
Coordinating Autonomous Entities�

Oliver Krone� Fabrice Chantemargue� Thierry Dagae�

Michael Schumacher� B�eat Hirsbrunner

Computer Science Department� PAI group

University of Fribourg� CH����� Fribourg� Switzerland

http���www�iiuf�unifr�ch�pai

Abstract

This paper describes STL� a new coordination model
and corresponding language� STL�s power and ex�
pressiveness are shown through a preliminary dis�
tributed implementation of a generic autonomy�
based multi�agent system� which is applied to a col�
lective robotics simulation� thus demonstrating the
appropriateness of STL for developing a generic co�
ordination platform for autonomous agents�
Keywords� Coordination� Distributed Systems�

Autonomous Agents� Collective Robotics�

� Introduction

Coordination constitutes a major scienti�c domain
of Computer Science� Works coming within Coordi�

nation encompass conceptual and methodological is�
sues as well as implementations in order to e�ciently
help expressing and implementing distributed appli�
cations� Autonomous Agents� a discipline of Arti��
cial Intelligence which enjoys a boom since a couple
of years� embodies inherent distributed applications�
Works coming within Autonomous Agents are in�
tended to capitalize on the co�existence of distributed
entities� and models such as Multi�Agent Systems are
oriented towards interactions� collaborative phenom�
ena and autonomy� We will focus on a generic class
of autonomous agents� from which we draw a typical
application related to collective robotics� in order to
validate our coordination approach�
Today�s state of the art parallel programming mod�

els used for implementing general purpose distributed

�This work is �nancially supported by the Swiss National
Foundation for Scienti�c Research� grants ��������	
� and ���
�����	
�

applications su�er from limitations concerning a clear
separation of the computational part of a parallel ap�
plication and the �glue	 that coordinates the over�
all distributed program� Especially these limitations
make a distributed implementation of autonomy�
based multi�agent systems� our target application� a
burdensome task� To study problems related to coor�
dination� Malone 
�� introduced a new theory called
Coordination Theory aimed at de�ning such a �glue	�
Principles developed in this theory draw their inspira�
tion not only from computer science� but from other
disciplines� such as organization theory� operations
research� economics� linguistics� biology and psychol�
ogy�
When coordination theory is applied to computer

science� the key issue is managing dependencies

among activities� To formalize and better describe
these interdependencies it is necessary to separate the
two essential parts of a parallel application� namely
computation and coordination 
�� These parts usu�
ally interfere with each other� so that distributed ap�
plications are hard to understand� The research in
this area has focused on the de�nition of several coor�
dination models and corresponding coordination lan�
guages�
A coordination language is the �linguistic embodi�

ment of a coordination model 	 
� and should be de�
�ned orthogonally to a computation language� The
most prominent representative of this class of new
languages is Linda 
�� which is based on a tu�
ple space abstraction as the underlying coordination
model� An application of this model has been real�
ized in Piranha 
� �to mention one of the various
applications based on Linda�s coordination model�
where Linda�s tuple space is used for networked based
load balancing functionality� The PageSpace 
� e�ort
extends Linda�s tuple space onto the World�Wide�
Web and Bonita 
�� addresses performance issues
for the implementation of Linda�s in and out prim�
itives� Other languages and models are based on
a control oriented approach 
�� 
��� message pass�
ing paradigms 
��� 
�� object�oriented techniques

��� multi�set rewriting schemes 
�� 
� or Linear



Logic 
��
The rest of this paper is organized as follows� Sec�

tion two describes in detail STL� our coordination
model� and appropriate coordination language� Sec�
tion three is devoted to an illustration of the power
and appropriateness of STL through a preliminary
implementation of a generic autonomy�based multi�
agent system� applied to a mobile collective robotics
simulation� In the last Section� we draw some con�
clusions about this work and outline future works�

� Coordination Model of STL

STL� materializes the separation of concern as it uses
a separate language exclusively reserved for coordina�
tion purposes and provides primitives which are used
in the computation language to interact with the en�
tities to be coordinated� It shares many character�
istics with the IWIM 
� model of coordination like
ConCoord 
�� or Manifold 
��
The coordination model of STL comprehends �ve

building blocks which will now be introduced gradu�
ally�

�� Processes� as a representation of active entities�

�� Blops� as an abstraction and modularization
mechanism for processes and ports�

�� Ports� as the interface of processes�blops to the
external world�

�� Events� a mechanism to react to dynamic state
changes�

�� Connections� as a representation of connected
ports�

According to the general characteristics of what
makes up a coordination model and corresponding
coordination language� these elements are classi�ed
in the following way�

� The Coordination Entities of STL are the pro�
cesses of the distributed application�

� There are two types of Coordination Media in
STL� events� ports� and connections which en�
able coordination� and blops� the repository in
which coordination takes place�

� The Coordination Laws are de�ned through the
semantics of the Coordination Tools �the opera�
tions de�ned in the computation language which

�Simple Thread Language	 STL is part of the CoLMA
Coordination Language forMulti�threaded Applications� ef�
fort of the University of Fribourg� which aims at developing
tools for coordination of multi�threaded applications on a clus�
ter of workstations	

work on the port abstraction� and the semantics
of the interactions with the coordination media
by means of events�

Figure � gives a �rst overview of the programming
metaphor on which STL is based� An STL applica�
tion consists of a hierarchy of blops in which several
processes run� Processes communicate and coordi�
nate themselves via events and connections� Ports
serve as the communication endpoints for connections
which result in pairs of matched ports�
The reminder of this Section is devoted to a de�

scription of each element�

Port

Connection

Blop

Process

Event

Figure �� The Coordination Model of STL�

��� Blop

A blop is an abstraction for an agglomeration of
objects to be coordinated and serves as a separate
name space for port objects� processes� and subordi�
nated blops as well as an encapsulation mechanism
for events�
Blops have the same interface as processes� i�e� a

name and a possibly empty set of static ports� and
can be hierarchically structured� We distinguish the
declaration of a blop from its instantiation� with the
exception of the default meta blop� called world� Im�
plicitly instantiated by the system� this blop serves as
the basic environment in which every other activity is
embedded� i�e� an STL application runs per default
in this meta blop world�
The creation of a blop is handled in the same way

as the creation of processes �see ����� It includes the
initialization of all static processes�blops and ports
de�ned for this blop and subordinated blops�

��� Processes

STL knows one type of active entity� called a process�
A process in STL is a typed object� it has a name and
a possibly empty set of static ports� As for blops� the
handling of processes in STL is done in two steps� ���
declaration of a process type� and ��� instantiation
and invocation of such a declared process� In addition
to their static ports� processes can generate dynamic
ports during their lifetime�



Processes in STL do not know any kind of process
identi�cation� instead a black box process model is
used� a process runs with a set of ports� it does not
have to care about which process information will be
transmitted to or received from�
Processes can be activated from within the coor�

dination language and in the computation language�
In the coordination language this is done through the
instantiation of a process object inside a blop� To
dynamically create new processes the process object
instantiation can be done in the body of an event or
in the computation language directly�
Process termination is implicit� once the function

which implements the process inside the computation
language has terminated� the process disappears from
the blop�

��� Ports

Ports are the interface of processes and blops to
establish connections to other processes�blops� i�e�
communication in STL is handled via a connection
and therefore over ports� A port has a name and a
set of well de�ned attributes and belongs either to a
process or a blop� The port name and its attributes
are referred to as the port�s signature� The combi�
nation of port attributes results in a port type� We
distinguish static and dynamic ports� Both static and
dynamic ports are represented in a blop by port sig�
natures� A static port is an interface of a process or
blop de�ned in the coordination language� whereas a
dynamic port will be created dynamically at runtime
in the computation language� However� the type of
the dynamic port� i�e� its attributes must be deter�
mined in the coordination language�

����� Port Attributes

Pairs of ports must comply with a set of attributes
�see Table � for an overview� in order to match� As
an example we explain the communication attribute
in more detail� We provide the three classical com�
munication paradigms� point�to�point stream com�
munication� group and blackboard communication�
For point�to�point stream communication� the data

distribution scheme is di�erent� Processes communi�
cate in a stream using the classical message passing
semantics� Messages are tagged and can be received
only once�
For group communication� a set of matched ports

forms a closed group in which data will be trans�
ferred to all members of the group via a broadcast
operation� The group is closed because a process
must be member of the group in order to be able to
send�receive data to and from the group� Each single
process connected to such a group receives the infor�

mation in the same way as in point�to�point streams�
For blackboard communication� the information

can be retrieved from the port in a sequence de�ned
by the process� and information can be retrieved more
than once� Processes can put information onto this
blackboard� read from it� or remove messages from
it�

����� Basic Port Types

The combination of di�erent port attributes yields
to di�erent port types� We have identi�ed the fol�
lowing major port types� point�to�point output port�
�P�P���� point�to�point input port �P�P���� point�to�
point bi�directional port �P�P����� groups �Group�
and blackboards �BB�� Variants of these types are pos�
sible and can be de�ned by the user by modifying the
port�s attributes of Table ��

P�P�

The classical stream ports� Two matched ports
of this type result in a stream connection with
the following semantics� every send operation on
such a port is non blocking� a receive call blocks
the calling process until data is available and the
port has an � storage capacity� and matches
to exactly one other port� The orientation at�
tribute de�nes whether the port is an output port
�P�P���� an input port �P�P���� or a bidirectional
port �P�P�����

Group�

A set of Group ports forms the group mecha�
nism of STL� Ports of this type are gathered in a
group and all message send operations are based
on broadcast� that is� the message items will al�
ways be transferred to all members of the group�
A closed group semantics is used� processes must
be member of the group in order to distribute
messages in it�

BB�

The BB stands for blackboard and the resulting
connection has a blackboard semantics� In con�
trast to the previous port types� messages on the
blackboard are now persistent objects and pro�
cesses retrieve messages using a symbolic name
and tag�

This multiple blackboard model provides a cer�
tain degree of privacy and encapsulation for com�
municating processes which is not present in the
original Linda model� In order to access the infor�
mation� the process must specify both� a speci�c
port �to get access to the blackboard� and the
name and tag of the data item to retrieve� Mod�
ularity is supported in so far as the blackboards
serve as a private name space for a group of pro�



Attribute Example Explanation

Communication blackboard� stream� group Communication structure
Saturation saturation�� Seven other ports may connect� default� �
Capacity capacity�� Capacity of a port� 	 data items� default� �
Msg� Synchronization synchron� asynchron Semantics of message passing model
Orientation in� out� inout Direction of data 
ow

Table �� Attributes of a port�

cesses which form a software module� Therefore�
each module can independently use the same mes�
sage tuples without interfering with other mod�
ules�

Note a subtle di�erence to the original Linda
model� processes do not belong to the tuple space
with which they communicate� but are grouped
around� outside the blackboard�

����� Variations of the Basic Port Types

Combinations of these basic port types are possible�
for example to de�ne a ���n� point�to�point type of
style connection� the saturation characteristics of a
P�P port can be augmented to n�
Synchronous communication can be achieved by

changing the type of message synchronization to syn�
chronous� thus yielding in point�to�point synchronous
communication� For ��n this means that the data
producing process blocks until all the n processes
have connected to the port� and have received the
data item�
One can say that the type of Msg�

Synchronization is �stronger	 than the Capacity

attribute� because synchronous communication
implies a capacity of zero� On the other hand� asyn�
chronous communication can be made a little bit
less asynchronous by setting the capacity attribute
to a certain value n to make sure that at least after
n messages the process blocks� However the capacity
attribute is a local relation between the process and
its port�

����� Port Matching

The matching of ports is de�ned as a relation between
port signatures� It is not a static relation which can
be determined at compilation time� but depends on
the current state of the port relative to its attributes�
In other words� although the signatures of two ports
may match at compile time they do not match at
runtime because� e�g� the number of communication
partners which may be able to connect to this port
is limited �through the saturation attribute��
There are �ve conditions that must be ful�lled in

order for two ports to match� ��� both use the same
communication attribute� ��� both have the same

name� ��� both ports must not be saturated� ��� both
belong to the same level of abstraction� i�e�� are visi�
ble within the same hierarchy of blops� and ��� both
belong to di�erent objects �process or blop��
Conceptually the matching of process ports can be

described as follows� When a process is created in a
blop� it creates with its port signature a �potential	
in the current blop where it is embedded� If two com�
patible potentials exist in the blop� and if the condi�
tions ������� are ful�lled� the connection between the
corresponding ports is established and the potentials
disappear� The notion of compatible potentials in�
troduces a subtype relation on port types� thus per�
mitting the matching of ports whose attribute values
are not necessarily identical�
For blops the scheme works analogously� As for

processes the port represents the blop�s interface to
the outside world� For blops this means that �one
side	 of the port is visible inside the current blop� and
�the other side	 is visible outside� that is� in the blop
where the blop is embedded� The blop creates with
its port signatures a potential in two encapsulated
environments�
Whether two potentials match or not depends on

the communication structure�

� Directed stream point�to�point communication�
Due to the nature of this communication struc�
ture� a �negative	 and a corresponding �posi�
tive	 potential must exists in the current blop to
form a connection� The negative potential repre�
sents an input port� a positive potential symbol�
izes an output port� To avoid that a port may
consume all potentials in a blop we de�ne that a
port never matches twice to the same potential�

For blops we de�ne that for an input port� the
negative potential is created in the surrounding
blop and the positive potential is created in the
current blop� For output ports the reverse mech�
anism is applied�

� Bi�directional communication and groups� The
mechanism works analogously to directed stream
point�to�point communication with the di�er�
ence that neutral potentials are created� The
communication partners are identi�ed by the



port name and attributes� For groups this means
that all processes using a compatible group port
type are grouped together� For blops this means
that the group which is otherwise only locally
visible will be exported to the surrounding blop�

� Blackboards� The potentials for such a commu�
nication structure are also neutral and always
present in the blop because the communication
partner is fully determined through the port
speci�cation� especially through the port name
which denotes the blackboard name� The export
mechanism for blackboard ports of blops works
analogously�

To summarize� the potential metaphor in the
model permits to treat ports homogeneously for both
blops and processes� A single abstraction� the port�
is used to denote various communication structures
in which processes and blops can get involved inter�
changeably�

����� Static Ports

The creation of static ports and their potentials in
the blop is done automatically upon start�up of a
process or blop� The blop is responsible for matching
ports� Seen from this point of view� a blop performs
a certain activity� upon creation of a new process or
blop it matches as many static ports as possible�

����� Dynamic Ports

As already stated� dynamic ports will be created in
the computation language� they are therefore created
by processes only� Their type must be speci�ed in the
coordination language� The creation of a dynamic
port results in a new potential in the current blop�

��� Connections

Connections between processes have either stream se�
mantics� in form of point�to�point communication�
group� or blackboard semantics�

� Point�to�point Stream� ���� ��n� n�� and n�m

communication patterns are possible�

� Group� Messages are broadcasted to all mem�
bers of the group�

� Blackboard� Messages are placed on a black�
board used by several processes�

A possible extension of the model would be that
a group or blackboard port is connected to more
than one group or blackboard� just like the ports for
streams� This however would require a wildcard con�
struct to specify the group or blackboard name in

Condition on Ports Explanation

accessed�p� Port was accessed
unbound�p� No comm� partners
isempty�p� Contains no data
isfull�p� Port is full
msg handled�p� int n� n msg� handled
less msg handled�p� int n� � n msg� handled

Table �� Conditions on ports� p denotes a port�

the port� From the process point of view this can be
achieved by using more ports for each blackboard or
group�

��� Events

An event handler may be attached to a condition
which determines when the event will be executed
in the blop� The conditions are related to ports of
processes or blops� Whether an event must be trig�
gered or not will be checked by the system if and
only if data �ows through the port or a process ac�
cesses it� Otherwise a condition like isempty would
uninterruptedly trigger events for ports of processes�
because at start�up of the process ports are empty�
The event is handled by an event handler inside the
blop�
After an event has been triggered� a blop is not

tuned anymore to handle subsequent events of the
same type� In order to handle these events again�
the event handling routine must be re�installed� This
is usually done in the event handling routine of the
event currently processed�
The unbound condition on ports permits to con�

struct parallel software pipelines very elegantly� By
attaching an appropriate event handler to an initially
unbound port of a process� a new process can get
created automatically� The mechanism can then be
recursively applied to the new process�

��� Primitives

STL is a separate language used in addition to a
given computation language� however the coordina�
tion mechanisms must be accessed from within the
computation language� This is done by providing
a set of primitives which enable the interaction be�
tween the computation and coordination parts of
the distributed application� We use port export�	

to dynamically create new ports from within a
process and a set of communication functions to
send and receive data via the port� The seman�
tics of communication primitives is dependent on
the port type� For blackboard ports� messages are
named and tagged on the blackboard and can be
read and�or removed from it �using get�	� put�	�



read�	 and predicates readp�	� getp�	 with the
usual semantics� whereas for stream and group ports
messages are only tagged� A message itself is a com�
pound data structure consisting of several basic data
types �int� float� double and the like�� sender
and receiver must use the same message format for
message exchange� Dynamic process management
within the computation language is supported by a
create process�	 procedure to which a valid pro�
cess type must be supplied� For details see 
���

� Coordination of Autonomous

Agents in STL

Works in Autonomous Agents constitute a whole dis�
cipline of Arti�cial Intelligence� whose description
would be prohibitive to do here� as it is not the
main concern of this paper� only the concepts of Au�
tonomous Agents necessary to understand our imple�
mentation will be presented� More information can
be found in 
�� and 
��� We will focus exclusively
on autonomous agents that are considered to be em�
bodied systems� which are designed to ful�ll internal
or external goals by their own actions in continuous
long�term interaction with the environment �possibly
unpredictable and dynamical� in which they are sit�
uated�

��� A Generic Model for an Au�

tonomous Agents� System

Our generic model is composed of an Environment

and a list of Agents� The Environment encompasses
a list of Cells and a set of Objects which will be ma�
nipulated by the agents� Every Cell contains a list
of Neighbor Cells� which implicitly sets the topology
and a list of on�cell available Objects a at a given
time� This way of encoding the environment allows
the user to cope with any type of topology� be it regu�
lar or not� since for every cell the number of neighbors
can be speci�ed� Note that a cell can contain a re�
gion made up of a set of continuous points� e�g� for
simulating an area with real coordinates rather than
discrete ones�
The architecture of an agent is displayed on Fig�

Perception

State

Control Algorithm

Actions

S
e
n

s
o

r
s

E
ff

e
c
to

r
s

Figure �� Architecture of an agent�

Figure �� Collective robotics application� stacking ob�

jects�

ure �� An agent possesses some sensors to perceive
the world within which it moves� and some e�ectors
to act in this world �embodiment�� The implementa�
tion of the di�erent modules presented on Figure ��
namely Perception� State� Actions and Control Algo�

rithm depends on the application and is the user�s re�
sponsibility� The Control Algorithm module is partic�
ularly important because it de�nes the type of auton�
omy 
�� of the agent� for instance� a very basic au�
tonomy would consist of randomly choosing the type
of action to take� a more sophisticated one would con�
sist of implementing some learning capabilities� e�g�
by using an adaptive neural network�

��� A Typical Application

We illustrate with a simulation in the framework of
mobile collective robotics� Agents �an agent simu�
lates the behavior of a real robot� seek for objects
distributed in their environment� and we would like
them to stack all objects� like displayed in Figure ��
The innovative aspect of our approach rests on a
system integrating autonomous agents� that is� ev�
ery agent in the system has the freedom to act on
a cell �the agent decides by itself which action to
take�� This simulation has been already serially im�
plemented� exhibiting the emergence of properties in
the system� such as cooperation yielded by the re�
current interactions of the agents� agents cooperate
to achieve a task without being aware of that� Fur�
ther details about this simulation and outcomes can
be found in 
��� An implementation in a real world
using real mobile robots is currently being developed�

��� Constraints for a Distributed Im�

plementation

Our very aim is to be able to express our autonomy�
based multi�agent model on a distributed architec�
ture in the most natural way� As the Environment

and the list of Agents will be distributed� we will
need to develop two types of mechanisms� some in



order to cope with agents crossing borders between
sub�environments �of course this should be achieved
transparently to the user� it should be part of the
software platform�� and others in order to cope with
data consistency �e�g� updating the number of ob�
jects on a cell�� We will need some �exible coordina�
tion tools that will not alter every agent�s autonomy
and behavior� we will have to dismiss any unneces�
sary dependency�

��� Preliminary Implementation in

STL

The Environment is a torus grid with a four connec�
tivity �each cell has four neighbors�� Agents comply
rigorously with the model previously introduced �Fig�
ure ��� They sense the environment through their
sensors and act upon their perception at once�
To put to good use distributed systems� the Envi�

ronment is split into sub�environments� each of which
being handled by a blop� as indicated on Figure ��
thus providing an independent functioning between
sub�environments� Note that blops have to be ar�
ranged in accordance with the topology of the envi�
ronment they implement�
For our implementation we introduce four variants

of the P�P port type� described hereafter� P�P��


and P�P��
 are identical to P�P�� and P�P�� except
that the saturation attribute is set to �� P�P���N

is an input P�P port capable of matching with N

other P�P�� or P�P��
 ports� P�P���N is an out�
put P�P port capable of matching with N other P�P��
or P�P��
 ports�

Blop 1 Blop 2

W E

S

N

W E
S

N

W E

S

N

W E
S

N

W E

S

N

W E

S

N

W E

S

N

W E

S

N

W E

S

N

W E
S

N

W E

S

N

W E
S

N

W E

S

N

W E

S

N

W E

S

N

W E

S

N

Blop 3 Blop 4

W

N

S

E W

N

S

E

W

N

S

EW

N

S

E

Figure �� Splitting an environment made up of cells into

four blops�

����� Global Structure

The meta�blop world is composed of an init process�
responsible for the global initialization of the system�
and a set of pre�de�ned blops� �called se�� each one
handling a sub�environment�
The init process has two static ports �of type

P�P��� for every blop to be initialized �Figure � illus�

Blop se

south_i

west_i

north_i

east_i

i_SubEnv

i_Agents

creation

req-ans

Blackboard

Blop World

north_o

west_o

south_o

east_o

taxi

tSouth
requ

tWest

con_Agt

tNorth

tEast

agent 

creation

to_taxi

req_ans

initAgent

init

newArrival

subEnv

to_taxi

in_outinit

init

cre_Agts

cre_SubEnv

Figure �� init process and blop se� solid and dotted lines

are introduced just for a purpose of visualization�

trates the connections between the init process and a
blop se�� The r�ole of the init process is twofold� �rst�
to create through its cre Agts port the initial agents
within every blop� secondly� to set up through its
cre SubEnv port the sub�environment �size� number
of objects� etc�� of every blop�
Blop se� Figure � shows the basic organization

of processes within a blop se and their coordination
through ports� Figure � diplays the implementation
of se in STL� Two types of processes may be distin�
guished� processes that are part of the multi�agent
coordination platform� namely initAgent and taxi�
and processes that are intrinsic to the application�
viz� subEnv and agent processes�
Ports of a Blop� Each blop has ten static ports�

four P�P��
 out�owing direction ports �north o�

south o� west o� east o� and four P�P��
 in�owing di�
rection ports �north i� south i� west i� east i�� which
are used for agent migration� and two P�P��
 ports�
namely i Agents and i SubEnv used respectively for
the creation of the initial agents and for the initial�
ization of the subEnv process�
For the time being� the topology between blops is

set in a static manner� by creating the ports with ap�
propriate names� The four in�owing direction ports
of a blop match with ports of its inner process initA�
gent� The four out�owing direction ports of a blop
match with ports of its inner process taxi�
initAgent Process� newAgentEvt Event� The

initAgent process �C�� code in Figure �� is respon�
sible for the creation� It has two static ports� newAr�
rival and init� The newArrival P�P���N port is con�
nected to all in�owing direction ports of the blop
within which it resides� As soon as a value comes
to this port� the initAgent process copies it onto its
init P�P���N port� In the meantime� the newAgen�

tEvt event �see Figure �� is triggered and it will create
a new agent process� which through its creation port



blop se�PORTS north�o north�i south�o south�i

west�o west�i east�o east�i

i�SubEnv i�Agents�

VALUES name n s w e� �

P�P��� north�o�n�	 P�P
�� north�i�n�	

P�P��� south�o�s�	 P�P
�� south�i�s�	

P�P��� west�o�w�	 P�P
�� west�i�w�	

P�P��� east�o�e�	 P�P
�� east�i�e�	

P�P
�� i�SubEnv��INIT�SE�� � name�	

P�P
�� i�Agents��INIT�A�� � name�	

process initAgent�PORTS newArrival init� �

P�P
�N newArrival��INIT�A�� � name�

n� s� w� e�	

P�P��N init��AGENT�INIT��	

�

process agent�PORTS creation req�ans� �

P�P
� creation��AGENT�INIT��	

BB req�ans��SUBENV�AGENT��	

�

process subEnv�PORTS init in�out to�taxi� �

P�P
� init��INIT�SE�� � name�	

BB in�out��SUBENV�AGENT��	

P�P�� to�taxi��TAXI��	

�

process taxi�PORTS tNorth tSouth tWest tEast

requ� �

P�P�� tNorth�n�	 P�P�� tSouth�s�	

P�P�� tWest�w�	 P�P�� tEast�e�	

P�P
� requ��TAXI��	

�

event newAgentEvt �

create process agent a	

�

create process subEnv env	

create process taxi tx	

create process initAgent i	

when accessed�i�newArrival� then newAgentEvt	

�

Figure �� Implementation of the blop se in STL�

will read the value that was previously written on
the init port of the initAgent process� Values that
are transmitted feature for instance the state of the
agent to create�
agent Process� This process �C�� code in Fig�

ure �� has two static ports �req ans of type BB and
creation of type P�P��� plus to taxi a dynamic P�P��
port� As already stated� this process reads on its cre�
ation port some values �its state�� All req ans ports
of the agents are connected to a Blackboard� through
which agents will sense their environment �percep�
tion� and act into it �action�� by performing put�get
operations �Linda�like in�out� with appropriate mes�
sages� The type of action depends on the type of
control Algorithm implemented within the agent �see
the architecture of an agent on Figure ��� The to taxi

port is used to communicate dynamically with the
taxi process in case of migration� the state of the
agent is indeed copied to the taxi process� The de�
cision of migrating is always taken by the subEnv

process�

void initAgent�P�P
�N newArrival� P�P��N init� �

ByteTempl
��� state	

Msg stateTp�state�	

while �TRUE� �

newArrival�get��� stateTp�	

init�put��� stateTp�	

��

Figure �� Implementation of initAgent in C���

void agent�BB req�ans� P�P
� creation� �

ByteTempl
��� state� answer	

ByteObject
��� �req	

Msg stateTp�state�	 �� Message

boolean noMigration � TRUE	

creation�get��� stateTp�	 �� Initialize

while �noMigration� �

req � make�req��	 �� Perception�Action

Msg requestTp��request�� req��id� �req�	

req�ans�put��� requestTp�	 �� Put request

Msg answerTp��answer�� req��id� answer�	

req�ans�get��� answerTp�	 �� Get answer

control�answer�	 �� Control Algorithm

state � update�state�answer�	

noMigration � migrate�p�answer�	

�

P�P�� to�taxi	 �� For migration

to�taxi�port�export��MIG� � req��id�	

to�taxi�put��� stateTp�	 �� Transfer state

exit���	 �� to taxi

�

Figure �� Implementation of agent in C���

subEnv Process� The subEnv process �C��
code in Figure �� handles the access to the sub�
environment and is in charge of keeping data con�
sistency� It is also responsible for migrating agents�
which will cross the border of a sub�environment� It
has a static in out port �of type BB� connected to
the Blackboard and a static P�P�� port to taxi con�
nected to the taxi process� Once initialized through
its init P�P�� port� the subEnv process builds the sub�
environment� By performing put�get operations with
appropriate tuples� the subEnv process will process
the requests of the agents �e�g� number of objects
on a given cell� move to next cell� and reply to their
requests �e�g� x objects on a given cell� move regis�
tered�� When the move of an agent will lead to cross
the border �cell located in another blop�� the subEnv
process will �rst inform the agent it has to migrate
and then inform the taxi process an agent has to be
migrated �the direction the agent has to take will be
transmitted��
The taxi Process� The taxi process �C�� code in

Figure ��� is responsible for migrating agents across
blops� It has four static direction ports �of type
P�P���� which are connected to the four out�owing

direction ports of the blop within which it stands�
When this process receives on its static P�P�� port



void subEnv�P�P
� init� BB in�out� P�P�� to�taxi� �

IntTempl id� nbOfAgt� myNbOfObj� nbOfCell� pos	

ByteTempl
��� req� �resp	

SubEnv �subenv	

Msg initTp�nbOfAgt� myNbOfObj� nbOfCell� pos�	

init�get��� initTp�	

�� Build the sub�environment

subenv � init�env�nbOfAgt� nbOfObj� nbOfCell�	

while�TRUE� � �� Request�Answer

Msg requestTp��request�� id� req�	

in�out�get��� requestTp�	 �� Get request

resp � decide�response�req� subenv�	

Msg answerTp��answer�� id� �resp�	

in�out�put��� answerTp�	 �� Put answer

if migrateP�resp� � �� Agent migrates

Msg migTp�id� CharObject
���getDir�req���	

to�taxi�put��� migTp�	 �� Inform taxi

���

Figure 	� Implementation of subEnv in C���

requ the direction towards where this agent has to mi�
grate� it will create a dynamic P�P�� port con Agt in
order to establish with the appropriate agent process
a communication� by means of which it will collect
all the useful information of the agent �state�� These
values will then be written on the port correspond�
ing to the direction to take and will be transferred to
the newArrival port of the initAgent process of the
concerned blop inducing the dynamic creation of a
new agent process in the blop� thus materializing the
migration�

� Conclusion

In this paper� we presented STL our coordination
model and corresponding language� Although the
coordination model has some similarities with Man�

ifold� ConCoord� Darwin or Linda �in�depth com�
parisons can be found in 
���� it however di�ers in
several points� Firstly STL allows the user to de�ne
several di�erent port types� yielding to di�erent com�
munication metaphors like generative communication
or point to point message passing� Secondly� by using
a nested description language to specify di�erent hi�
erarchies of coordination spaces� STL�s hierarchical
coordination model seems to be more explicit than
the one used in Manifold for example� Blops not
only serve as a sort of coordinator process which con�
trols coordination� but also as a separate name space
for port objects and modularization mechanism for
event handling�
We built a coordination platform based on STL�s

coordination model� This �rst prototype has been de�
veloped on top of the existing Pt�pvm platform 
���
A preliminary implementation of a classical collec�
tive robotics simulation illustrated the power of STL
and demonstrated its appropriateness for coordinat�

void taxi�P�P�� tNorth� P�P�� tSouth� P�P�� tWest�

P�P�� tEast� P�P
� requ� �

CharTempl
�� direction	

IntTempl id	

ByteTempl
��� state	

Msg stateTp�state�	

Msg init�id� direction�	

while�TRUE��

requ�get��� init�	 �� Init� from subEnv

P�P
� con�Agt	

con�Agt�port�export��MIG� � id�	

con�Agt�get��� stateTp�	 �� Get agent�s state

switch �direction� � �� Migration

case �N�� �� Handle directions

tNorth�put��� stateTp�	

break	

���

���

Figure �
� Implementation of taxi in C���

ing a class of autonomous agents� whose most crit�
ical constraint is the preservation of autonomy by
dismissing coordination mechanisms exclusively em�
bedded for purpose of implementation �unnecessary
dependencies��
As far as the development of a platform for multi�

agent programming is concerned� STL can be seen
as a �rst starting point� STL already includes mech�
anisms which are appropriate for multi�agent pro�
gramming� among which are� ��� the absence of a
central coordinator process� which does not relate to
any type of entity in the multi�agent system� ��� the
notion of ports avoiding any additional coordinator
process� and ��� in despite of ��� the notion of blop
hierarchy which in our case allows us to represent the
encapsulation of the environment and the agents�
The STL coordination model is still to be extended

in order to encompass as many generic coordination
patterns as possible� yielding in STL skeletons at
disposal for general purpose implementations� Fu�
ture works will consist in� ��� improving the model�
such as introducing new user de�ned attributes for
ports� dynamic ports for blops� data typing for port
types� re�ning subtyping of ports� and ��� developing
a graphical user interface to facilitate the speci�ca�
tion of the coordination part of a distributed appli�
cation�
There are two major outcomes to this work� First�

as autonomous agents� systems are aimed at ad�
dressing problems which are naturally distributed�
our coordination platform provides a user the pos�
sibility to have an actual distributed implementation
and therefore to bene�t from the numerous advan�
tages of distributed systems� so that this work is
a step forward in the Autonomous Agents commu�
nity� Secondly� as the generic patterns of coordi�



nation for autonomy�based multi�agent implementa�
tions are embedded within the platform� a user can
quite easily develop new applications �e�g� by chang�
ing the type of autonomy of the agents� the type of
environment�� insofar they comply with the generic
model�

Acknowledgements

We are grateful to the reviewers who� thanks to their
comments� signi�cantly improved the quality of the
paper�

References
�� G� Agha� S� Folund WooYoung� and Kim Rajendra

Panwar� Abstraction and Modularity Mechanisms
for Concurrent Computing� IEEE Parallel � Dis�
tributed Technology� ���������� May �����

�� F� Arbab� I� Herman� and P� Spilling� An Overview
of Manifold and its Implementation� Concurrency�
Practice and Experience� 	���������� February �����

�� Farhad Arbab� The IWIMModel for Coordination of
Concurrent Activities� In Paolo Ciancarini and Chris
Hankin� editors� First International Conference on
Coordination Models� Languages and Applications�
number ���� in LNCS� Springer Verlag� April �����

�� J�P� Ban�atre and D� Le M�etayer� Programming by
Multiset Transformation� Communications of the
ACM� ������������� �����

�	 M� Bourgois� J�M� Andreoli� and R� Pareschi� Ex�
tending Objects with Rules� Composition and Con�
currency� the LO Experience� Technical report� Eu�
ropean Computer Industry Research Centre� Mu�
nich� Germany� �����

�� N� Carriero� E� Freeman� D� Gelernter� and
D� Kaminsky� Adaptive Parallelism and Piranha�
IEEE Computer� ������ January ���	�

�� N� Carriero and D� Gelernter� Coordination Lan�
guages and Their Signi�cance� Communications of
the ACM� �	����������� February �����

�� N� Carriero� D� Gelernter� and L� Zuck� Bauhaus
Linda� In P� Ciancarini� O� Nierstrasz� and
A� Yonezawa� editors� Object�Based Models and
Languages for Concurrent Systems� volume ��� of
Lecture Notes in Computer Science� Berlin� ���	�
Springer Verlag�

�� P� Ciancarini� A� Knoche� R� Tolksdorf� and Fabio
Vitali� PageSpace� An Architecture to Coordinate
Distributed Applications on the Web� In Proceed�
ings Fifth International World Wide Web Confer�
ence� volume �� of Computer Networks and ISDN
Systems� �����

��� T� Dagae�� F� Chantemargue� and B� Hirsbrunner�
Emergence�based Cooperation in a Multi�Agent Sys�
tem� In Proceedings of the Second European Confer�
ence on Cognitive Science �ECCS����� pages ������
Manchester� U�K�� April ���� �����

��� D� Gelernter� Generative Communication in Linda�
ACM Transactions on Programming Languages and
Systems� ������������ ���	�

��� B� Hirsbrunner� M� Aguilar� and O� Krone� CoLa� A
Coordination Language for Massive Parallelism� In
Proceedings ACM Symposium on Principles of Dis�
tributed Computing �PODC�� Los Angeles� Califor�
nia� August ����� �����

��� A� A� Holzbacher� A Software Environment for Con�
current Coordinated Programming� In Paolo Cian�
carini and Chris Hankin� editors� First International
Conference on Coordination Models� Languages and
Applications� number ���� in LNCS� Springer Ver�
lag� April �����

��� T� Kielmann� Designing a Coordination Model for
Open Systems� In Paolo Ciancarini and Chris Han�
kin� editors� First International Conference on Coor�
dination Models� Languages and Applications� num�
ber ���� in LNCS� Springer Verlag� April �����

��	 O� Krone� B� Hirsbrunner� and V� Sunderam� PT�
PVM�� A Portable Platform for Multithreaded
Coordination Languages � Calculateurs Parall	eles�
������������� �����

��� Oliver Krone� STL and Pt�PVM� Tools and Con�
cepts for Coordination of Multi�threaded Applica�
tions� PhD thesis� University of Fribourg� �����

��� P� Maes� Behavior�Based Arti�cial Intelligence� In
Proceedings of the Fifteenth Annual Meeting of the
Cognitive Science Society� pages ������ Hillsdale�
NJ� ����� Lawrence Erlbaum�

��� Je� Magee� Naranker Dulay� and Je� Kramer� Struc�
turing parallel and distributed programs� Software
Engineering Journal� pages ������ March �����

��� T� W� Malone and K� Crowston� The Interdisci�
plinary Study of Coordination� ACM Computing
Surveys� ������������� March �����

��� A� Rawston and A� Wood� Bonita� A Set of
Tuple Space primitives for Distributed Coordina�
tion� In R� H� Sprague Jr�� editor� Proceedings of
the 
�th Hawaii International Conference on Sys�
tem Sciences� volume �� Wailea� Hawaii� ����� IEEE�
Minitrack on Coordination Languages� Systems and
Applications�

��� M� Schumacher� F� Chantemargue� T� Dagae��
O� Krone� and B� Hirsbrunner� STL��� A Coordi�
nation Language for Autonomy�based Multi�Agent
Systems� Technical report� Computer Science De�
partment� University of Fribourg� Fribourg� Switzer�
land� March �����

��� T� Ziemke� Adaptive Behavior in autonomous
agents� To appear in Autonomous Agents� Adap�
tive Behaviors and Distributed Simulations� journal�
�����


