
Autonomous Agents� from Concepts to Implementation�

F� Chantemargue� O� Krone� M� Schumacher� T� Dagae�� B� Hirsbrunner

Computer Science Department� PAI group� University of Fribourg

P�erolles �� CH����� Fribourg� Switzerland

http���www�iiuf�unifr�ch�pai

Abstract

A model for autonomy�based multi�agent
systems aimed at exhibiting emerging prop�
erties is proposed� Then� the prerequisites
for a distributed implementation are dis�
cussed� A preliminary distributed imple�
mentation� illustrated by an application to a
robotics simulation� is consequently sketched
with a strong emphasis on STL� our coordi�
nation model� whose aim is to provide pow�
erful coordination mechanisms that do not
alter the model�s conceptual prescriptions�

� Introduction

Arti�cial Intelligence �AI� aims at synthesizing in�
telligence in artefacts� However two families of ap�
proaches exist disagreeing in their notion of what in�
telligence actually means �Ziemke� ���	
� �Franklin�
����
� On the one hand� Top�Down AI considers intel�
ligence as the capacity to form and manipulate inter�
nal representational models of the world� On the other
hand� Bottom�Up AI �or Autonomous Agents� consid�
ers intelligence as a biological feature �Maturana and
Varela� ���

� this notion is often referred to as Enac�
tivism�
There is a vast number of papers dealing with Au�

tonomous Agents� Our aim is not to go through all
of them in depth� but rather to brie�y introduce the
necessary notions with which our work is related� Au�
tonomous agents are by de�nition considered to be
embodied systems �for the di�erent forms of embodi�
ment� see for instance �Brooks� ����
� �P� Lerena and
M� Courant� ����
� �Robert et al�� 
 and �Nwana�
����
�� They are designed to ful�ll internal or ex�
ternal goals by their own actions in continuous long�
term interaction with the environment �possibly un�
predictable and dynamical� in which they are situ�
ated� Dealing with interactions leads naturally to the

�Part of this work is �nancially supported by the Swiss
National Foundation for Scienti�c Research� grants ���
�	

���
 and ����
������

concept of emergence of behavior and�or functional�
ity� Emergence o�ers indeed a bridge between the ne�
cessity of complex and adaptive behavior at a macro
level and the mechanisms of multiple competences and
situation�based learning at a micro level� A system�s
behavior can be considered emergent if it can only be
speci�ed using descriptive categories which are not to
be used to describe the behavior of the constituent
components�

� Our Multi�Agent Model

Our model for autonomy�based multi�agent systems
is composed of an Environment and a list of Agents�
The Environment encompasses a list of Cells and a set
of Objects which will be manipulated by the agents�
Every Cell contains a list of Neighbour Cells� which
implicitly sets the topology� and the set of objects ac�
tually available on it at a given time�

The architecture of an agent is displayed on �gure ��
An agent possesses some sensors to perceive the world
within which it moves� and some e�ectors to act in
this world� so that it complies with the prescriptions
of physically embodied agents and simulated embodied
agents �Ziemke� ���	
� The implementation of the dif�
ferent modules presented on Figure �� namely Percep�
tion� State� Actions and Control Algorithm depends on
the application and is the user�s responsibility� In the
Perception module� the designer speci�es the type of
perception of the agent� e�g� if the agent perceives only
the number of objects on the cell on which it stands�
The State module encompasses the private informa�
tion of the agent� e�g� whether it carries or not an ob�
ject� its strain or whatever� The Actions module typ�
ically consists of the basic actions the agent can take�
e�g� move to next cell� pick up an object or drop an
object� The Control Algorithm module is particularly
important because it de�nes the type of autonomy of
the agent� it is precisely inside this module that the
designer decides whether to implement an operational
autonomy or a behavioral autonomy �Ziemke� ���	
�
Operational autonomy is de�ned as the capacity to
operate without human intervention� without being



Perception

State

Control Algorithm

Actions

S
e
n

so
rs

E
ff

e
c
to

rs

Environment

Agent

Figure �� Architecture of an agent�

remotely controlled� Behavioral autonomy supposes
that the basis of self�steering originates in the agent�s
own capacity to form and adapt its principles of be�
havior� an agent� to be behaviorally autonomous� does
not only need the freedom to behave�operate without
human intervention �operational autonomy�� but fur�
ther the freedom to have formed �learned or decided�
its principles of behavior on its own �from its experi�
ence�� at least partly�

� Distributed Implementation

��� The Model�s Prerequisites

Our multi�agent model is aimed at addressing prob�
lems which are naturally distributed �both in space
and time�� In our model� agents coexist �in space and
time� and share a common environment� Moreover�
agents can move� act in parallel in the environment�
each one having its own freedom for deciding� This
implies a certain independence between agents in the
system and between areas of the environment� More�
over� it is assumed that each agent has its own time or
temporality� which is peculiar to its identity� To ex�
press our autonomy�based multi�agent model on a dis�
tributed architecture in the most natural way� we need
an appropriate software platform in which the imple�
mentation would be the image of the model �the con�
cepts� with the highest �delity� We need some tools al�
lowing us to coordinate our autonomous agents �since
they interact in their environment� while preserving
their structure and their behavior� like for instance
their degree of autonomy�
If the problem of spatially coexisting agents is

straightforward to be implemented on a distributed
system �computation units are already spatially dis�
tributed�� the problem of coexisting in time �tempo�
rality for each agent in the system� should be given
a great consideration� In distributed systems� time is
usually subordinated to space� Generally� distributed
applications capitalize on the property of spatial dis�
tribution of services� e�g� two independent processes
that can be executed in parallel on two nodes in or�
der to improve the performance� Distributed applica�
tions are most of the time made up of processes which

can run simultaneously on di�erent nodes� and which
have to be synchronized somehow �e�g� by message
exchanges� in order to collect some �intermediate� re�
sults� Such applications do not fully convey the no�
tion of proper time for each process� and moreover
they do not aim at� thus� processes are embedded
in a static coordination structure� where the slower
process imposes its time �temporality� to the system
�faster processes have indeed to wait for the slower
process when synchronizing each others�� Our concern
is rather di�erent� As previously stated� temporality
features identity and autonomy� an entity is not any�
more autonomous when its temporality is subsumed
to an external time scale�

We have therefore to identify some �exible coordi�
nation patterns that will not alter every agent�s tem�
porality and behavior� and we have to develop cor�
responding tools and primitives� Our platform must
be able to render to some extent the independence in
space and time� without being interfered by coordina�
tion mechanisms exclusively embedded for a purpose
of implementation�

��� Coordination Models

Overview

Today�s state of the art parallel programming mod�
els used for implementing general purpose distributed
applications su�er from limitations concerning a clean
separation of the computational part and the �glue�
that coordinates the overall distributed application�
Especially these limitations make a distributed im�
plementation of autonomy�based multi�agent models�
our concern� a burdensome task� To study problems
related to coordination� Malone �Malone and Crow�
ston� ����
 introduced a new theory called coordina�
tion theory aimed at de�ning such a �glue�� The key
issue of coordination is managing dependencies among
activities� To formalize and better describe these in�
terdependencies it is necessary to separate the com�
putation and the coordination of a parallel applica�
tion �N� Carriero and D� Gelernter� ����
� The re�
search in this area has led to the de�nition of sev�
eral coordination models and corresponding coordi�
nation languages� whose most prominent representa�
tive is Linda �Gelernter� ����
� Other models and
languages are based on message passing paradigms
�Agha et al�� ����
� object�oriented techniques �Kiel�
mann� ����
� multi�set rewriting schemes �Ban�atre and
M�etayer� ����
 or control�driven models �Arbab et al��
����
�

Our Coordination Model� STL

The coordination model of STL �Figure �� shares few
characteristics with the IWIM �Arbab� ����
 model
of coordination� It comprehends �ve building blocks
�details in �Krone et al�� ����
��



� Blops� as an abstraction and modularization
mechanism for processes and ports� It serves as a
separate name space as well as an encapsulation
mechanism for events� Blops have the same inter�
face as processes� i�e�� a name and a set of ports�
The creation of blops is handled in the same way
as the creation of processes� It includes the ini�
tialization of all processes and ports de�ned for
this blop and subordinated blops�

� Processes� as a representation of active entities�
A process is a typed object� it has a name and
a set of ports� Processes in STL do not know
any kind of process identi�cation� instead a black
box process model is used� Process termination
is implicit�

� Ports� as the interface of processes�blops to the
external world� Every communication in STL is
handled via a connection which is the result of
ports matching� A port has a name and a set
of well de�ned attributes� they are referred to as
the port�s signature� The combination of port at�
tributes results in a port type� Examples of port
attributes are saturation or communication�
The former attribute de�nes the number of ports
that may connect to it� The latter attribute re�
lates to the communication paradigms that can
be chosen� blackboard� group or stream� Sev�
eral port types exist� the BB type �which has a
tuple space semantics �a la Linda�� the Group type
and P�P type �point to point� �Krone� ���	
� Vari�
ants of these types can be de�ned by the user�
Thus� we introduced several variants of the P�P

port type� P�P i and P�P o ports are respectively
input and output P�P ports with saturation set
to �� P�P iN and P�P oN are respectively input
and output P�P ports with saturation set to N�
To match� pairs of ports must have compatible
signatures� thus introducing a sub�typing relation
on port signatures �Krone et al�� ����
�

� Events� as a mechanism to dynamically react
to state changes within a blop� They can be
triggered using a condition operation on a port�
STL provides some conditions such as unbound�
isfull or accessed�

� Connections� as a representation of connected
ports� Their semantics depend on the port types�

According to the general characteristics of what
makes up a coordination model and corresponding co�
ordination language� these elements are classi�ed in
the following way�

� The Coordination Entities of STL are the pro�
cesses of the distributed application� implemented
as threads�

Port

Connection

Blop

Processus

Evenement

Figure �� The Coordination Model of STL�

� The Coordination Media of STL are the follow�
ing� events� ports and connections serve as the
medium which enables coordination� and a blop
is the medium in which coordination takes place�

� The Coordination Laws are de�ned through the
semantics of the Coordination Tools and the se�
mantics of the interactions with the coordination
media by means of events�

STL materializes the separation of concern as it uses
a separate language exclusively reserved for coordina�
tion purposes and provides primitives which are used
in the computation language to interact with the en�
tities to be coordinated� As far as the implementa�
tion of these primitives is concerned� we use Pt�pvm
�Krone et al�� ����
 a software platform for program�
ming multi�threaded applications on a cluster of work�
stations as the underlying communication and process
management platform�

��� Application of STL

The Framework

Our model is used for a simulation in the frame�
work of mobile robotics and more speci�cally collec�
tive robotics� Our application tackles a quite common
problem in collective robotics which is still given a lot
of consideration� agents are in charge of regrouping
objects distributed in their environment� The inno�
vative aspect of our approach rests indeed on a sys�
tem integrating operationally autonomous agents� ev�
ery agent in the system has the freedom to act on a
cell �the agent decides by itself which action to take��
Therefore� there is not in the system any type of mas�
ter responsible for supervising the agents� nor any type
of cooperation protocol� thus allowing the system to
be more �exible and fault tolerant�

We implemented a serial version of this simula�
tion in the Swarm Simulation System �Langton et al��
����
� stressing on the measurement of quantitative
results and on the realization of appropriate visual�
ization tools to follow in real�time the run of an ex�
periment� We implemented several variants for agent
modules and realized an intensive number of exper�
iments whereof we observed an implicit cooperation
between the agents in the system to accomplish a



global task� i�e� regrouping objects� In such an ex�
periment� the location of the stack containing the ob�
jects at the end of the run is the result of the agents�
interactions� Details on the implementation and re�
sults can be found in �F� Chantemargue et al�� ����


and �Dagae� et al�� ���	
� A preliminary implemen�
tation of this simulation in a real world involving real
mobile robots �kheperas� exhibited the emergence of
cooperation�

A Preliminary STL�based Implementation

For this preliminary implementation� the Environ�
ment is made up of a torus grid with a four connec�
tivity �each cell has four neighbors�� Agents comply
rigorously with the model previously introduced �Fig�
ure ��� They sense the environment through their sen�
sors and act upon their perception at once�
To put to good use distributed systems� the Envi�

ronment is split into sub�environments� each of which
being handled by a blop� thus providing an inde�
pendent functioning between sub�environments� Note
that blops have to be arranged in accordance with the
topology of the environment they implement�

Blop se

south_i

west_i

north_i

east_i

i_SubEnv

i_Agents

creation

req-ans

Blackboard

Blop World

north_o

west_o

south_o

east_o

taxi

tSouth
requ

tWest

con_Agt

tNorth

tEast

agent 

creation

to_taxi

req_ans

initAgent

init

newArrival

subEnv

to_taxi

in_outinit

init

cre_Agts

cre_SubEnv

Figure �� init process and blop se� solid and dotted
lines are introduced just for a purpose of visualization

Global Structure� The meta�blop world is com�
posed of an init process� responsible for the global ini�
tialization of the system� and a set of prede�ned blops
�called se�� each one handling a sub�environment�
The init process has two static ports �of type P�P o�

for every blop to be initialized �Figure ��� The r�ole
of the init process is twofold� �rst� to create through
its cre Agts port the initial agents within every blop�
secondly� to set up through its cre SubEnv port the
sub�environment �size� number of objects� etc�� of ev�
ery blop�
Blop se� Figure � shows the basic organization

of processes within a blop se and their coordination
through ports� Figure � displays the implementation
of se in STL� Two types of processes may be distin�
guished� processes that are part of the coordination

platform �implementation purpose�� namely initAgent
and taxi� and processes that are intrinsic to the multi�
agent model� namely subEnv and agent processes�

blop se�PORTS north�o north�i south�o south�i
west�o west�i east�o east�i
i�SubEnv i�Agents�

VALUES name n s w e� �
P�P�o north�o�n�� P�P�i north�i�n��
P�P�o south�o�s�� P�P�i south�i�s��
P�P�o west�o�w�� P�P�i west�i�w��
P�P�o east�o�e�� P�P�i east�i�e��
P�P�i i�SubEnv��INIT�SE�� 	 name��
P�P�i i�Agents��INIT�A�� 	 name��
process initAgent�PORTS newArrival init� �

P�P�iN newArrival��INIT�A�� 	 name�
n� s� w� e��

P�P�oN init��AGENT�INIT���


process agent�PORTS req�ans creation� �
P�P�i creation��AGENT�INIT���
BB req�ans��SUBENV�AGENT���



process subEnv�PORTS init in�out to�taxi� �

P�P�i init��INIT�SE�� 	 name��
BB in�out��SUBENV�AGENT���
P�P�o to�taxi��TAXI���



process taxi�PORTS tNorth tSouth tWest tEast

requ� �
P�P�o tNorth�n�� P�P�o tSouth�s��
P�P�o tWest�w�� P�P�o tEast�e��
P�P�i requ��TAXI���



event newAgentEvt �
create process agent a�
when accessed�i�newArrival� then newAgentEvt�



create process subEnv env�
create process taxi tx�
create process initAgent i�
when accessed�i�newArrival� then newAgentEvt�




Figure �� Implementation of the blop se in STL�

Ports of a Blop� Each blop has ten static
ports� four P�P o out��owing direction ports �north o�
south o� west o� east o� and four P�P i in��owing di�
rection ports �north i� south i� west i� east i�� which
are used for agent migration� and two P�P i ports�
namely i Agents and i SubEnv used respectively for
the creation of the initial agents and for the initializa�
tion of the subEnv process�

For the time being� the topology between blops is
set in a static manner� by creating the ports with ap�
propriate names� The four in��owing direction ports
of a blop match with ports of its inner process initA�
gent� The four out��owing direction ports of a blop
match with ports of its inner process taxi�
initAgent Process� newAgentEvt Event� The

initAgent process is responsible for the creation of
agents� It has two static ports� newArrival and init�
The newArrival P�P iN port is connected to all in�
�owing direction ports of the blop within which it
resides� As soon as a value comes to this port� the
initAgent process copies it onto its init P�P oN port�
In the meantime� the newAgentEvt event �see Figure



void agent�BB req�ans� P�P�i creation� �
ByteTempl�
�� state� answer�
ByteObject�
�� �req�
Msg stateTp�state�� �� Message
boolean noMigration � TRUE�
creation�get��� stateTp���� Initialize
while �noMigration� � �� Perception�Action
req � make�req���
Msg requestTp��request�� req��id� �req��
req�ans�put��� requestTp�� �� Put request
Msg answerTp��answer�� req��id� answer��
req�ans�get��� answerTp�� �� Get answer
control�answer�� �� Control Algorithm
state � update�state�answer��
noMigration � migrate�p�answer��



P�P�o to�taxi� �� For migration
to�taxi�port�export��MIG� 	 req��id��
to�taxi�put��� stateTp�� �� Transfer state
exit���� �� To taxi




Figure �� Implementation of agent in C���

�� is triggered and it will create a new agent process�
which through its creation port will read the value that
was previously written on the init port of the initA�
gent process� Transmitted values are for instance the
state of the agent to create�

agent Process� This process �C�� code in Fig�
ure �� has two static ports �req ans of type BB and
creation of type P�P i� plus to taxi a dynamic P�P o

port� As already stated� this process reads on its cre�
ation port some values �its state�� All req ans ports
of the agents are connected to a Blackboard� through
which agents will sense their environment �perception�
and act into it �action�� by performing put�get oper�
ations �Linda�like out�in� with appropriate messages�
The type of action depends on the type of control Al�
gorithm implemented within the agent �see Figure ���
The to taxi port is used to communicate dynamically
with the taxi process in case of migration� the state
of the agent is indeed copied to the taxi process� The
decision of migrating is always taken by the subEnv
process�

subEnv Process� The subEnv process handles the
access to the sub�environment and is in charge of keep�
ing data consistency� It is also responsible for mi�
grating agents� which will cross the border of a sub�
environment� It has a static in out port �of type BB�
connected to the Blackboard and a static P�P o port
to taxi connected to the taxi process� Once initialized
through its init P�P i port� the subEnv process builds
the sub�environment� By performing put�get opera�
tions with appropriate tuples� the subEnv process will
process the requests of the agents �e�g� number of ob�
jects on a given cell� move to next cell� and reply to
their requests �e�g� x objects on a given cell� move reg�
istered�� When the move of an agent will lead to cross
the border �cell located in another blop�� the subEnv
process will �rst inform the agent it has to migrate

and then inform the taxi process an agent has to be
migrated �the direction the agent has to take will be
transmitted��

The taxi Process� The taxi process is responsi�
ble for migrating agents across blops� boundaries� It
has four static direction ports �of type P�P o�� which
are connected to the four out��owing direction ports
of the blop within which it stands� When this process
receives on its static P�P i port requ the direction to�
wards where the agent has to migrate� it will create
a dynamic P�P i port con Agt in order to establish
with the appropriate agent process a communication�
by means of which it will collect all the useful infor�
mation of the agent �state�� These values will then be
written on the port corresponding to the direction to
take and will be transferred to the newArrival port of
the initAgent process of the concerned blop inducing
the dynamic creation of a new agent process in the
blop� thus materializing the migration�

� Conclusion and Future Works

We presented a model for autonomy�basedmulti�agent
systems and its prerequisites for parallelization� We
built a coordination platform based on STL�s coor�
dination model on top of the existing Pt�pvm plat�
form �Krone et al�� ����
� We sketched a preliminary
STL�based distributed implementation of our multi�
agent model applied to a collective robotics simula�
tion� STL showed its power and demonstrated its
appropriateness for coordinating a generic class of au�
tonomous agents� whose most critical constraint is the
preservation of temporality by dismissing coordination
mechanisms exclusively embedded for purpose of im�
plementation�

There are two major outcomes to this work� First�
as autonomous agents� systems are aimed at address�
ing problems which are naturally distributed� our co�
ordination platform provides a user the possibility to
have an actual distributed implementation and there�
fore to bene�t from the numerous advantages of dis�
tributed systems� making this work a step forward in
the Autonomous Agents community� Secondly� as the
generic patterns of coordination for autonomy�based
multi�agent implementations are embedded within the
platform� a user can quite easily develop new applica�
tions �e�g� by changing the type of autonomy of the
agents� the type of environment�� insofar they comply
with the generic model�

Future works are as follows� First� a graphical user
interface will be developed in order to facilitate the
speci�cation of the coordination part of a distributed
application� Secondly� the basic mechanisms of STL
have to be enhanced in order to simplify the expression
of the coordination and to establish a well de�ned se�
mantics� Thirdly� the implementation of STL is still to
be carried on in two ways� as a separate coordination



language and as a coordination library� Fourthly� the
STL coordination model is still to be extended in or�
der to encompass as many as possible generic patterns
of coordination� yielding in STL templates at disposal
for general purpose implementations� In our study� we
focused only on operational autonomy in an engineer�
ing approach� Future works will consist in studying
behavioral autonomy through learning approaches�

References

�Agha et al�� ����
 G� Agha� S� Folund WooYoung�
and Kim Rajendra Panwar� Abstraction and Mod�
ularity Mechanisms for Concurrent Computing�
IEEE Parallel � Distributed Technology� ����������
May �����

�Arbab et al�� ����
 F� Arbab� I� Herman� and
P� Spilling� An Overview of Manifold and its Imple�
mentation� Concurrency� Practice and Experience�
��������	
� February �����

�Arbab� ����
 Farhad Arbab� The IWIM Model for
Coordination of Concurrent Activities� In Paolo
Ciancarini and Chris Hankin� editors� First Inter�
national Conference on Coordination Models� Lan�
guages and Applications� number �
�� in LNCS�
Springer Verlag� April �����

�Ban�atre and M�etayer� ����
 J�P� Ban�atre and D� Le
M�etayer� Programming by Multiset Transforma�
tion� Communications of the ACM� �������������
�����

�Brooks� ����
 R�A� Brooks� Intelligence without
Reason� In Proceedings of IJCAI���� Sydney� Aus�
tralia� �����

�Dagae� et al�� ���	
 T� Dagae�� F� Chantemargue�
and B� Hirsbrunner� Emergence�based Coopera�
tion in a Multi�Agent System� In Proceedings of the
Second European Conference on Cognitive Science
	ECCS
���� pages ������ Manchester� U�K�� April
���� ���	�

�F� Chantemargue et al�� ����
 F� Chantemargue�
T� Dagae�� M� Schumacher� and B� Hirsbrunner�
Coop�eration implicite et performance� In Proceed�
ings of the Sixth symposium on Cognitive Sciences
	ARC�� Villeneuve d�Ascq� France� December �
���
�����

�Franklin� ����
 S� Franklin� Arti�cial Minds� Brad�
ford Books�MIT Press� Cambridge� MA� �����

�Gelernter� ����
 D� Gelernter� Generative Commu�
nication in Linda� ACM Transactions on Program�
ming Languages and Systems� 	�����
����� �����

�Kielmann� ����
 T� Kielmann� Designing a Coordi�
nation Model for Open Systems� In Paolo Ciancar�
ini and Chris Hankin� editors� First International
Conference on Coordination Models� Languages and
Applications� number �
�� in LNCS� Springer Ver�
lag� April �����

�Krone et al�� ����
 O� Krone� B� Hirsbrunner� and
V� Sunderam� PT�PVM�� A Portable Platform
for Multithreaded Coordination Languages� Calcu�
lateurs Parall
eles� �������	����� �����

�Krone et al�� ����
 O� Krone� F� Chantemargue�
T� Dagae�� M� Schumacher� and B� Hirsbrunner�
Coordinating Autonomous Entities� In ACM Sym�
posium on Applied Computing 	SAC
���� Special
Track on Coordination� Languages and Applica�
tions� Atlanta� Georgia� USA� February �	 � March
� ����� To appear�

�Krone� ���	
 Oliver Krone� STL and Pt�PVM� Con�
cepts and Tools for Coordination of Multi�threaded
Applications� PhD thesis� University of Fribourg�
���	�

�Langton et al�� ����
 C� Langton� N� Minar� and
R� Burkhart� The Swarm simulation System� a
toolkit for building Multi�agent simulations� Tech�
nical report� Santa Fe Institute� �����

�Malone and Crowston� ����
 T� W� Malone and
K� Crowston� The Interdisciplinary Study of Coor�
dination� ACM Computing Surveys� �������	�����
March �����

�Maturana and Varela� ���

 H� Maturana and F�J�
Varela� Autopoiesis and Cognition� the realization
of the living� Reidel� Boston� MA� ���
�

�N� Carriero and D� Gelernter� ����
 N� Carriero and
D� Gelernter� Coordination Languages and Their
Signi�cance� Communications of the ACM�
�������	��
	� February �����

�Nwana� ����
 H� S� Nwana� Software Agents�
an Overview� Knowledge Engineering Review�
�������
������ �����

�P� Lerena and M� Courant� ����
 P� Lerena and M�
Courant� Bio�machines� In Arti�cial Life� vol�
ume V� Nara� Japan� �����

�Robert et al�� 
 A� Robert� F� Chantemargue� and
M� Courant� Emuds� Virtual worlds for arti�cial
agents� Submitted to ECAI����

�Ziemke� ���	
 T� Ziemke� Adaptive Behavior in
autonomous agents� To appear in Autonomous
Agents� Adaptive Behaviors and Distributed Sim�
ulations
 journal� ���	�


