the user and translates them accord-
ing to the vector space model for document retrieval as pre-
sented in [3]. This idea can be expressed as follows:

q1(w11, w12, ..., w1X)
q2(w21, w22, ..., w2Y)
qK(wK1, wK2, ..., wKZ)

where wij is the jth word of the ith query qi. Given the
ordered set of words Swords which contains all the words
that compose the queries, with N = |Swords|, it is possible
to translate every query in a binary vector of length N as
follows:

dq1(t1, t2, t3, ..., tN)
dq2(t1, t2, t3, ..., tN)
dqK(t1, t2, t3, ..., tN)

where ti has value one if the ith of the Swords is present in
the query, zero otherwise. Then the avatar agent can calcu-
late the similarities between two queries as follows:

q1(t11, t12, ..., t1X)
q2(t21, t22, ..., t2Y)
dq1(t1, t2, t3, ..., tN)
dq2(t1, t2, t3, ..., tN)
similarity(q1,q2) = cosine(dq1, dq2), where :
cosine(dq1, dq2) = (dq1 · dq2)/‖dq1‖‖dq2‖

As a consequence, when a user queries a shopkeeper, the
avatar agent can use the similarity definition to “suggest”
queries related to the one proposed by the user. For exam-
ple, let us consider the comparison of two queries of dimen-
sionality 5 as follows:

q1(′mobile′,′ phone′,′ nokia′,′ 7410′)
q2(′mobile′,′ phone′,′ nokia′,′ 6689′)

translated into the vector space model this would look like:

dq1(1, 1, 1, 1, 0)
dq2(1, 1, 1, 0, 1)

then applying the cosine similarity we have:

cosine(dq1, dq2) = 1∗1+1∗1+1∗1+1∗0+0∗1√
4∗
√

4
= 3

4

Since the two queries are close in the vector space model,
the agent can tell the user that people in the past that have
queried for “nokia mobile phone 7410” also have queried
for the model “6689”. For the shopkeeper agents we use as-
sociation rules as defined in [1] to identify uncover hidden
patterns in data sets, in our particular case of application
that is to find relationships or correlations between queries
and products. For example, let us say that a shopkeeper
agent is queried about a certain product, additionally to the

list of products related to the query the agent can look into
the purchase records to obtain additional information. For
example (1) avatars that have queried for product “mobile”
also have queried for product “head phones” and “case”, (2)
avatars that have ordered product “mobile” also often have
ordered product “car charger” and “case”.
This kind of analysis helps introducing feedback from other
avatars’ experiences, which in turn helps inexpert avatars
to explore the information space. It is important to high-
light the need to log the queries and purchases in the agent
knowledge base in order to carry out the kind of analy-
sis presented above. With this setting when an avatar asks
the shopkeeper’s catalogue of items related to the descrip-
tion provided by the user, rather than just providing the
products that have a description (document) similar to the
query proposed by the user, the shopkeeper also recom-
mends products on the basis of the previous interaction with
other users.

4 Environment Interaction
The affordances of agents and objects allow us to describe
the GOLEM agent environment as a composite and declar-
ative structure that evolves over time. As we did in [4], to
capture such an evolution, we define the interaction rules of
the agent environment as an extension of the Object Event
Calculus (OEC) as defined by Kesim and Sergot in [9], to
keep track of the temporal evolution of object and agents
in the agent environment. Moreover, to ease the distributed
interaction between agents and agent environment we de-
fine environment services which offer further informations
about the environment, performing calculation about its
topology or discovering other entities in it.

4.1 Interaction rules

In order to take place, the actions performed by an agent
has to be attempted, and, if possible, they happen in the
agent environment and they are translated to OEC events,
otherwise the rules of the environment prevent the actions
from happening. For example a moving event from one
position to another in the 3D environment at time t1 can be
specified as

happens(e1,t1).
act(e1,move).
actor(e1,ag1).
object(e1, [1,0,1]).
where ag1 is the identifier of the agent performing the ac-
tion. In GOLEM a developer can define what events are
possible enumerating all the possible actions, using possi-
ble/2 predicates, or defining constraints on the actions us-
ing impossible/2 predicates. With respect to the applica-
tion presented in this paper an example of an impossible
rule is the following one:

impossible(E, T)←
do:E [actor⇒ A,
object⇒ Ob],
instance of(Ob,web service proxy,T),
not holds at(A,agent,owns, Ob,T).

The rule above states that an agent cannot use a
web service proxy object if not owned, where holds at/5
is a predicate defined in OEC to derive the state of a par-
ticular object at a particular time T. Since the shopkeeper’s
objects represent important resources and a direct interac-
tion between the user and the objects may create security
issues, we can specify that the user cannot use a certain
class of objects, if it is not the owner of them.
We specify similar rules for the interaction between agents,
in particular we define rules to limit the physical distance of
interaction between avatars and shopkeepers and we define
rules to limit the movement of the avatar inside the agent
environment, to avoid the compentration of objects and to
prevent a user from moving outside the border of the virtual
world.

4.2 Connector Service

The connector service offers the basic discovery and mes-
sage passing facilities for the agent environment. In partic-
ular it provides the interface to deliver a message from one
container to another. Given a tuple representing a speech
act action as below:

do(S, speech act, speech act(S, R, M))

if the receiver R is in a different container to the sender S,
the connector delivers transparently to the agent the mes-
sage to the destination, according to the absolute identifier
of the receiver which is a composition of the container ID
and of the local ID of the agent. The connector service
works also as a proxy towards a semantic registry. In this
case an agent producing a physical action in the environ-
ment of the kind:

do(S, physical act, query(S, conditions([H|T]))

will trigger the interface to query the semantic registry
which is deployed in the distributed agent environment as
a centralised repository that every container can query. We
implemented the semantic registry also in the OEC formal-
ism. The WSML ontologies [18] representing the agent en-
vironment are registered in the semantic registry and inter-
nalised to a logical description compliant to the OEC. The
following first order logic predicates show part of the e-
retailing service concept schema:

is a(er service, building).
attribute(er service, outboundEdge, multi).
attribute(er service, description, single).
attribute(er service, sellinggoods, multi).
attribute(er service, appereance, single).

An instance of this concept is then represented as a set of
assign statements in OEC as follows

happens(e1,T) .
event(e1).
assign(e1, er service, sellinggoods, [’mobile’,’camera’]) .
assign(e1, er service, brand, [’Motorola’, ’Philips’, ’O2’]) .

Consequently an agent looking for a mobile phone shop
would query the connector interface using these constraints
in the query:

now(T),
holds at(ID,er service, sellinggoods, L1, T),
member([’mobile’], L1).

The version of OEC we are using is the one optimised in
[10] that makes the OEC much more scalable as a formal-
ism for temporal databases.

4.3 Positioning System Service

The agent environment provides the agents and avatars with
additional functionalities about the topology of the environ-
ment using a positioning system service (PSS). The PSS
uses objects’ affordances to calculate the shortest path from
the location of the avatar to another location using an adap-
tation of the A* algorithm [12] for distributed containers.
When a node is in another container, the parameters of the
algorithm are sent to the PSS of the second container, which
calculates the path on behalf of the starting container. This
interaction between two or more containers goes on until
the path is found. The final result is then returned to the
avatar/agent using the connector core services of the con-
tainers involved.
An example of how this process works is given in Fig. 5,
showing a set of e-retailing services represented as shops
and distributed in several GOLEM containers. An avatar
located in container c00 needs to find a specific e-retailing
service. The semantic registry provides as a result the ser-
vices 15, 12, 25. Service 15 is in c20, service 12 is in
c11, and service 25 is in c02. The agent decides for the
service 12. According to the capabilities and preferences
of the avatar, the shortest path to 12 is provided.

0

1
2

4
5

7

10

11

28

29

30
32

31

33

19

21

20

14

16

17

23

25

26

22

24

3 6

13

15

12

8

9

18

27

0

1
2

4
5

7

10

111

28

29

30
32

31

33

19

21

20

14

16

17

23

25

26

22

24

3 6

13

15

12

8

9

18

27

Query Results: 12, 15, 25 Path:0, 2, 22,12

Topology Node

Edge Container

Agent

Figure 5: Query and shortest path results

The exchange of messages happening inside the GOLEM
framework is exemplified better by the sequence diagram
in figure 6.
In figure 6, PSS1 starts to calculate the path between one
place to another in the distributed agent environment. At a
certain stage the PSS1 discovers a node in the path which
does not belong to the container, as a result the PSS1 del-
egates to the PSS2 (residing in the second container) the
calculation of the path submitting the partial result. Notice
that the A* algorithm deals with loops already, as a con-
sequence the partial result is not submitted back to PSS1
unless a better path to a node previously visited is found,

Avatar Env. PSS1 Connector 1 PSS2Connector 2

find_path

find_path

find_path

find_path

find_path

return_path
return_path

return_path
notify_path

Figure 6: PSS Message Exchange

in that case the PSS2 submits back the partial results. This
kind of interaction between the two PSSs goes on until a
final result is found and returned back to the user that asked
for it. The advantage to embed such functionality in the
agent environment, rather than delegating every calculta-
tion to the user client, is that the client does not know a
priori the whole topology of the distributed environment.
In general, embedding such functionalities in the agent en-
vironment makes the overall system more flexible. In par-
ticular this solution allows us to change the topology of the
agent environment at runtime. Changing the topology is as
simple as updating the objects’ and agents’ affordances in
one or more containers, without any need to turn off the sys-
tem, undeploy every entity, update all the clients and then
turn it on again. As a result, with respect to Google Maps,
creating an A* capable to calculate a path according to mul-
tiple criterias is just a matter of adding a parameter to the
object affordances representing the convex graph and query
the PSSs specifying a different criteria for the cost.

5 Evaluation: Execution Example

The prototype that we have developed, shown in Fig 7,
represents a 3D environment that virtualises parts of a
metropolitan area.

Figure 7: Interface of E-retailing Application

In the context of the resulting virtual world we want to
support a user to engage in e-retailing activities by using
an avatar to explore that world. The world contains a
virtual market place of e-retailing services represented as
shops, shopkeepers agents and web-services utilised by the
shopkeepers. Our prototype assumes that the number of e-
retailing services, agents and products available in the vir-
tual environment will be large. In this setting we imagine
that the avatar could explore the virtual enviroment making
use of the directions and signs he can find in it, but this ap-
proach deals only partially with the complexity of services
and products proliferation that in a virtual city can be in
the order of thousands. Indeed, the avatar would still need
to cater for services that are not visible and are accessible
only when one enters a building. One way to deal with find-
ing a service is to ask other avatars and agents. Although
this could be a reasonable way to proceed for small scale
environment where everyone is trusted, it is not as effective
as providing search mechanisms that support path finding
for services as it happens in Google Maps. The top-right
window in Fig 7 shows how an agent can use the GOLEM
environmental services to find a path for a particular shop.
Experimenting with our prototype requires a set of host
computers, each deploying a set of container as a portion
of the virtual environment, with buildings, e-retailing ser-
vices and agents. Buildings are organised as a connected
graph and may contain additional structures hosting shops.
A shop contains web-services with every service being as-
sociated with a shopkeeper agent that interacts with other
agents and user avatars. Shopkeeper agents can be in charge
of one or more web-services. Once the user has chosen a
particular shop, the agent environment can provide direc-
tions to reach the destination inside the distributed agent
environment. Figure 8 shows an example of an avatar hav-
ing reached the mobile phone shop.

Figure 8: An avatar entering a virtual shop

Once the user’s avatar has reached a shop, it can interact
with the shopkeeper agent. The user can ask, for instance,
for the product catalogue and the agent can call the web
services for the product advertised and return back the list
to the user. Once the user has the list, he can purchase a
product or close the communication and visit another part
of the virtual environment.

6 Related Work

At the initial stages of the project we considered the op-
tion to use our system on Second Life [11], a 3D platform
enabling interaction between user avatars and 3D objects
which can encapsulate remote procedure calls towards ex-
ternal web services. In such system the interaction is em-
bedded in the 3D models to support predefined action rules
hard coded for the application. However, we found that
the event driven interaction model of Second Life limits the
reasoning, resource discovery and cognition about the vir-
tual environment. Our focus has been to maintain a separa-
tion between visualisation issues and possible interactions
with the virtual environment. This bring the advantage that
if the visualisation part changes, the underlying system can
remain the same. Moreover our approach has the advan-
tage to use standard ontological descriptions for the entities,
where Second Life uses a proprietary languange that makes
the integration with other technologies an issue.
Agents for 3D e-retailing has already been discussed in [8],
where intelligent communicative agents are developed in
JADE [7] to interact with a user in natural language, follow-
ing interaction protocols based on the user profile and pref-
erences. Although we lack natural language in our proto-
type, in our system we do not have only agents, but also ob-
jects and services that can be discovered dynamically, with-
out reducing interaction to agent communication only. Our
framework is richer in that uses the concept of agent envi-
ronment which allows us to have both very complex agents
interacting with the user and a complex distributed envi-
ronment where the web services are deployed and search-
able by mean of their ontological description. As a conse-
quence, there is no need to embed every functionality in the
agents, the agent environment can be engineered to provide
the support to perceive objects and agents, as well as to act
on them physically, rather than limiting the interaction to
speech acts.
From the point of view of agent environments in this work
there are a lot of connections with the works of Vizzari
[14] and Platon et al in [13, 16]. On one hand, Vizzari
models the concept of agent environment as a multi-layer
multi-agent situated system (MMASS). The environment is
composed by a set of graphs interconnected by interfaces,
forming a multilayered structure with interfaces amongst
layers. Every layer and every graph, may represent a spe-
cific aspect of agents’ environment. For instance, one of
them may represent an abstraction of agents’ physical envi-
ronment, while other ones may be related to other concep-
tual topologies such as organization charts or dependency
graphs. In GOLEM, instead of defining layers, we define
rules and affordances. Different sets of rules can then de-
scribe different layers of the agent environment and differ-
ent set of attributes defines the sites occupied by agents and
objects in the multilayered structure. The main difference
with Vizzari’s work is that we model physical interaction
where attempts for action result in events, which for Viz-
zari generate fields, signals capable to diffuse through the
layers, according to the interfaces between these layers. In
addition, signals in Vizzari’s framework can be perceived

by agents according to specific rules of perception based
on functions such as diffusion, composition and compari-
son. For us diffusion is notification, composition is com-
plex term creation, while comparison is our use of having
different sensors capturing different types of events. Pla-
ton et al. model puts forward the use of an agent soft body
which has a state that is public and available to an observer.
The act of observing such a state in the Platon et al. frame-
work is based on the notion of oversensing [13] and over-
hearing [16]. In our work the oversensing/overhearing acts
are modeled as active perception on the affordances of en-
vironment entities. Other differences with the Platon et
al. work are that GOLEM affordances express more than
a simple state, they express also the interaction interface of
both agents and objects, rather than only agents.

7 Conclusions and Future Work

We have presented a prototype multi-agent system whose
goal is to support a 3D application for e-retailing. The pro-
totype has illustrated how the use of agent environments can
be amongst the most promising and flexible approaches to
engineer e-retailing applications. We have shown how the
agent environment GOLEM uses semantic web-services to
develop the e-retailing application. In this context we have
described the features of GOLEM that allow a user to be-
come an avatar and explore the environment that supports
agents to find paths and dynamically discover products and
services. We also discussed how agents and user interact
in the agent environment, profiling the users and trying to
satisfy the user needs maximising their profits.
Future work involves adding libraries of objects, services,
and avatars, as well as allowing retailers to add content dy-
namically that will persiste in the virtual environment as
active and autonomous entities acting on behalf of the users
and retailers. Another direction which will be investigated
is the embedding of much clever agents in the agent envi-
ronment, using one of the architectures proposed in litera-
ture as the BDI architecture [17], to simulate an interaction
where avatar agents and shopkeeper agents perform negoti-
ation about a product.

Acknowledgments

We would like to thank Servan Keondjian, Jamie Fowlston,
Jarred McGinnis and Alex Wrottesley for discussions on
the topic of this paper. The work was partially supported
by the London Development Agency and the EU IST-6 Ar-
guGRID project.

References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast al-
gorithms for mining association rules. In Jorge B.
Bocca, Matthias Jarke, and Carlo Zaniolo, editors,
Proc. 20th Int. Conf. Very Large Data Bases, VLDB,
pages 487–499. Morgan Kaufmann, 12–15 1994.

[2] G. Antoniou and F. van Harmelen. A Semantic Web
Primer. The MIT Press, April 2004.

[3] Michael W. Berry and Murray Browne. Understand-
ing Search Engines: Mathematical Modeling and Text
Retrieval (Software, Environments, Tools). SIAM,
2005.

[4] S. Bromuri and K. Stathis. Situating Cognitive Agents
in GOLEM. In Engineering Environment-Mediated
Multiagent Systems (EEMMAS’07). Springer, Oct
2007.

[5] W. Chen and D. S. Warren. C-logic of Complex Ob-
jects. In PODS ’89: Proceedings of the eighth ACM
SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, pages 369–378, New York, NY,
USA, 1989. ACM Press.

[6] J. J. Gibson. The Ecological Approach to Visual Per-
ception. Lawrence Erlbaum Associates, 1979.

[7] JADE. Java Agent DEvelopment framework, 2007.
Home Page: http://jade.tilab.com.

[8] K. Kamyab, F. Guerin, P. Goulev, and E. Mamdani.
Designing agents for a virtual marketplace. AISB
Journal, 1(1), Oct 2001.

[9] F. Nihan Kesim and Marek Sergot. A Logic Pro-
gramming Framework for Modeling Temporal Ob-
jects. IEEE Transactions on Knowledge and Data En-
gineering, 8(5):724–741, 1996.

[10] Nihan Kesim. Temporal Objects in Deductive
Databases. PhD thesis, Imperial College, 1993.

[11] Second Life, 2007. http://secondlife.com/.

[12] Nils J. Nilsson. Principles of Artificial Intelligence.
Springer, 1982.

[13] Eric Platon, Nicolas Sabouret, and Shinichi Honiden.
Oversensing with a softbody in the environment - an-
other dimension of observation. In Proceedings of
Modelling Others from Observation’05, 2005.

[14] Giuseppe Vizzari. Dynamic Interaction Spaces and
Situated Multiagent Systems: from a Multilayered
Model to a Distributed Architecture. PhD thesis, Uni-
versity of the Studies of Milan Bicocca, 2003-2004.

[15] D. Weyns, A. Omicini, and J. Odell. Environment as
a first class abstraction in multiagent systems. Au-
tonomous Agents and Multi-Agent Systems, 14(1):5–
30, 2007.

[16] Danny Weyns, H. Van Dyke Parunak, and Fabien
Michel, editors. Environments for Multi-Agent Sys-
tems II, Second International Workshop, E4MAS
2005, Utrecht, The Netherlands, July 25, 2005, Se-
lected Revised and Invited Papers, volume 3830 of
Lecture Notes in Computer Science. Springer, 2006.

[17] M. Wooldridge. MultiAgent Systems. John Wiley and
Sons, 2002.

[18] WSMO. Web Service Modelling Ontology, 2008.
Home Page: http://www.wsmo.org/.

