Towards Distributed Agent Environments for
Pervasive Healthcare

Stefano Bromuri!, Michael Ignaz Schumacher!, and Kostas Stathis?

! Institute of Business Information Systems
University of Applied Sciences Western Switzerland (HES-SO)
TechnoArk 3, CH-3960 Sierre, Switzerland
{stefano.bromuri,michael.schumacher}@hevs.ch
2 Department of Computer Science
Royal Holloway University of London (RHUL)
Egham, UK
kostas.stathis@rhul.ac.uk

Abstract. In this paper we present a prototypical pervasive health care
infrastructure, whose purpose is the continuous monitoring of pregnant
women with gestational diabetes mellitus. In this infrastructure, patients
are equipped with a body-area network made of sensors to control blood
pressure and glucose levels, where the sensors are connected to a smart
phone working as a hub to collect the data. These data is then fed to
a pervasive GRID where abductive agents provide a diagnosis for the
actual reading of the sensors and contacting health care professionals if
necessary. We also show how, by applying the concept of agent environ-
ment, we are facilitated in defining a pervasive GRID for roaming agents
that monitor continuously the health status of the patients.

1 Introduction

If current trends in mobile phone technologies, personal digital assistants, and
wireless networking are indicative of the way people will interact between them in
the future, then our everyday activities is likely to be based upon an abundance
of devices and applications providing the computational resources of a complex
ubiquitous computing environment. Although the potential of combining these
numerous applications and devices is very promising, many different current
applications leave the environment’s functionalities unexplored and only a small
fraction of the environments potential is utilised.

Of particular relevance to the intelligent environment area is the problem
of healthcare monitoring using ICT. As cures for life threatening conditions are
being discovered, life expectancy increases significantly. As a consequence, the
cost for healthcare will grow significantly due to the rise of the number of people
that have permanent or chronic health conditions.

Diabetes is a very common chronic illness that is the fourth leading cause
of death in most developed countries [1]. Amongst all the conditions related to
diabetes, the case of gestational diabetes mellitus (GDM) is of particular interest

as it occurs during pregnancy due to increased resistance to insulin but the pre-
cise mechanisms underlying it remain unknown. About 4% of pregnant women
incur in this sort of complication. The current approach includes a planned diet,
exercise and self-blood glucose monitoring tests that can be administered at
home. In several cases the doctor requires that the patient visits the dietitian
twice per week. However, often two checks every week are not enough: as if the
hyperglycemia last for more than one day, this may cause macrosomia (exces-
sive growth of the foetus). Thus, in these cases it is important to act as fast
as possible to prevent any serious complication to the mother and the baby, by
normalising the blood pressure and glucose levels with appropriate and quick
treatments.

To achieve continuous monitoring, we propose a prototypical pervasive health-
care infrastructure, to collect data, monitor and alert GDM patients and inform
their caretakers with historical values. Our primary goal is to break the bound-
aries of the hospital care, allowing patients to be monitored while living their
day-to-day life and to keep in touch with healthcare professionals. The impor-
tance and significance of the proposed study is to show how by using the mech-
anisms proposed by distributed agent environments, we can model a distributed
infrastructure to provide continuous monitoring to GDM affected women, by
means of situated cognitive agents programmed using abductive logic program-
ming. It is important to say that the focus of this study is not on creating a
new cognitive model for agents, rather than showing how to model pervasive
healthcare applications by means of distributed agent environments. In partic-
ular, this paper proposes an early stage prototype of the infrastructure. A first
in-lab prototype has been developed, defining the agents functionalities, run-
ning simulators of sensors, using Android [9] and testing on single computer.
The evaluation of the prototype in real settings and its extensions are subject
of future work.

The reminder of the paper is structured as follows: Section 2 presents a
background on the problem of GDM; Section 3 is a description of the system
we developed; Section 4 presents the relevant related work; finally Section 5
concludes this paper and draws the lines for future work.

2 DMotivating Scenario: Gestational Diabetes Mellitus

During pregnancy, some women have such high levels of glucose in their blood
that their body cannot produce enough insulin to absorb it all [15]. As specified
n [18], GDM affects approximately 4% of pregnant women. GDM is frequently
associated with age, pregnancy weight, family history and ethnicity. GDM can
increase the risk of health problems developing in an unborn baby, so it is im-
portant that the glucose levels in the pregnant woman blood are under control.
If untreated or poorly controlled, GDM can cause the baby to: have macrosomia
(excessive weight at birth); develop hypoglycemia at birth; develop jaundice (yel-
low skin); develop respiratory distress syndrome; die after week 28 of pregnancy;
die in infancy. As Van Wootten and Turner specify in [18], it is estimated that

in normal pregnancies the rate of macrosomia occurrence is about 10%, while
in pregnancies where GDM is involved, this rate is around 44% [17], but when
a woman with GDM has some sort of basic nutrition counseling with glucose
monitoring, this rates drops to 14%-18%.

In GDM, if the blood pressure keeps high for a long time and the patient
experiences stomachache, headache or oedema, there is a high risk of preeclamp-
sia which is a pregnancy induced hypertensive state. Preeclampsia may develop
from the 20th week of gestation and it is characterised by high blood pressure
and about 300 mg of proteins in the urine in a 24h sample, a condition called
protenuria. Preeclampsia is different from a condition called Pregnancy Induced
Hypertension (PTH), which involves developing high blood pressure without pro-
tenuria. Preeclampsia is generally asymptomatic but it may evolve to eclampsia,
a life-threatening complication characterised by seizures and eventually coma
or death. Both preeclampsia and PIH are considered very serious conditions to
keep under control [12].

It is clear that in the scenario of GDM, having a system that allows for con-
tinuous monitoring would be of great benefit to reduce the rates of macrosomia
in women affected by GDM and to reduce the risks of preeclampsia, but there
are some assumptions that is necessary to make and some requirements that it is
necessary to consider: (a) pregnant women are usually young and they are used
to technologies such as smart phones; (b) pregnant women want to maintain their
lifestyle and carry on their day-to-day activities; (c) GDM is characterised by
blood pressure, glycemia, body weight and a set of symptoms and complications
that are inter-related between each other.

3 The Pervasive Healthcare Infrastructure

As the basis for the definition of our prototype, we utilised a pre-existing dis-
tributed agent platform called GOLEM [3, 4,6, 5] which is based on the concept
of agent environment. First of all it is better to specify what we mean with agent
environment and environment. In general with the term environment we mean
the world that is external to the agents and that the agents can inspect by using
the agent environment. On one hand we define the agent environment as an
entity that mediates the interaction between the agents and resources deployed
in the system, working as medium of interaction. On the other hand the agent
environment hides to the agents the complexity of dealing with the state of the
environment, by providing standard interfaces and standard descriptions to the
resources in the external environment. In the scope of this paper we use envi-
ronment in terms of a place or a set of places delimited by borders defined in
terms of longitude and latitude in the real environment, and that are mapped
to a distributed agent environment for monitoring purposes, where every node of
the distributed agent environment has an assigned area of the real environment.

As specified in [4], the GOLEM platform models a distributed environment in
terms of the patterns proposed by distributed event based systems (DEBS) [2].
Thus, the advantage of GOLEM is that we can utilise a platform that handle the

dispatching of events in a distributed environment where the entities deployed
on top of the platform are publishers and subscribers of events. GOLEM models
four main entities which are objects, agents, avatars and containers.

Objects are passive reactive entities that encapsulate a service. Such objects
can be used by agents, which represent the cognitive part of the agent environ-
ment. Avatars are particular kind of agents that represent users in the agent
environment. Agents, objects and avatars are deployed within containers. Con-
tainers represent a portion of the distributed agent environment and they work
as mediators for the interaction happening between agents and objects in the
distributed settings. The container behaviour in GOLEM can be defined declara-
tively by means of the Ambient Event Calculus (AEC). The AEC is a particular
dialect of Event Calculus [11] that allows to handle the concurrent modification
of objects states and agent states in distributed settings.

The AEC also allows to define topologies of GOLEM containers in terms of
neighbours containers and super and sub containers. The purpose of the perva-
sive healthcare environment we deployed is to deliver continuous monitoring to
GDM patients outside the boundaries of hospital care, allowing healthcare pro-
fessionals to keep in touch with the patients and allowing the patients to keep
their life style. The pervasive healthcare infrastructure is associated to a real
environment where the patients can move using a mobile phone to connect to
GOLEM containers in form of avatars. Every GOLEM container in the network
represents a different area of the city where the patient resides. For example Fig.
1(a) shows a portion of a network associated to an area of the city of Lausanne,
around the Centre Hospitalier Universitaire Vaudois (CHUV).

Body-Area-Network

Intelligent Distributed GRID m
a) N . Tﬁi‘

b) c)

Container: c1 Container: c2 Container: c3 Container: c1 Container: c2 Container: c3

Seralise &, ove’
i a &S

i i

g - o

Fig. 1. a) Intelligent Environment fo Diabetes Monitoring b) and c¢) show how mobility
of avatars and agents take place due to the mobile phone changing location in the real
environment

Utilising an agent environment to communicate with a smartphone brings a
set of advantages with respect to smartphone-only based solutions. First of all
despite the fact that modern smart phones have a lot of computational power,
computation and communication intensive applications tend to consume their
battery very quickly, while in our case we only have to deal with communica-
tion with the network. Secondly, having an agent environment at support of the
application allows us to introduce new and personalised services at runtime, de-
coupling the analysis of the data from its production. Thirdly, we can decouple
the reasoning, embedded in the agents, from the actual services, embedded in
the objects available to the agents in a particular location. Finally, modelling the
pervasive healthcare environment as a distributed agent environment, allows us
to reuse the mediation capabilities of the agent environment to define coordina-
tion and communication patterns between the agents when needed, while with
a hub only based solution this kind of interaction would be technically difficult
to support.

To represent the state of a GOLEM container, such as the ones shown in Fig.
1(b) and Fig. 1(c) we use the object-based notation of C-logic, a formalism that
describes objects as complex terms that have a straightforward translation to
first-order logic [7] and can be queried using the AEC. For example the following
C-logic term specifies that
pervasive_golem_node:c1[

uri = “container://one@134.219.7.1:13000", type = open,
latitude = 46.5253, longitude = 6.6438,
location_name = 'Centre Hopitalier Universitaire Vaudois Lausanne’,

neighbours = { pervasive_golem_node:c2, pervasive_golem_node:c3},
entities = { agent:al, agent:a2}]

a GOLEM container cl has been deployed, it is identified by the URI con-
tainer://one@134.219.7.1:13000, is an open container, it is associated with a cer-
tain latitude and longitude in the real environment, it represents the location
named 'Centre Hopitalier Universitaire Vaudois Lausanne’ and it has a set of neigh-
bours in the distributed agent environment. To deal with the distributed topol-
ogy presented in Fig. 1(a) we use the predicates of the AEC. For example, the
following two AEC rules (see [4] for a more detailed description):

happens(Event, T)«— attempt(Event,T), possible(Event,T).
happens(Event, T)<« attempt(Event, T), necessary(Event, T).

specify that an action in the GOLEM agent environment happens only if it has
been attempted and it is possible or necessary, where possible/2 and necessary/2
rules are application dependent rules. In other words, possible/2 rules specify
what are the actions that is possible to perform in the environment given its
current (possibly distributed state), while the necessary/2 rules specify what are
the actions that happens as a consequence to previous events.

Moreover, to provide the mediation necessary to handle events in the dis-
tributed setting in [4] we presented the locally_at/8, neighbouring_at/9 and re-
gionally_at/9 primitive predicates to link the state of distributed containers, fol-
lowing a logic programming approach. Briefly, the definition of locally_at is as
follows:

locally_at(Cld, Path, Path™, Id, Cls, Att, V, T)«+ locally_at(Cld, Path, Path™, Id, Cls, Att, V, T)+

holds_at(Cld, container, entity_of, Id, T), instance_of(SCld, container, T),
holds_at(ld, Cls, Att, V, T), holds_at(SCld, container, super, Cld, T),
append(Path, [CId], Path™). append(Path, [CId], NewPath),

locally_at(SCld, NewPath, Path™, Id, Cls, Att,V,T).

The definition of locally_at/8 states that the state of an entity can be in-
ferred either from the top-level container or from a sub-container. If the states
is inferred in the top-level container, then the predicate holds_at/5 is applied to
infer the attribute Att of value V of an entity of class Cls and identifier Id. If
the first predicate fails, then the second predicate moves the computation in a
sub-container. In this way containers can be recursively embedded inside other
containers as objects, according to the topology needed, and deployed on differ-
ent hosts. The neighbouring_at/9 and the regionally_at/9 predicates have a similar
behaviour but allow to query adjacent and super-containers respectively. Finally,
to specify how the state of an entity modifies over time, we utilise initiates/5 and
terminates/5 rules. For example, the following initiates/5 rule specifies when the
position of an agent changes to the one the agent moves to:

initiates(E, avatar, A, position, Pos) < do:E [actor = A, act = move:M [destination=- Pos]].

The complete description of the event’s effects also requires to terminate the
attribute holding the old position of the agent by means of a terminate/5 rule.
In the current prototype the agent environment takes care of pairing agents and
avatars as well as defining the mobility rules (i.e. what are the conditions that
move an agent from one container to another) that implement the behaviour
shown in Fig. 1(b) and Fig. 1(c). We define the following rules for mobility
purposes:

possible(E, T)« possible(E, T)«+
move:E[actor=-avatar:A, move = Pos], instance_of(Id,topology, T),
instance_of(Id,topology, T), holds_at(ld,topology,borders,Borders,T),
holds_at(ld,topology,borders,Bdr,T), outside_borders(Bdr, Pos),
inside_borders(Bdr, Pos). neighbouring_at(this, [], [C], 1, Id, topology, borders, Bdr, T),

inside_borders(Bdr,Pos).

the first one states that it is possible to move in the space represented by
a container only if this space is within the borders controlled by the container.
Otherwise, the second rule specifies that it is possible to move outside the borders
only if there is another container that is responsible for a certain area where the
patient is currently moving. The following AEC rules:

necessary(E, T)« necessary(E, T)«
happens(E*, T), happens(E*, T),
deploy:E* [deploy=-avatar:Av], disconnect:E* [actor=-A, new_container = (],
not neighbouring_at(this, [], [C], 1, Av, caretaker, _, T), holds_at(A,avatar,caretaker,d,T),
deploy:E[agent=>caretaker:A]. physical_act:E[move_to= C agent=> Id].

state respectively that whenever an avatar is deployed in the agent environment
(event E*), also its caretaker agent is deployed (event E), and that whenever an
avatar disconnects from the agent environment to connect to a new container, the
agent associated to the avatar is also serialised and moved to the new container.
Finally, a further necessary/2 rule defines that an avatar is moved to a different
container when outside the boundaries of the current container, but we omit the
details as it is simpler than the ones presented above.

3.1 The Body-Area Network

In addition to objects and agents, GOLEM allows the embodiment of users by
means of avatars in the distributed agent environment. In this prototype every
patient is equipped with a smart phone loaded with a software capable to read
the data produced by the sensors worn by the patient. The smart phone then
allows the patient to interact with the GOLEM agent environment by means of
their avatar as shown in Fig. 2.

Container BAN Architecture

<<interface>>
Body Area
Network Hub

i

\
A\

| I

| TRANSPORT:TION LAYER | UMTS‘GPRS
!

| v NETWORK Y ‘

Agent Body

Fig. 2. The BAN Architecture

Users of the network have a wearable body-area network (BAN) that moni-
tors periodically the blood pressure and the glucose levels of the patient. In the
current prototype, the sensors are simulated and the values are entered directly
by the patients, but in the future BAN will be built in term of Bluetooth sensors
that monitor the physiological signs of the patient. In more details, the BAN
monitors the variation in time of three values which are systolic blood pressure,
diastolic blood pressure and glucose levels.

Moreover the terminal allows the patient to specify the symptoms that are
being experienced during the day, through the interface shown in Fig. 3.

WAl @ 10:13Pm Tl @ 10:00 PM

Blood Pressure Glucose Levels mg/dL

RN

Blood Pressure mmHz

Clicose mzil

IXETER:

ouj {our

—— Systolic Blood Pressure mmHg — e,
—— Diastolic Blood Pressure mmHg

Fig. 3. The Smart Phone UI

Thanks to the fact that the users are embodied in the agent environment as
avatars, they can produce events in the agent environment as the following one:

pressure_reading:el[avatar = avidl, caretaker_agent = agl,systolic_pressure = 120, diastolic_pressure = 80].
location:e2[avatar = avidl,latitude = Lat, longitude = Lon].

The event specified above is pressure_reading event with identifier el, pro-
duced by the avatar avidl for the caretaker agent agl, and it contains a systolic
pressure value of 120 and a diastolic pressure value of 80, while the event €2 is
used by the system to keep track of the patient in the real environment and to
move her from one container to another when the necessary/2 rules previously
explained are triggered.

3.2 The Caretaker Abductive Agents

In this paper we focus on agents that can diagnose the current condition of a
GDM affected patient by means of abuctive logic programmed agents, differently
from [6], where we focused on the navigation in the environment. In particular in
this section we will describe the current prototypical cognitive model, exempli-
fying the behavior of the agent given a particular situation or event by showing
extracts of the agent mind code.

Abductive logic programming (ALP) is a high level knowledge-representation
framework that can be used to solve problems declaratively based on the idea
that a set of seemingly unrelated observed facts (results), are somehow connected
according to well known laws, thus offering an explanation of what might be true.
As defined in [10], given a background theory T', and an observation G, the task
of ALP is to compute a set of ground atoms A called explanation, and a ground
substitution § such that AU T = G#. Moreover, the set of atoms contained in
A belongs to a set of predicates A, also called abducibles that are predicates
for which there is not complete information. More formally we can say that an
abductive framework is expressed in terms of a tuple < T, A, IC > where T is a
knowledge base, A a set of abducibles and IC' a set of integrity constraints on
the abducibles. We utilise the abductive locic agent mind architecture depicted
in Fig. 4.

Such an agent mind is based on the following cycle, which is an extension of the
model presented in [5]:

cycle(T)<— see(Percept, T), revise(Percept, T), choose(Action, T), execute(Action, T), now(Tn), cycle(Tn).

Briefly, the see/2 stage takes a percept out of the queue of percepts at a
certain time T and it passes it to a revise/2 stage which in turns updates an
event calculus database keeping the state of the world that is of interest for the
agent (in this case the patient status). The most important stage is the choose/2
stage, of which we show the specification below:

choose(Action, T)<— higher_priority(ActList, Act, T)+
instance_of(AvatarlD, avatar, T), member(Act, Actlist), priority(Act, P, T),
findall(S, holds_at(AvatarlD,symptom,S,T), Symptoms), not (member(ActX, ActList), not ActX = Act,
findall(A, select(Symptoms,A,T), Acts), priority(ActX, PX,T),

higher_priority(Acts, Action, T). PX > P).

Perceived affordances | sensor

Event

() Declarative
Mind

g Agent Body

M Effector

M‘ Perception
Queue

<:> Brain
Interface
Agent
Affordances

Mind
Module

Ej Internal
State

ks

notify(Ev1, S, T1)

attempt(Ev2, T2)

attempt(Ev4, T4y—— effector W/

Agent Body

Fig. 4. Abductive Agent Mind Cycle

The choose stage selects a possible action by means of the select/3 and
higher_priority /3 predicates. The select/3 predicate chooses then the best action
to perform (such as contacting a doctor), given a diagnosis produced by the ab-
ductive module. For example a subset of the rules for GDM within the abductive
module of the agent mind, can formalised as follows:

DomainKnowledge :
oedema<—preeclampsia(yes), protenuria(yes).

blood_pressure(S,D)<— preeclampsia(yes), protenuria(yes), pih(no), sys(160, S, 240), dias(100, D,150).
blood_pressure(S,D)<— preeclampsia(no), protenuria(no), pih(yes), sys(160, S, 240), dias(100, D,150).

glucose(G)<— macrosomia(yes), G > 150.
glucose(G)<— hypoglicemia(yes), G < 80.
bmi(BMI)<— macrosomia(yes), BMI >30.

IC:

«+ preeclampsia(yes), protenuria(no).
< preeclampsia(yes), pih(yes).
< pih(yes), protenuria(yes).

where the head of the rules in the domain knowledge represents the symptoms
observed, while the body represents the abducible predicates that are part of
the explanation associated to the symptoms observed.

The select/3 rules define the best action to take given a certain diagnosis
produced by the demo/2 predicate, that queries the abductive module. The im-
plementation of demo/2 predicate is based on Prologica [13] and it takes the
symptoms, which correspond to the observations set G in ALP, to find an expla-
nation, that corresponds to A in ALP. The knowledge base T of ALP is implicitly
represented by the domain knowledge and the integrity constraints queried by
the demo/2 predicate. For instance, we can define the following select/3 rule for
the case when pre-eclampsia is diagnosed with very high blood pressure (which
means that there is a high risk of eclampsia):

select(Symptoms, A, T)«—
demo(Symptoms, Explanation),
M = m[diagnosis = eclampsia, diastolic => D, systolic => S, patient = ID, location = Loc],
A = email:actl[actor = AID,doctor_email = DE, message = M, priority = 10],
subset_of([preeclampsia(yes),sys(160, S, 240), dias(100, D,150)], Explanation),
instance_of(ID,patient, T), holds_at(ID, doctor_email, DE, T),
holds_at(ID, current_location, Loc, T),
myID(AID).

The rule above specifies that, given a diagnosis of pre-eclampsia with high
blood pressure (D stands for diastolic, S stands for systolic), the action to perform
is to send an email to the current doctor of the patient for which the agent is in
charge, specifying the current diagnosis.

4 Related Work

There have been several attempts to deal with the issues here presented. For ex-
ample, Schaeffer-Filho et al. [14] define the concept of Self Managed Cell (SMC).
Schaeffer-Filho defined the concept of SMC as a recursive structure that goes
from the body-area network for health monitoring of the patient to the SMC to
handle the household of the patient to the SMC of the healthcare professionals
in charge of the patient. Such SMCs are structured with an event bus designed
to follow the publisher/subscriber pattern [2]. The BAN is modelled as a virtual
complex node that abstracts a set of sensors and publish events in the form of
health records in the upper level SMC. The doctor SMC works as a subscriber
for the events produced by the BAN. Thus, it could happen that the events
published by the SMC are then retrieved by the doctor SMC to have a better
view on the condition of the patient. From a certain perspective we can relate
the concept of SMC to the concept of agent environment. As shown in our pro-
totype, SMCs are based on DEBS patterns for the notification and dispatching
of events. The most relevant difference between the approach proposed by SMCs
and ours is that we utilise cognitive agents to prefilter the data produced by the
BAN and that we model the behaviour of the agent environment as a declarative
structure that evolves over time.

Another attempt to model an infrastructure for pervasive healthcare is pre-
sented by Wagner and Nielsen in [16]. Wagner and Nielsen envision an architec-
ture based on 4 logic tiers: Public Tier, Central Tier, Home Tier and Mobile Tier.
The Public Tier is publicly available as a SOA-based infrastructure which com-
prises a set of services for professional caretakers, nurses and doctors. The central
tier models the domain model, specifying how the data are exchanged/accessed
by the various actors of the system. The Home Tier is represented as a touch
screen available in every house that the patient can use and a Mobile Tier take
care of those situations when the patient leaves his house. With respect to Open-
Care, our infrastructure embeds cognitive agents that can be programmed to
monitor the patients according to the condition affecting them. Moreover, the
use of the GOLEM infrastructure allows us to define a clear topology for the
environment, which is missing from the OpenCare project.

In [8] Ciampolini et al. present a distributed MAS based on the ALIAS lan-
guage to deal with distributed diagnosis. The agents of such a system are pro-
grammed according to the principles of abductive logic programming. Of partic-
ular relevance is the fact that Ciampolini et al. define a procedure to combine the
results of different diagnosis produced by multiple expert agents in a single com-
bined diagnosis. Moreover, in Ciampolini’s approach the diagnosis is provided in
term of probabilities. With respect to the work proposed by Ciampolini et al. we
have a simpler reasoning procedure as we do not combine the diagnosis proposed
by multiple agents. The contribution of our prototype with respect to the work
proposed by Ciampolini is the introduction of the agent environment to foster
continuous monitoring of the patients and to coordinate the interaction between
the user and the agent environment to allow the agent to produce complex ac-
tions, such as sending an alert to the patient and to healthcare professionals
when needed.

5 Conclusion

In this paper we presented a novel prototypical pervasive healthcare infrastruc-
ture to monitor patients affected by GDM in their day-to-day activities. The
protype is defined in terms of a Body-Area Network based on a smart phone
and on a set of sensors to check the physiological signs of a patients. Such physi-
ological signs are then sent as events to the GOLEM agent infrastructure where
roaming mobile agents, capable to perform abductive reasoning, check the events
produced in the agent environment. Thus, if a critical situation occurs, the agents
notify the healthcare professionals in charge of the patient.

One of the advantages of our simulated infrastructure using the GOLEM and
Android mobile phone platforms is that it can be deployed in a real setting by
further extending the knowledge of the agents, the topology of the containers,
and the body sensor network functionalities. In such a setting, an important
issue is how to store and retrieve the information produced in the pervasive
healthcare agent environment. Such information is of medical importance as the
data retrieved could help to uncover unknown patterns of certain illnesses, thus
storing it in an appropriate manner is an important direction for future work.
The next steps of the project include: (a) substitute the simulated sensors with
real ones; (b) deploy the infrastructure in real settings; (c) evaluate the platform
with a pilot study at CHUV.

Acknowledgement

This work was partially supported by the COST Action on Agreement Tech-
nologies. The authors would like to thank Dr Ruiz and the Department of En-
docrinology and Diabetes at CHUV for the support during the definition of the
prototype.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

The effect of intensive treatment of diabetes on the development and progression
of long-term complications in insulin-dependent diabetes mellitus. The Diabetes
Control and Complications Trial Research Group. N. Engl. J. Med., 329:977-986,
Sep 1993.

. Rolando Blanco, Jun Wang, and Paulo Alencar. A Metamodel for Distributed

Event-based Systems. In DEBS ’08: Proceedings of the second international con-
ference on Distributed event-based systems, pages 221-232, New York, NY, USA,
2008. ACM.

. S. Bromuri and K. Stathis. Situating Cognitive Agents in GOLEM. In Engineering

Environment-Mediated Multiagent Systems (EEMMAS’07). Springer, Oct 2007.

. Stefano Bromuri and Kostas Stathis. Distributed Agent Environments in the Ambi-

ent Event Calculus. In DEBS ’09: Proceedings of the third international conference
on Distributed event-based systems, New York, NY, USA, 2009. ACM.

. Stefano Bromuri, Visara Urovi, and Kostas Stathis. Game-based E-retailing in

Golem Agent Environments. Journal of Pervasive and Mobile Computing, 5(4),
2009. In press.

. Stefano Bromuri, Visara Urovi, and Kostas Stathis. iCampus: A Connected Cam-

pus in the Ambient Event Calculus. International Journal of Ambient Computing
and Intelligence, 2(1):59-65, 2010.

. W. Chen and D. S. Warren. C-logic of Complex Objects. In PODS ’89: Proceed-

ings of the eighth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pages 369-378, New York, NY, USA, 1989. ACM Press.

. A. Ciampolini, P. Mello, and S. Storari. Distributed medical diagnosis with abduc-

tive logic agents. In ECAI2002 workshop on Agents in Healthcare, Lione, 2002.

. Google Inc. What is Android?, 2008. Home Page: http://code.google.com/

android/what-is-android.html.

Antonis C. Kakas, Robert A. Kowalski, and Francesca Toni. Abductive logic pro-
gramming. J. Log. Comput., 2(6):719-770, 1992.

R Kowalski and M Sergot. A logic-based calculus of events. New Gen. Comput.,
4(1):67-95, 1986.

P. Petit, M. Top, F. Chantraine, J. F. Brichant, P. Y. Dewandre, and J. M. Foidart.
[Treatment of severe preeclampsia: until when and for what risks/benefits?]. Rev
Med Liege, 64:620-625, Dec 2009.

Oliver Ray and Antonis Kakas. Prologica: a practical system for abductive logic
programming. In J. Dix and A. Hunter, editors, 11th International Workshop on
Non-monotonic Reasoning, pages 304-312, May 2006.

Alberto Schaeffer-Filho, Emil Lupu, and Morris Sloman. Realising management
and composition of self-managed cells in pervasive healthcare. pages 1-8, Apr 2009.
D. C. Serlin and R. W. Lash. Diagnosis and management of gestational diabetes
mellitus. Am Fam Physician, 80:57-62, Jul 2009.

Stefan Wagner and Claus Nielsen. OpenCare project: An open, flexible and easily
extendible infrastructure for pervasive healthcare assisted living solutions. pages
1-10, Apr 2009.

J. M. Warren. Pregnancy outcomes in women with gestational diabetes compared
with the general obstetric population. Obstet Gynecol, 91:638-639, Apr 1998.
Wendy Van Wootten and R. Elaine Turner. Macrosomia in neonates of mothers
with gestational diabetes is associated with body mass index and previous gesta-
tional diabetes. Journal of the American Dietetic Association, 102(2):241 — 243,
2002.

