
THE STL++ COORDINATION LANGUAGE:
APPLICATION TO SIMULATING THE AUTOMATION OF A TRADING SYSTEM

Michael Schumacher, Fabrice Chantemargue, Simon Schubiger, Béat Hirsbrunner
University of Fribourg, Computer Science Department, PAI group

Pérolles 3, CH-1700 Fribourg, Switzerland

Email:{FirstName.LastName}@unifr.ch, URL: http://www-iiuf.unifr.ch/pai

Oliver Krone
Swisscom, Information Technology and Applications

CH-3000 Bern, Switzerland

Email:Oliver.Krone@swisscom.com

Key words: Coordination, Multi-Agent Systems, Agent-Oriented Programming, Distributed Artificial Intelligence Ap-
plications, Communication Models.

Abstract: This paper introduces the STL++ coordination language, a C++-based language binding of the ECM coordi-
nation model. STL++ applies theories and techniques known from coordination theory and languages in dis-
tributed computing to try to better formalise communication and coordination in distributed multi-agent ap-
plications. STL++, as such, may be seen as a preliminary agent language which allows the organisational
structure or architecture of a multi-agent system to be described, with means to dynamically reconfigure it. It
is aimed at giving basic constructs for distributed implementations of generic multi-agent platforms, to be
run on a LAN of general-purpose workstations. We illustrate the application of STL++ to a real case study,
namely the application to simulating the automation of a trading system.

1. INTRODUCTION

Coordination theory introduced by Malone
(Malone & Crowston 1994) is concerned with
the management of dependencies between dif-
ferent activities. Tenets developed in this theory
encompass conceptual and methodological as-
pects that enable a distributed application to
have a better expressiveness and to be much
more easily implemented, through a clear sepa-
ration between coordination and computation
(Carriero & Gelernter 1992). In computer sci-
ence, research in coordination theory focused
on the definition of multiple coordination mod-
els and related languages (Papadopoulos & Ar-
bab 1998). A coordination language is the lin-
guistic embodiment of a coordination model
(Carriero & Gelernter 1992) and has to be or-

thogonal to a computation language, in the
sense that it extends the computation language
with additional functionalities which facilitate
the implementation of distributed applications.

The most representative of this class of lan-
guages is Linda (Carriero & Gelernter 1989),
which is based on a tuple space abstraction as
the underlying coordination model. Multiple
extensions and applications have been realised,
e.g. Bonita (Rawston & Wood 1997), Piranha
(Carriero, Freeman, Gelernter & Kaminsky
1995). Other models and languages are based
on control-oriented approaches, e.g.
IWIM/Manifold (Arbab 1996); message pass-
ing paradigms, e.g. CoLa (Hirsbrunner, Aguilar
& Krone 1994); object-oriented techniques, e.g.
Objective Linda (Kielmann 1997), JavaSpaces
(Sun Microsystems 1998); multi-set rewriting
schemes, e.g. Bauhaus Linda (Carriero,
Gelernter & Zuck 1995); or Linear Logic, e.g.



2 The STL++ Coordination Language:
Application to Simulating the Automation of a Trading System

Linear Objects (Bourgois, Andreoli & Pareschi,
1992).

Coordination is likely to play a central role
in multi-agent systems (MAS), because such
systems are inherently distributed. The impor-
tance of coordination can be illustrated through
two perspectives. On the one hand, a MAS is
built by objective dependencies which refers to
the configuration of the system and which
should be appropriately described in an imple-
mentation. On the other hand, agents have sub-
jective dependencies between them which re-
quires adapted means to program them, often
involving high-level notions such as beliefs,
goals or plans.

Agent languages should have means to
clearly describe the coordination part of a MAS
application. The coordination language STL++,
presented in this paper, applies theories and
techniques known from coordination theory and
languages in distributed computing to better
formalise communication and coordination in
distributed multi-agent applications. STL++, as
such, may be seen as a preliminary agent lan-
guage which allows the organisational structure
or architecture of a MAS to be described, with
some means to dynamically reconfigure it. It is
aimed at giving basic constructs to implement
more elaborated agent languages with powerful
tools.

The numerous activities that take place
within a trading system are typically distributed
and can be modelised by a multi-agent system.
It has led several works to propose solutions for
agent-based electronic commerce (Guttman,
Moukas & Maes 1998); see for instance Kasbah
(Chavez & Maes 1996), Market Maker (Wang
1999), SICS MarketSpace (Eriksson, Finne &
Sverker 1998), FishMarket (Rodriguez-Aguilar,
Noriega, Sierra & Padget 1997), ZEUS (Collis
& Lee 1998), or a proposal based on the
PageSpace platform (Ciancarini, Knoche,
Tolksdorf & Vitali 1996). This paper presents a
simulation of the automation of a trading sys-
tem and shows how it can be implemented in
STL++.

This paper is organised as follows. Section 2
describes the main features of STL++, an in-

stantiation of the ECM model in an object ori-
ented language, namely C++. Section 3 presents
the simulation of the automation of a trading
system. In the last section some conclusions are
drawn and future work is outlined.

2. THE COORDINATION
LANGUAGE STL++

STL++ is based on the ECM (Encapsulation
Coordination Model) coordination model
(Krone, Chantemargue, Dagaeff & Schumacher
1998). It uses an encapsulation mechanism as
its primary abstraction (referred to as blops),
offering structured separate name spaces which
can be hierarchically organised.

An application written using the STL++ li-
brary runs on a network of UNIX workstations
and consists of a hierarchy of blops in which
several agents run. Agents, which are embedded
in lightweight processes (threads), communi-
cate anonymously within and/or across blops
through connections. The latter are established
by the matching of the communication inter-
faces of these agents.

STL++ consists of five building blocks (see
figure 1):
1. Agents, the active entities;
2. Blops, as an abstraction and modularization

mechanism for group of agents and ports;
3. Ports, as the interface of agents/blops to the

external world;
4. Events, a mechanism to support dynamic

state changes inside a blop;
5. Connections, as a representation of matched

ports.
According to the general characteristics of

what makes a coordination model and corre-
sponding coordination language (Kielmann &
Wirtz 1996), these elements are classified in the
following way:
1. The Coordination Entities are the agents;
2. There are two types of Coordination Media

in STL++: events, ports, and connections
which enable coordination, and blops, the
repository in which coordination takes
place;



The STL++ Coordination Language:
Application to Simulating the Automation of a Trading System

3

3. The Coordination Laws are defined through
the semantics of the Coordination Tools (the
operations on the port abstraction) and the
semantics of the interactions with the coor-
dination media by means of events.

2.1 Blops

Blops are an abstraction for an agglomera-
tion of agents and blops to be coordinated and
serve as a separate name space for ports, agents,
and subordinated blops as well as an encapsu-
lation mechanism for events. Blops enable
structured hierarchical sets of agent environ-
ments to be set up, each of which being a pri-
vate coordination space with communication
interfaces (ports) to other environments. A set
of complex interconnected and hierarchically
organised spaces is indeed often desirable in
MAS.

A blop inherits from the base class Blop
and has to reimplement the start() method.
The user must call Blop::start() for ini-
tialisation. The creation of a blop results in the
initialisation of all enclosing blops, ports and
agents. New blops can be dynamically created
during execution. Blops can be parameterised.

2.2 Agents

An agent has a name and a set of ports
(which can be empty). It exclusively communi-
cates anonymously through its ports. So, an
agent does not have to care about to which
agent information will be transmitted or re-
ceived from. There is no agent identification;
instead a black box model is used.

Agent classes inherit from the base class
Agent and have to reimplement the start()
method. Agents can be created directly by
blops, through events or by other agents. An
agent is initialised with Agent::start(). To
communicate, agents dynamically create ports
of predefined types through instantiation of a
port class. Agent termination is implicit: the
agent disappears along with its ports and data,
when the corresponding object terminates.

Realising agents as black boxes is a way to
implement autonomous agents. An agent owns
exclusive control over its internal state and be-
haviour; it can define by itself its ports. It is
seen from external views (its environment) as a
delineated entity presenting clear interfaces.
Being distinct from the outside (the environ-
ment), an agent is part of its environment com-
posed by its surrounding blop and the agents
living in it.

Connection

Blop

Agent

Event

Port

Figure 1. The Key Components of the Coordination Language STL++



4 The STL++ Coordination Language:
Application to Simulating the Automation of a Trading System

2.3 Ports & Connections

Ports are the interfaces of agents and blops
to establish connections to other agents/blops,
i.e. communication is handled via a connection
and therefore over ports. Ports have one or sev-
eral names and a set of well defined features
describing the port's characteristics (see Table
1). STL++ distinguishes Primary and Secon-
dary Features. Primary features define the main
semantics of a port. Secondary features refine
the port semantics. The combination of port
features results in a port type. Names and type
of a port are referred to as the port's signature.

The primitives for accessing data via ports
are: get (blocking); put (nonblocking, except
for synchronous ports); and read (blocking),
only for blackboard ports.

Ports are a manner to implement sensing
and acting capacities of agents. In fact, agents
should perceive and act through different
means, in virtue of the possibility to define port
types and several instantiations of them. A port
perceives specific data; this is enforced with the
data type feature of ports.

Based on the combination of the primary
features, four basic port types are defined, re-
sulting in four connection types (see table 2).
To ease the implementation, two base port
classes for every port type have been defined,
one for agents and one for blops.
– Blackboard ports (BB_Port and

BB_Blop_Port classes). The resulting con-
nection has a blackboard semantics. The
number of participating ports is unlimited.
Messages are persistent objects, which can
be retrieved using a symbolic name. An
agent reading/writing a message does not

have to be aware of the agent that has writ-
ten or that will read this message. Moreover,
messages are not ordered.

– Group ports (Group_Port and
Group_Blop_Port classes). The resulting
connection has a closed group semantics.
The number of participating ports is unlim-
ited. Each member of the group can broad-
cast asynchronously messages to every par-
ticipant in the group. Messages are stored at
the receiver side. Thus, if a port in a group
disappears, then the sequence of information
that has not been read is lost.

– S-Stream ports (S_inPort, S_outPort,
S_Blop_inPort and S_Blop_outPort
classes). The resulting connection has the
same semantics as the S-Channel defined in
Arbab 1996 (S for synchronous). This con-
nection always results from the matching of
uni-directional contradictory oriented ports.
In contrast to other connections, this con-
nection never contains data, due to its syn-
chronous nature.

– KK-Stream ports (KK_inPort,
KK_outPort, KK_Blop_inPort and
KK_Blop_outPort classes). The resulting
connection has an analogous semantics to
the asynchronous KK-Channel defined in
Arbab 1996 (K for keep), with its specific
semantics (see below) when a port disap-
pears from one end of the connection. As for
S-Streams, this connection always results
from the matching of contradictory oriented
ports. If the connection is broken at its con-
suming port, the next new matching port
will consume all pending data. If the con-
nection is broken at its producing port, the
consuming port will be able to continue to
consume all data in the connection. If both

Table 1. Port Features (the first three are primary features, the last three are secondary features)
Feature Values Explanation
Communication blackboard, stream, group Basic communication paradigms.
Msg. Synchronisation synchron, asynchron Message passing semantics.
Orientation in, out, inout Direction of the data flow over a connection.
Saturation {1,2,...,INF} Number of connections a port can have.
Data Type typeName Type of data flowing through a port.
Lifetime {1,2,...,INF} Number of data units that can pass through a port before it

decays.



The STL++ Coordination Language:
Application to Simulating the Automation of a Trading System

5

ports are deleted, the connection disappears
with its data.

Table 2. Basic port types with their primary feature's val-
ues
Port Type Communi-

cation
Msg Synchro-
nisation

Orienta-
tion

Blackboard blackboard asynchronous inout
Group group asynchronous inout
S-Stream stream synchronous in or out
KK-Stream stream asynchronous in or out

2.4 Establishing Connections be-
tween Agents

Features of pairs of ports must comply with
each other for ports to match (see Table 3 and
for details see Schumacher, Chantemargue,
Krone & Hirsbrunner 1998). Furthermore, four
general conditions must be fulfilled for two
ports to get matched:
1. both use the same communication paradigm

(stream, group or blackboard);
2. both have at least one common name;
3. both belong to the same level of abstraction,

i.e., are visible within the same hierarchy of
blops; and

4. both belong to different objects (agent or
blop).
Conceptually the matching of agent ports

can be described as follows. When an agent is
created in a blop, it creates with its port signa-
ture a "potential" in the blop where it is cur-
rently embedded. If two compatible potentials
exist in the blop, and if conditions (1)-(4) are
fulfilled, the connection between the corre-
sponding ports is established and the potentials
disappear.

Table 3. Compatibility for Features F for two Ports P1 and
P2

Feature F Compatibility for ports P1 and p2
Communication P1.F ≡ P2.F
Msg. Synchronisation P1.F ≡ P2.F
Orientation P1.F = in and P2.F = out

or P1.F = P2.F = inout
Saturation Always compatible
Data Type P1.F ≡ P2.F
Lifetime Always compatible

2.5 Events

Events can be attached to conditions on
ports (see table 4 for an overview on condi-
tions). A condition determines when the event
is triggered.

Event classes inherit from Event; the
launch() method, which defines the acting of
the event, must be reimplemented.

Conditions on ports are checked when data
flow through the port. Events are instantiated
with a specific lifetime, which determines how
many times they can be triggered. Agents can
also directly raise events.

Table 4. Port Conditions
Condition Explanation
UnboundCond() Port not connected.
SaturatedCond() Port saturated.
MsgHandledCond(int n) n messages handled.
AccessedCond() Port accessed with put,

get or read primitives.
PutAccessedCond() Port accessed with put

primitive.
GetAccessedCond() Port accessed with get

primitive.
TerminatedCond() Port lifetime is over.

3. SIMULATION OF A TRAD-
ING SYSTEM

Although our goal is to fully automate a
trading system, for the time being, we rather
concentrate on simulating the automation of
such a system. Our aim, in this paper, is not to
focus on the control algorithms of the different
agents, nor on the negotiation techniques (see
e.g. Guttman & Maes 1998) that are undertaken
by the agents in order to process a transaction,
but rather to concentrate on the basic coordina-
tion mechanisms that come into play in the in-
teractions between agents, for which STL++ is
precisely suitable. Thus, in this implementation,
agents are endowed with a very basic autonomy
(Ziemke 1997) in the sense that they can make
decisions on their own, without user interven-
tion. More sophisticated autonomy-based con-
trol algorithms and smart negotiation tech-



6 The STL++ Coordination Language:
Application to Simulating the Automation of a Trading System

niques will be tackled in a further stage, without
challenging the work presented in this paper.

Figure 2 gives a scaled down graphical
overview of the organisation of the agents that
compose our trading system, as well as their
interactions. To avoid to overload the graph,
port names (on which the matching is based)
have been intentionally omitted.

The TradeWorld blop confines every activ-
ity in the trading simulation. Several Trading

System blops (TSB) are accessible by customers
(company or private customers), who are
authorised members of a trading system who
represent the end-user agents. Company or Pri-
vate Customers create queries to buy or sell
goods. These queries, written by the customer
on his query_P port (of KK_outPort type), are
transmitted to a Trading System Blop (TSB).

In a TSB reside Brokers, each of which be-
ing devoted to serve a particular customer, by

Trade Member Company Blop

Secretary

Broker

Trade Unit Blackboard

Trade
Manager

Trading System Blop
(TSB)

Private
Customer

query_gate_P

Transaction
Results

Blackboard

result_gate_P

query_P

result_P

query_Presult_P

off1_query_gate_P off1_res_gate_P off2_query_gate_poff2_res_gate_P

trade_P

query_P

trade_P

TradeWorld

Broker
Assistant

result_P

trade_P

trade_partner_o_P

trade_partner_i_P

NewBrokerAss_Evt

trade_P

Broker
Assistant

result_P

trade_partner_o_P

trade_partner_i_P query_P

trade_P

BrokerBroker
Assistant

trade_P

result_P

Company
Customer

result_P

query_P

Figure 2. Trading System with STL++



The STL++ Coordination Language:
Application to Simulating the Automation of a Trading System

7

handling his committed customer queries that
came in. A pair of ports on the TSB, namely
name_query_gate_P and name_res_gate_P
(name being off1 or off2, see figure 2), serves
as gates for each customer and his respective
broker. Every query is then posted by the bro-
ker to his trade_P port (of BB_Port type), e.g.,
sell 100 securities at 1000 CHF and therefore
published in the Trade Unit Blackboard. On the
trade_P port is bound the event NewBroker-
Ass_Evt with the condition PutAccessedCond;
the effect of the posting is that the NewBroker-
Ass_Evt event is triggered. The role of this
event is to dynamically create a Broker Assis-
tant that will be in charge of fulfilling the spe-
cific query, by establishing a dynamic connec-
tion with another broker assistant interested in
an (almost) symmetric query (e.g., buy 50 secu-
rities at 1000 CHF). This is possible on the ba-
sis of the information transmitted by the Trade
Manager.

All queries are supervised by the Trade
Manager; he knows who issued which query
(through an identification contained in the
query). For each new arrived query, the Trade
Manager checks whether a possible matching
between proposals can take place (e.g. case of a
broker who wants to buy securities of type A
and another broker who wants to sell securities
of type A). Whenever a kind of matching can
somehow be issued between two Broker Assis-
tants, the Trade Manager puts on the Trade
Unit Blackboard two appropriate messages for
each involved Broker Assistant. The informa-
tion transmitted contains among others a spe-
cific transaction id.

A new created Broker Assistant has first to
read on his trade_P port (of type BB_Port) in
order to be informed of a specific transaction.
Thanks to this information, he dynamically
publishes two KK_Ports using the transaction id
as port name (trade_partner_i_P and
trade_partner_o_P ports). A new double con-
nection is then established between these two
partners. Both involved Broker Assistants ex-
change useful information so as to make their
query successful (this is precisely where nego-
tiation techniques appear).

When a successful transaction (result of the
agreement of two Broker Assistants) is issued,
both Broker Assistants inform their committed
customers by transmitting appropriate informa-
tion on their result_P port (of type
KK_outPort), and then terminate. On customer
side, results about processed queries can be
collected either directly or through a Secretary
Agent (see figure 2). At regular intervals, non-
fulfilled queries are eliminated by the Trade
Manager; all involved entities are kept posted.

4. CONCLUSION

STL++ is a coordination language, which
provides a coordination framework for distrib-
uted multi-agent applications. It offers tools to
describe the organisational structure or archi-
tecture of a MAS, with means to dynamically
reconfigure it.

STL++ is still to be extended in order to en-
compass as much generic coordination patterns
as possible, yielding in templates at disposal for
general-purpose implementations.

The Trading System simulation should be
enhanced so as to tackle more sophisticated
autonomy-based control algorithms and smart
negotiation techniques.

We are working on a new ECM mapping in
Java, using the JavaSpaces (Sun Microsystems
1998) API. This new instantiation will allow
applications to be coordinated over the Web,
and in particular will be used to implement a
full scale Trading System distributed on the
Web and accessible through the Web. We plan
as well to use this new instantiation to realise
the management of a Resource Warehouse (in-
tegrated in the Web Operating Project, WOS in
short, see Lamine, Plaice & Kropf 1997) with
the aim of offering a resource sharing tool over
the Web (Schubiger & Krone 1998).

REFERENCES

Arbab, F. 1996, The IWIM Model for Coordination of
Concurrent Activities. In Ciancarini, P. & Hankin, C.



8 The STL++ Coordination Language:
Application to Simulating the Automation of a Trading System

(eds), Proceedings of the First International Conference
on Coordination Models, Languages and Applications,
number 1061 in LNCS. Springer Verlag.

Bourgois, M., Andreoli, J.M. & Pareschi, R. 1992, Ex-
tending Objects with Rules, Composition and
Concurrency: the LO Experience. Technical report,
European Computer Industry Research Centre, Mu-
nich, Germany.

Carriero,N. & Gelernter, D. 1989, Linda in Context.
Communications of the ACM, 32(4):444-458.

Carriero,N. & Gelernter, D. 1992, Coordination Lan-
guages and Their Significance. Communications of the
ACM, 35(2):97-107.

Carriero, N., Freeman, E., Gelernter, D. & Kaminsky, D.
1995, Adaptive Parallelism and Piranha. IEEE Com-
puter, 28(1).

Carriero, N., Gelernter, D. & Zuck, L. 1995, Bauhaus
Linda. In Ciancarini, P., Nierstrasz, O. & Yonezawa,
A. (eds), Object-Based Models and Languages for
Concurrent Systems, volume 924 of Lecture Notes in
Computer Science, Berlin. Springer Verlag.

Chavez, A. & Maes, P. 1996, Kasbah: An Agent Market-
place for Buying and Selling Goods. In Proceedings of
the First International Conference on the Practical Ap-
plication of Intelligent Agents and Multi-Agent Tech-
nology, London, UK. Lawrence Erlbaum.

Ciancarini, P., Knoche, A., Tolksdorf, R. & Vitali, F.
1996, PageSpace: An Architecture to Coordinate Dis-
tributed Applications on the Web. In Proceedings of the
Fifth International World Wide Web Conference, vol-
ume 28 of Computer Networks and ISDN Systems.

Collis, J. C. & Lee, L. C. 1998, Building Electronic Mar-
ketplaces with the ZEUS Agent Toolkit. In Proceedings
of 2nd International Conference on Autonomous
Agents; Workshop on Agent Mediated Electronic
Trading.

Eriksson, J., Finne, N. & Sverker, J. 1998, SICS Market-
Space: an Agent-Based Market Infrastructure. In Pro-
ceedings of the 1998 Workshop on Agent-Mediated
Electronic Trading. Springer-Verlag.

Guttman, R., Moukas, A. & Maes, P. 1998; Agent-
mediated Electronic Commerce: A Survey. Knowledge
Engineering Review.

Guttman, R. & Maes, P. 1998, Cooperative vs. Competi-
tive Multi-Agent Negotiations in Retail Electronic
Commerce. In Proceedings of the Second International
Workshop on Cooperative Information Agents
(CIA'98).

Hirsbrunner, B., Aguilar, M. & Krone, O. 1994, CoLa: A
Coordination Language for Massive Parallelism. In
Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), Los Angeles, Califor-
nia.

Kielmann, T. & Wirtz, G. 1996, Coordination Require-
ments for Open Distributed Systems. In Proceedings of
PARCO'95. Elsevier.

Kielmann, T 1997, Objective Linda: A Coordination
Model for Object-Oriented Parallel Programming.
PhD thesis, Dept. of Electrical Engineering and Com-
puter Science, University of Siegen, Germany.

Krone, O., Chantemargue, F., Dagaeff, T. & Schumacher,
M. 1998, Coordinating Autonomous Entities with STL.
The Applied Computing Review, Special issue on Co-
ordination Models Languages and Applications.

Lamine, S.B. , Plaice, J. & Kropf, P. 1997, Problems of
computing on the WEB. In Tentner, A. (ed), High Per-
formance Computing, 296-301, Atlanta, Georgia, USA.

Malone, T.W. & Crowston, K. 1994, The Interdisciplinary
Study of Coordination. ACM Computing Surveys,
26(1):87-119.

Papadopoulos, G.A. & Arbab, F. 1998, Coordination
Models and Languages. In Zelkowitz, M. (ed), Ad-
vances in Computers, The Engineering of Large Sys-
tems, volume 46. Academic Press.

Rawston, A. & Wood, A. 1997, Bonita: A Set of Tuple
Space primitives for Distributed Coordination. In
Sprague Jr., R. H. (ed), Proceedings of the 30th Hawaii
International Conference on System Sciences, Vol. 1,
Wailea, Hawaii. IEEE. Minitrack on Coordination
Languages, Systems and Applications.

Rodriguez-Aguilar, J. A., Noriega, P., Sierra, C. & Padget,
J. 1997, Fm96.5 a Java-based Electronic Auction
House. In Proceedings of the Second International
Conference on The Practical Application of Intelligent
Agents and Multi-Agent Technology (PAAM'97).

Schubiger, S. & Krone, O. 1998, Interactive Resource
Sharing on the Web. In Proceedings of Workshop on
Distributed Computing on the WEB, Rostock, Ger-
many, June 22-23.

Schumacher, M., Chantemargue, F., Krone, O. & Hirs-
brunner, B. 1998, STL++: A Coordination Language
for Autonomy-based Multi-Agent Systems. Technical
report, Computer Science Department, University of
Fribourg, Switzerland.

Sun Microsystems, Inc. 1998, Java Space TM Specifica-
tion, Revision 1.0.

Wang, D. 1999, The Market Maker. MIT Media Lab,
Software Agents Group. Available:
http://ecommerce.media.mit.edu/maker/maker.htm.

Ziemke, T. 1997, Adaptive Behavior in Autonomous
Agents. Autonomous Agents, Adaptive Behaviors and
Distributed Simulations' Journal.


