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Abstract 

Purpose

Radiomics allows for the quantification of medical images and facilitates precision med-

icine. Many radiomic features derived from computed tomography (CT) are sensitive to 

variations across scanners, reconstruction settings, and acquisition protocols. In this phan-

tom study, eight different CT reconstruction parameters were varied to explore image- and 

feature-level harmonization approaches to improve tissue classification.

Methods

Varying reconstructions of an anthropomorphic radiopaque phantom containing three 

lesion categories (metastasis, hemangioma, and benign cyst) and normal liver tissue 

were used for evaluating two harmonization methods and their combination: (i) generative 

adversarial networks (GANs) at the image level; (ii) ComBat at the feature level, and (iii) a 

combination of (i) and (ii). A total of 93 texture and intensity features were extracted from 

each tissue class before and after image-level harmonization and were also harmonized 

at the feature level. Reproducibility and stability were assessed via the Concordance 

Correlation Coefficient (CCC) and pairwise comparisons using paired stability tests. The 

ability of features to discriminate between tissue classes was assessed by measuring 

the area under the receiver operating characteristic curve. The global reproducibility and 

discriminative power were assessed by averaging over the entire dataset and across all 

tissue types.
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Results

ComBat improved reproducibility by 31.58% and stability by 5.24%, while GAN 

increased reproducibility by 8% it reduced stability by 4.33%. Classification analysis 

revealed that ComBat increased average AUC by 15.19%, whereas GAN decreased 

AUC by 2.56%.

Conclusion

While GAN qualitatively enhances image harmonization, ComBat provides superior sta-

tistical improvements in feature stability and classification performance, highlighting the 

importance of robust feature-level harmonization in radiomics.

Introduction
Radiomics is an evolving field in medical imaging that focuses on extracting and analyzing a 
large number of quantitative features. These features are used to build predictive models for 
diagnostic, prognostic, and treatment purposes [1,2]. The radiomics hypothesis assumes that 
complementary knowledge, beyond what can be seen with the naked eye, can be obtained 
from these extracted quantitative features eventually to aid clinical decision-making. This 
can be achieved using automated or semi-automated tools [3,4]. By utilizing the informa-
tion acquired from the extracted radiomic features, it is possible to bridge the gap between 
radiomics and clinical endpoints [5]. Radiomics has emerged as a result of extensive research 
in computer-based diagnosis, prognosis, and treatment [6,7]. An extensive amount of data is 
essential for developing predictive models, which are generally acquired from several hos-
pitals and institutions. Data heterogeneity is a moving target due to continuous upgrades in 
the scanner and protocol settings. Therefore, it is crucial to have large quantities of data to 
develop systems that can not only learn disease diversity but also account for the differences 
between different scanner/protocol settings. Previous research studies [8–13] have highlighted 
the impact of image acquisition and reconstruction parameters on the reproducibility of 
radiomic features. Feature variability may also arise from various factors, such as changes in 
contours or Regions of Interest (ROIs) [14], disparities in inter-observer delineation [14–17], 
diverse feature extraction algorithms [18], and variations in image processing techniques. 
Variability on both scanner and protocol settings can potentially compromise not only the 
reproducibility but also the discriminative power of the radiomic features. Previous inves-
tigations [1,13,19,20] have delved into the discriminative capabilities of radiomic features. 
Nevertheless, it is crucial to acknowledge that the mere reproducibility of a radiomic feature 
does not inherently assure its discriminative power [12,21]. Thus, it becomes evident that the 
two facets, namely reproducibility and discriminative power, are intertwined. For instance, a 
radiomic feature might demonstrate high reproducibility across diverse scanners and protocol 
configurations while offering little to no discriminative power for the specific problem under 
consideration [22].

Initiatives have been implemented to standardize computed tomography (CT) image 
acquisition and reconstruction parameters. For example, the Royal College of Radiologists 
[23,24] has issued guidelines emphasizing the need for standardizing CT protocols across 
patient populations, clinical pathways, and cancer imaging, with regular auditing of protocol 
compliance. Similarly, the European Society of Therapeutic Radiology and Oncology [25,26] 
panel has issued guidelines for image-guided radiation therapy in prostate cancer. Extend-
ing these initiatives to the field of radiomics could help to mitigate the disparities arising 
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from variability across different scanners, protocols, and reconstruction parameters. Radio-
mics guidelines [5,27–30] typically include standardized protocols for image acquisition, 
processing, feature extraction, and data analysis to ensure consistency and reproducibility 
of radiomic studies. These guidelines aim to reduce variability and improve the reliability 
of radiomic features across different studies and centers. However, due to the extensive 
variations in protocols across these domains, the practical application of these radiomics 
guidelines may not be feasible [31]. Certain studies have also exclusively concentrated on 
identifying reproducible features. For instance, Prayer et al. [32] examined the repeatability 
and reproducibility of radiomic features extracted from fibrosing interstitial lung disease 
CT images. Statistical methods such as z-score normalization [33], intensity harmonization 
methods such as histogram matching [34] and histogram equalization [35] as well as ComBat 
and its derivatives [36,37] have been previously implemented to rectify batch effects resulting 
from variations in scanner acquisition protocols and reconstruction parameters. Regarding 
image-level harmonization, recent studies [38,39] have utilized deep learning approaches. 
For instance, ImUnity [39] leverages a variational autoencoder Generative Adversarial Net-
work (GAN) for magnetic resonance imaging (MRI) harmonization, significantly improving 
the quality of harmonized images and classification accuracy across multiple sites. Similarly, 
a study by Marcadent et al. [38] utilizes a cycle-GAN demonstrating improved reproducibil-
ity of radiomic features in chest radiographs, improving diagnostic accuracy for conditions 
like congestive heart failure.

In this work, we analyze the reproducibility and discriminative power of features 
extracted from CT images of a phantom scanned under various scanner acquisition param-
eters, including different reconstruction algorithms, reconstruction kernels, slice thickness, 
and slice spacing. For instance, the sharpness of the image is impacted by changes made in 
the convolution criterion [40]. The reconstruction kernel is a crucial parameter within the 
reconstruction algorithm that defines the sharpness of the images. Furthermore, the vari-
ability in slice thickness and slice spacing significantly influences the heterogeneity of the 
imaging pixel resolution. In this study, we utilize feature-level harmonization with ComBat 
[41] and image-level harmonization with a GAN. While GANs have been challenged by 
newer models like diffusion models [42], they remain relevant for image-level harmoniza-
tion. GANs are capable of generating high-quality images efficiently and learning complex 
transformations. They are faster in both training and inference compared to diffusion 
models, which require multiple iterations. Our GAN architecture utilizes a refined shallow 
Convolutional Neural Network (CNN) as the generator and a critic as the discriminator, 
incorporating adversarial losses, error losses, and perceptual losses while implementing a 
Wasserstein GAN [43] with gradient penalty (WGAN-GP) [44]. This configuration aims 
to stabilize training and enhance the quality of the generated images, addressing common 
GAN training issues such as mode collapse and unstable dynamics. On the other hand, the 
ComBat method was originally developed to harmonize gene expression arrays [36], and 
soon thereafter, it was adapted to harmonize features from medical images [37,45]. We 
hypothesize that these methods impact the reproducibility and stability, and discriminative 
power of the radiomic features across various CT scanner protocol settings. Additionally, 
we introduce a novel ensemble strategy that sequentially combines these two methodolo-
gies, channeling the output of the GAN model into the ComBat method. While previous 
studies have used ComBat for radiomic features harmonization and GANs for image-to-
image translation, our study is the first to sequentially integrate these methodologies. As a 
sub-hypothesis, we propose that this innovative approach leverages the strengths of both 
methods, potentially improving the harmonization outcomes and ensuring more consistent 
radiomic analysis.
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Materials and methods

Data
The data used in this study is a three-dimensional anthropomorphic radiopaque phantom 
[12,46] that was developed to mimic cancer imaging using real patient textural data from the 
thorax and abdomen, including tumors and lesions. This custom-built phantom was fabri-
cated by printing real patient CT data on paper with an aqueous potassium iodide solution 
and finally assembling the sheets together. The phantom consists of two sections: an abdom-
inal and a thoracic section. The abdominal section is selected as it is well suited for quantita-
tive analysis with printable densities according to Bach et al. [46,47]. The abdominal section 
consists of four unique manually annotated ROIs. The annotation process resulted in four 
semantic ROI binary masks: two normal liver tissues, a metastatic tumor located in the liver 
originating from a colon carcinoma, a hemangioma, and two benign cysts. Refer to Fig 1 to 
visualize the phantom with the annotated ROIs in the liver region.

Image acquisition and reconstruction. The Siemens SOMATOM Definition Edge CT 
scanner (from Siemens Healthineers, Erlangen, Germany) was used to obtain images of 
the phantom. The acquisition settings of all the CT scans were the same, which included 
a tube voltage of 120kVp, a helical pitch factor of 1.0, a rotation time of 0.5 seconds, and 
a tube current time product of 147 mAs without any automatic tube current modulation. 
This resulted in a volume computed tomography dose index of roughly 10 mGy [12]. This 
open-source dataset used both filtered back projection (FBP) and iterative reconstruction 
(IR) algorithms, with IR implemented using ADMIRE (advanced modeled iterative 
reconstruction) at strength level 3. Additional reconstruction parameters included the 
kernel (two standard soft tissue kernels for each algorithm), slice thickness in millimeters 
(1.5, 2, 3), and slice spacing in millimeters (0.75, 1, 2). A total of eight different groups of 
parameter variations were obtained to evaluate the effect of harmonization using a deep 
learning technique on the acquired images and a statistical tool (ComBat) on the extracted 

Fig 1. Annotated ROIs in the liver area of a 3D anthropomorphic radiopaque phantom. (a) Presents an axial view 
of annotated ROIs in the liver region, with green representing benign cysts, blue representing hemangioma, red repre-
senting normal liver tissue, and yellow representing liver metastasis from colon carcinoma. (b) Presenting the coronal 
view of the phantom. (c) Depicting a 3D rendering of the annotated ROIs.

https://doi.org/10.1371/journal.pone.0322365.g001

https://doi.org/10.1371/journal.pone.0322365.g001
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handcrafted radiomic features. In total, the dataset comprised 240 images, with 30 images per 
group. Refer to Table 1 for the different reconstruction settings. Out of the eight groups in 
the dataset, Group 7 was chosen as a reference target group to which the other group images 
would be harmonized. The motivation for choosing Group 7 as the target group was that IR is 
a commonly used reconstruction algorithm [48] and the slice thickness and slice spacing are 
around the average value of the entire dataset.

Pre-processing. The CT images were first converted from Digital Imaging and 
Communications in Medicine (DICOM) format to NIfTI format and the masks were 
converted from RT-struct format to NIfTI format. The ROIs in the masks were re-labeled to 
have a total of four labels: ROI_1 is normal liver tissue (red in Fig 1), ROI_2 is the benign cysts 
(green in Fig 1), ROI_3 is hemangioma (blue in Fig 1), and ROI_4 is the colon carcinoma 
(yellow in Fig 1). The CT images were resampled to isotropic voxels (1.0, 1.0, 1.0) and cropped 
to remove the CT bed and the empty background of the phantom. The images were further 
resampled to a standard resolution of (256, 256, 246) to generate preprocessed images of 
standard resolution to facilitate paired image-to-image training of GANs. The CT images were 
clipped between [-45, 125] Hounsfield units where the structures within the phantom were 
qualitatively more distinct for the abdominal organs. This was concluded after viewing the 
images on the ITK-SNAP platform [49].

Methods
Two methodological approaches are employed across different domains. Specifically the ComBat 
[36] method is applied within the feature domain, i.e., on the radiomic features extracted from 
the CT images. Conversely, GANs are implemented on the images to perform an image-to-image 
translation from the source domain (Group 1, 2, 3, 4, 5, 6 or 8) to the target domain (Group 7).

Feature domain harmonization. ComBat harmonization is a statistical tool that was 
originally developed to correct batch effects across gene expression arrays [36]. It is an 
empirical Bayes-based tool that estimates batch effects while also monitoring the effect of 
explainable biological variables on the features to be harmonized. To harmonize radiomic 
features, ComBat calculates a feature value using equation (1) below:

 y Xij ij i i ij= + + +α β γ δ ε. .  (1)

Where:

• yij  represents the value of the radiomic feature for ROI j  on scanner i

• α  represents the average value for yij

Table 1. Overview of CT reconstruction parameter variations.

Group Reconstruction
Algorithm

Reconstruction
kernel

Slice thickness
(mm)

Slice spacing
(mm)

1 FBP B26f medium smooth ASA 1 0.75
2 FBP B30f medium smooth 1.5 1
3 FBP B30f medium smooth 2 1
4 FBP B30f medium smooth 3 2
5 IR I26f medium smooth ASA 1 0.75
6 IR I30f medium smooth 1.5 1
7 IR I30f medium smooth 2 1
8 IR I30f medium smooth 3 2

https://doi.org/10.1371/journal.pone.0322365.t001

https://doi.org/10.1371/journal.pone.0322365.t001
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• β  is a vector of regression coefficients that corresponds to each biological covariate, captur-
ing the influence of these variables on the radiomic features

• Xij  represents the biological covariates in the form of a design matrix

• γi  represents the additive effect scanner i  on the radiomic features, accounting for system-
atic differences introduced by different scanners (mean)

• δi  is the multiplicative scanner effect (variance)

• εij  represents the error term that follows a normal distribution with zero mean

The assumption under which ComBat operates is that the mean of site effects ( γi ) follows 
the same independent normal distributions across all features and the variance of the site 
effects ( δi ) follows independent inverse gamma distributions. ᾰ  and β̆ , the least-squares 
estimates for each feature are obtained. The empirical Bayes step in ComBat estimates the 
hyperparameters using the concept of the method of moments, incorporating data from 
all features [50]. Consequently, the empirical Bayes point estimates denoted as γi

*  and δi
*

, are obtained as the means of posterior distributions. The final ComBat-harmonized data is 
derived from equation (2) below:

 y
Y X

Xij
ComBat ij ij i

i
ij=

− − −
+ +

˘ ˘
˘ ˘.

.
*

*

α β γ

δ
α β  (2)

ComBat harmonization was implemented on the radiomic features which were derived using 
the Pyradiomics [51] package. Radiomic features were extracted for all 30 test-retest phan-
tom scans, from each ROI and for each group data and subsequently archived. Shape features 
were excluded and a total of 93 radiomic features were extracted. Thus, the extraction process 
yielded a total of 93 radiomic features ×  8 groups ×  30 scans ×  4 ROIs = 89280 features were 
extracted. ComBat is applied in the feature domain [31] across all batches (or groups) with 
Group 7 as the reference batch. It is worth noting that ComBat was employed separately for 
each ROI ensuring effective harmonization of radiomic features within each specific region.

Image domain harmonization. GANs [52] consist of two neural networks: a generator 
and a discriminator. The generator is responsible for generating synthetic data typically by 
transforming random noise inputs, while the discriminator aims to distinguish between 
real data and fake data generated by the generator network. In this particular study, a 
Pix2Pix GAN model [53] was employed for image-to-image translation, specifically 
focusing on image harmonization [31] as opposed to utilizing random noise inputs. The 
Pix2Pix model used in this study is a conditional GAN that is conditioned on input images 
to generate corresponding output images. Its primary objective is to learn a mapping from 
the input images to the desired output images. The training process involved pair-wise 
training, where all batches were trained to a reference batch, i.e., Group 7 images. For 
example, one GAN training session focused on harmonizing images from Group 1 (G_1) 
to Group 7 (G_7). This process was repeated with different combinations, resulting in 
a total of seven GANs trained for pair-wise harmonization: G_x vs G_7, where x in G_x 
denotes 1, 2, 3, 4, 5, 6, or 8.

During training, the generator network was trained on two-dimensional images with a 
resolution of (256 x 256), aiming to generate output harmonized images of the same size. 
In addition to the mentioned loss functions, the GAN also incorporated gradient penalty 
Wasserstein losses [44], to further improve the training stability and encourage convergence 
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between the generator and the discriminator. The discriminator network, originally responsi-
ble for classifying images as real or fake, was converted into a critic in the GAN formulation to 
estimate the Wasserstein distance between the generated and real images. By leveraging these 
components and techniques, the GAN model in this study aimed to achieve effective image 
harmonization through pair-wise training, utilizing the Pix2Pix architecture with additional 
gradient penalty Wasserstein losses (i.e., WGAN-GP) for enhanced training stability and 
improved convergence. The overall GAN architecture is shown below in Fig 2.

• Discriminator

The discriminator comprises four convolutional layers with filter maps numbered 
[32,64,128,256] each having a kernel size of 5 and stride of 2. Leaky ReLU activation function 
[54] and Spectral Normalization [55] are applied across these layers to ensure feature identi-
fication stability and prevent mode collapse. Dropout layers were applied after each layer to 
avoid overfitting the discriminator. The last layer of the discriminator aggregates the features 
into a scalar score, serving as the critic’s output in the WGAN-GP framework.

• Generator

The generator model is a shallow CNN specifically designed to capture texture information 
at different receptive fields (see Fig 3). This is particularly important as changes in scanning 
acquisition parameters typically result in variations in texture, making this CNN model ideal 

Fig 2. GAN workflow for image level harmonization. The GAN’s generator learns the mapping between the target 
and source domains, aided by a WGAN-GP-based critic. This process generates harmonized images closely resem-
bling the target domain while preserving source image characteristics.

https://doi.org/10.1371/journal.pone.0322365.g002

https://doi.org/10.1371/journal.pone.0322365.g002
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for our purpose. This shallow CNN consists of seven consecutive convolutional layers with 
kernel sizes of [15,13,11,9,7,5,3] respectively, a stride of 1, and ReLU activation. The varying 
kernel sizes allow the network to capture a broad spectrum of texture details. The output of 
these layers is aggregated and passed to the last convolutional layer using tanh activation. 
This last layer is further combined with the inputs, followed by ramp activation, to blend the 
textural features with the original contextual details of the input.

The discriminator’s loss function utilizes the Wasserstein loss with Gradient Penalty 
(weight=10.0) loss, which includes a gradient penalty term to enforce the Lipschitz constraint 
and stabilize training. For the generator, the loss function is a combination of several critical 
components: adversarial, perceptual, textural, and pixel-wise image differences. The per-
ceptual loss is calculated using the VGG19 network [56] from the last convolutional layer in 
each block. The normalized mean squared error (NMSE) is utilized to measure the pixel-wise 
image differences between the generated output and the target image, ensuring closer align-
ment between the two. Peak Signal-to-Noise ratio (PSNR) loss is measured to account for the 
quality of the reconstructed image compared to the original image. The total generator loss 
function for the same is as follows:

 L L L L L Ltotal adversarial perceptual L nmse PSNR= × + × + × + × + ×α β γ δ ε1  (3)

Where α β γ δ ε= = = = =1 0 1000 100 100 100. , , , ,  are the weights for each loss component 
to enhance the performance of the model. By incorporating these various loss components, 
the GAN’s loss function aims to capture different aspects of the desired output and guide the 
training process toward generating visually plausible results. During the training process, we 
employed an exponential decaying learning rate scheduler utilizing the RMSprop optimizer 

Fig 3. Architecture of the proposed shallow CNN.

https://doi.org/10.1371/journal.pone.0322365.g003

https://doi.org/10.1371/journal.pone.0322365.g003
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with an initial learning rate of 0.0002 for the discriminator and the generator with a batch size 
of 1. The dataset was split into 75–25 for train-test, a decision made to balance effective model 
training with the need for a robust evaluation given the limited dataset size [57]. To enhance 
the model’s generalization and robustness, we implemented data augmentation techniques 
during training. These techniques included random rotations, flipping, and jittering, effec-
tively augmenting the dataset, and mitigating potential overfitting issues [53] due to the lim-
ited variety of phantom images within the dataset. The training of the GAN framework was 
carried out on an NVIDIA GeForce RTX 2080 GPU Ti.

Integrated image and feature domain harmonization. This study proposes a novel, 
end-to-end harmonization approach by integrating ComBat, a feature-based harmonization 
method, with GANs for image harmonization. This strategy addresses the harmonization 
needed across both image and feature domains. After obtaining the harmonized images from 
GANs, we proceed to integrate ComBat harmonization. To apply ComBat harmonization, 
we utilize the harmonized images generated by GANs as input, along with the corresponding 
ROI masks. The integration of GANs and ComBat harmonization provides a comprehensive 
approach to address both image harmonization and radiomic feature harmonization 
challenges. (See Fig 4)

Fig 4. Experimental Setup Overview. This figure presents an overview of the experimental setup conducted in three sub- 
experiments for harmonizing radiomic data. Sub-experiment 1 involves image-level harmonization using GANs in a pairwise 
fashion. Sub-experiment 2 focuses on feature-level harmonization through ComBat on radiomic features extracted from ROIs. 
Sub-experiment 3 combines both image and feature-level harmonization, employing GANs followed by ComBat to achieve compre-
hensive harmonization.

https://doi.org/10.1371/journal.pone.0322365.g004

https://doi.org/10.1371/journal.pone.0322365.g004
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Experimental setup
The experiment is structured into three distinct sub-experiments, each focusing on different 
aspects of harmonization. The three experiments are depicted in Fig 4.

Image domain harmonization. In this sub-experiment, image-level harmonization is 
performed directly on the spatial 2D slices of the phantom data. The harmonization process 
is achieved using GANs in a pairwise fashion. Specifically, each group is harmonized to a 
reference group (Group 7) in seven different GAN sessions (each session is Group_x vs 
Group 7). The GANs aim to generate harmonized images that blend seamlessly with the target 
domain while preserving the content and characteristics of the source images.

Feature domain harmonization. The second sub-experiment focuses on feature-level 
harmonization. Radiomic features are extracted from each ROI present in all images for all 
groups. ComBat, a well-established harmonization method, is applied to adjust the extracted 
radiomic features using Group 7 as the reference batch. ComBat harmonization accounts 
for inter-scanner variability and ensures the harmonization of feature distributions across 
different sources or datasets.

Integrated image and feature domain harmonization. In the third sub-experiment, 
a holistic approach is adopted by combining both image and feature-level harmonization 
techniques. First, GANs are applied to harmonize the images, generating harmonized outputs. 
These harmonized images are then used as inputs to extract radiomic features. Subsequently, 
the radiomic features extracted from the harmonized images are processed through the 
ComBat method with Group 7 as the reference batch. This integrated approach aims to 
achieve enhanced harmonization by addressing both image-level and feature-level variations.

By conducting these three sub-experiments, the study aims to evaluate the effectiveness of 
each harmonization approach independently and in combination.

Analysis
Radiomic features reproducibility and stability analysis. To assess the reproducibility 

and stability of radiomic features before and after harmonization, we utilized three key 
analysis techniques: Uniform Manifold Approximation and Projection (UMAP) [58] plots, 
Concordance Correlation Coefficient (CCC) [59] metric and paired comparison tests. UMAP 
plots visualized the clustering patterns of radiomic features from 8 groups, 30 scans, and 4 
ROIs, before and after the harmonization, indicating improved reproducibility if clusters were 
closer to the reference group (Group 7). CCC metric quantified reproducibility by evaluating 
the agreement between feature sets, with higher CCC values after harmonization indicating 
improved consistency. Paired differences were first evaluated for normality using Shapiro-
Wilk test: if normality was satisfied paired t-tests were applied, else Wilcoxon signed-rank 
test was applied. As each feature was compared between reference group (Group 7) and seven 
other groups, raw p-values were adjusted using Bonferroni correction to account for multiple 
comparisons. Features with adjusted p-values >0.05 were considered stable. Power analysis 
(Cohen’s d = 0.5, α = 0.05) confirmed sufficient sample size at the ROI level (achieved power = 
1.0), though per-feature analysis indicated lower sensitivity (achieved power = 0.754).

Radiomic features discriminative power analysis. We implemented a comprehensive 
radiomics pipeline to analyze the discriminative power of the extracted features. Initially, 
radiomic features were extracted from ROIs 1–4. To enhance the robustness of the feature 
set, we first removed highly correlated features to reduce redundancy and avoid overfitting. 
This step is crucial for ensuring that the selected features are both reproducible and relevant. 
Subsequently, we assessed the discriminative power of the remaining features by conducting 
classification tasks using a Support Vector Machine (SVM). To optimize the performance 
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of the SVM, we performed a grid search combined with three-fold cross-validation to fine-
tune the hyperparameters. The classification performance for each ROI/tissue class was then 
quantified using the Area under the Receiver Operating Characteristic Curve (AUC).

Image quality evaluation. In evaluating the performance of the GAN, we adopted both 
qualitative and quantitative approaches. As there is no established consensus in the scientific 
community on the best evaluation metrics for generative models, we utilized PSNR (Peak 
Signal-to-Noise Ratio), structural similarity index measure (SSIM), and NMSE (Normalized 
Mean Squared Error) as metrics to assess the generated image quality comprehensively. For 
the qualitative analysis, we visually present the input images, the corresponding generated 
images produced by the GAN, and the target images from the desired domain (i.e., Group 7).

Results

Reproducibility and stability analysis
To visualize the clustering patterns of features, a two-dimensional UMAP reduction was per-
formed in the extracted features. This visualization captures the feature space for the original 
handcrafted radiomic features (O_roi in blue), harmonized features (H_roi in green), and fea-
tures from Group 7 (R_roi in orange) as depicted in Fig 5. (a) The proximity of the green and 
the orange points to each other suggests that ComBat harmonization has effectively shifted 
the harmonized features towards the reference gestures cluster, demonstrating the impact of 

Fig 5. UMAP plots with each subplot visualizing 90 samples (30 scans, for one ROI and one group), described by 
93 radiomic features, across harmonization methods.

https://doi.org/10.1371/journal.pone.0322365.g005

https://doi.org/10.1371/journal.pone.0322365.g005
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the ComBat method. (b) Here, the harmonized features overlap significantly with the refer-
ence features despite the proximity to original features and the presence of outliers, reflecting 
the GAN method. (c) and (d) display a strong overlap of the harmonized features over the 
reference features cluster, representing the impact of GAN+ComBat harmonization. Please 
refer to S1–S7 Figs in the S1 File for detailed UMAP plots for each group.

The CCC metric was used against Group 7 features for reproducibility analysis, with a 
CCC ≥ 0.95 indicating reproducibility. Constant features were excluded from CCC calcula-
tions. Table 2 shows that non-harmonized features had an average CCC of 0.92, with 68.57% 
features exceeding the reproducibility threshold. ComBat harmonization increased the 
average CCC to 0.99, with 94.29% meeting the threshold. The GAN method resulted in an 
average CCC of 0.91, with 74.29% reproducible features. The hybrid GAN+ComBat approach 
matched ComBat, with an average CCC of 0.99 and 94.29% reproducible features.

Table 3 presents the results of stability tests for radiomic features across all four ROIs, com-
paring the proportion of stable features between non-harmonized and harmonized methods 
(GAN, ComBat, and GAN+ComBat). ROI_1 shows high stability with no harmonization with 
98.92% stable features. In ROI_1, the proportion of stable features increased from 98.92% 
without harmonization to 100% with both ComBat and GAN+ComBat, while GAN alone 
resulted in 90.32% stability. For ROI_2, stability improved from 93.55% non-harmonized to 
100% with ComBat and GAN+ComBat, whereas GAN alone provided 87.10% stability. In 
ROI_3, stable features increased from 92.47% non-harmonized to 100% with ComBat and 
GAN+ComBat, while GAN alone achieved 89.25% stability. Similarly, in ROI_4, stability 
increased from 94.62% without harmonization to 100% with ComBat and GAN+ComBat, 
while GAN alone reached 96.77% stability. Overall, ComBat and GAN+ComBat achieved full 
stability (100%) across all ROIs, while GAN alone showed a slight decline in stability com-
pared to the non-harmonized features.

Discriminative power analysis
Radiomic features were extracted from the original images to obtain what can be termed as 
‘non-harmonized’ radiomic features. These features were then utilized to classify different 
ROIs through a multi-class classification algorithm employing SVMs, aimed at analyzing 

Table 2. CCC calculations averaged across features, ROIs, and groups for each harmonization method.

Method Average CCC % of reproducible features
No harmonization 0.92 68.57
ComBat 0.99 94.29
GAN 0.91 74.29
GAN+ComBat 0.99 94.29

https://doi.org/10.1371/journal.pone.0322365.t002

Table 3. ROI-Specific paired stability analysis results.

ROI No harmonization GAN ComBat Gan+ComBat
Stable features % Stable features % Stable features % Stable features %

ROI 1 92/93 98.92 84/93 90.32 93/93 100 93/93 100
ROI 2 87/93 93.55 81/93 87.10 93/93 100 93/93 100
ROI 3 86/93 92.47 83/93 89.25 93/93 100 93/93 100
ROI 4 88/93 94.62 90/93 96.77 93/93 100 93/93 100
Average 94.89 90.86 100 100

https://doi.org/10.1371/journal.pone.0322365.t003

https://doi.org/10.1371/journal.pone.0322365.t002
https://doi.org/10.1371/journal.pone.0322365.t003
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their discriminative capabilities. The resulting average scores per ROI show high AUC for 
ROI_1 (0.88) followed by ROI_4 (0.84), while ROIs 2 and 3 show lower AUC scores of 0.73 
(Table 4).S1 Table in S1 File (supplementary material) highlights the discriminative power of 
the non-harmonized radiomic features, extracted from the original images, across different 
groups and ROIs through AUC scores. S5 Table in S1 File (supplementary material) highlights 
pairwise statistical AUC comparisons, where Wilcoxon signed-rank tests are used to assess 
significant differences between each method.

Post-ComBat harmonization, the classification accuracy of the SVM algorithm, as indi-
cated by the AUC scores (refer to Table 4 and S2 Table in S1 File), was substantially enhanced. 
ComBat increased the average AUC for ROI_1 to 0.98, for ROIs 2 and 3 to 0.85, and for 
ROI_4 to 0.95, resulting in an overall average AUC of 0.91. The discriminative power of the 
features extracted from GAN harmonized images has been analyzed in Table 4 and S3 Table 
in S1 File (refer to supplementary material). For GAN-harmonized images, the average AUC 
for ROI_1 decreased to 0.79 from 0.88. The average AUC for ROIs 2 and 3 remained at 0.73, 
while ROI_4 saw a minor drop to 0.83. The GAN+ComBat harmonization approach yielded 
the highest average AUC of 0.98 for ROI_1. The AUC for ROIs 2 and 3 increased to 0.87 and 
0.88, respectively, and ROI_4 reached 0.96. The overall average AUC of 0.92 demonstrates the 
superior performance of the ensemble approach.

Image quality analysis
Fig 6 shows the results of applying the GAN harmonization method to a single image slice 
from Group 2. The sequences of images include the original image, before harmonization 
representing the baseline data; the target image, derived from Group 7, which serves as the 
reference for harmonization; the generated image, produced by GAN, which aims to replicate 
the target image’s texture information; the difference image illustrating the disparities between 
the generated image and target image. The generated image appears to be a less sharp version 
of the target image indicating a degree of blurring through the GAN method. Refer to S8 Table 
in S1 File for generated samples of a slice for all groups.

Table 5 gives an overview of the image quality scores following GAN harmonization across 
the groups with respect to the reference Group 7. The NMSE score ranges from 0.047 in 
Group 3, indicating the least error, to 0.121 in Group 6, which has the highest error. PSNR 
scores suggest that Group 3’s images are of the highest quality (32.26 dB), while Group 6’s 
images are of low quality (23.23 dB) among the groups. The SSIM for most groups is consis-
tent at 0.93, whereas Group 3 again scores the highest (0.97) and Group 5 the lowest (0.89). 
Overall. Group 3 consistently shows superior image quality post-GAN harmonization, while 
Group 6 lags, particularly in NMSE and PSNR.

Discussion
This study aims to harmonize CT scanner acquisition variability using deep learning and 
ComBat methodologies presenting a significant advance in the standardization of radiomics 

Table 4. ROI-Specific classification scores for all harmonization methods averaged over all groups.

Method ROI_1 ROI_2 ROI_3 ROI_4 Average AUC
Non-harmonized 0.88 0.73 0.73 0.84 0.79
ComBat 0.98 0.85 0.85 0.95 0.91
GAN 0.79 0.73 0.73 0.83 0.77
GAN+ComBat 0.98 0.87 0.88 0.96 0.92

https://doi.org/10.1371/journal.pone.0322365.t004

https://doi.org/10.1371/journal.pone.0322365.t004
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data. ComBat [36] was utilized at the feature level to harmonize the radiomic features 
extracted from these images. For image-level harmonization, GAN [43,53] was utilized to per-
form an image-to-image translation of paired images to harmonize the images from multiple 
groups into a reference group. Furthermore, this study investigates a novel ensemble strategy 
sequentially integrating GAN with the ComBat method. This approach builds upon observa-
tions that different harmonization methods can impact radiomic features in complementary 
ways [39,60]. By sequentially applying WGAN-GP and ComBat, we aimed to integrate their 
strengths to enhance both the stability and discriminative power of radiomic features. We 
hypothesized that these image-level and feature-level methods impact the reproducibility and 
stability, and discriminative power of the radiomic features. We also hypothesized that this 
integrated approach would improve the harmonization outcomes.

Fig 6. Example of GAN harmonization for Group 2.

https://doi.org/10.1371/journal.pone.0322365.g006

Table 5. Image quality scores from GAN harmonization.

Groups NMSE PSNR SSIM
Group 1 0.093 25.56 0.93
Group 2 0.092 25.49 0.93
Group 3 0.047 32.26 0.97
Group 4 0.098 24.88 0.92
Group 5 0.107 24.08 0.89
Group 6 0.121 23.23 0.93
Group 8 0.096 25.01 0.93

https://doi.org/10.1371/journal.pone.0322365.t005

https://doi.org/10.1371/journal.pone.0322365.g006
https://doi.org/10.1371/journal.pone.0322365.t005
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The CCC scores (see Table 2) revealed that the ComBat and GAN+ComBat methods 
yielded equally high results. Notably, both methods produced similar results in terms of CCC 
scores, suggesting that the inclusion of ComBat alone may be the driving force behind the 
enhanced reproducibility seen in the GAN+ComBat approach. This observation shows the 
potential superiority of ComBat over GANs, despite GANs ability to deliver better concor-
dance (i.e., CCC metric) than non-harmonized features. The stability analysis further demon-
strates the robustness of ComBat, with both ComBat and GAN+ComBat showing similar 
stability enhancements, with a 5.24% increase in the proportion of stable features. In contrast, 
GAN degraded feature stability compared to the non-harmonized approach (See Table 3) 
by 4.33% exhibiting limitations, particularly for ROI_1 (normal liver tissue), ROI_2 (benign 
cysts) and ROI_3 (hemangioma). Interestingly, ROI_1 remained highly stable throughout 
all conditions, with minimal variability even before harmonization (98.92% stable features). 
This suggests that ROI_1 may be inherently less sensitive to acquisition differences, requiring 
less correction compared to other ROIs. However, in the remaining ROIs, stability increased 
significantly with ComBat and GAN+ComBat, reinforcing the role of feature-level harmo-
nization in mitigating scanner-induced variability. This might suggest that while GAN does 
not significantly contributes to feature stability, its effectiveness may be strengthened by the 
statistical power of ComBat harmonization in the GAN+ComBat method.

The comparison of harmonization methods in terms of their influence on the discrimina-
tive power of radiomic features reveals distinct outcomes. The non-harmonized features have 
an overall average AUC of 0.79, setting a baseline for discriminative power. In contrast, the 
ComBat method significantly improves the discriminative power, achieving an overall average 
AUC of 0.91, an increase of 15.19% relative to the non-harmonized baseline (p=0.0026; refer 
S5 Table in S1 File). The GAN method slightly reduces the discriminative power, with an 
overall average AUC of 0.77 (a 2.53% decrease), and does not differ significantly from the 
non-harmonized approach (p = 1.0000; S5 Table in S1 File). This suggests that while GAN 
may have qualitative benefits [ 61–63] (see Fig 6 and S8 Fig in S1 File) in image translation, 
its capacity to improve the discriminative power of radiomic features is limited when used 
independently. Conversely, the GAN+ComBat ensemble approach notably improves the 
discriminative power, reflected by the highest overall average AUC of 0.92 (See Table 4 and S4 
Table in S1 File). While the GAN+ComBat ensemble approach improves the discriminative 
capacity of features by 16.46%, and significantly outperforms the non-harmonized approach 
(p = 0.0016). Further pairwise comparisons show that ComBat significantly outperforms 
GAN (p = 0.0098), and GAN+ComBat significantly outperforms GAN (p = 0.0043). However, 
ComBat does not significantly differ from GAN+ComBat (p = 0.1031). Overall, these results 
confirm that ComBat- based strategies (either ComBat alone or GAN+ComBat) provide sig-
nificant improvements in discriminative power over non-harmonized data, with GAN+Com-
Bat achieving the highest overall AUC. These observations present a new hypothesis for future 
research, which could potentially demonstrate significance with larger datasets and further 
refinement of such model integration techniques. While our study addresses the harmoniza-
tion of radiomic features using phantom data, it primarily focuses on distinguishing between 
healthy and non-healthy tissues. The absence of pathological information in the phantom 
dataset limited our ability to perform more complex clinical correlations. Power analysis 
confirmed sufficient sample size at the ROI level (achieved power = 1.0), but feature-level 
comparisons indicated lower power (0.754), suggesting that additional data may enhance sta-
tistical robustness. Future work utilizing patient data with detailed pathological information 
could further validate and extend the clinical applicability of our harmonization approach.

Interestingly Group 3 exhibited exceptional results, in the aspect of image quality from 
GAN harmonization (refer to Fig 6 and Table 5). This is potentially due to the factor that 
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the slice thickness and spacing parameters are well-matched with the reference group. 
The correlation suggests that such acquisition parameters could influence the reproduc-
ibility and stability of the extracted radiomic features [12]. This observation leads us to a 
new hypothesis: that these acquisition parameters critically impact image harmonization 
outcomes and targeting one type of variability at a time may be more effective than simul-
taneously addressing multiple scanner variabilities. It is noteworthy to mention the training 
duration required for GANs, which, in our study, involved multiple training iterations for 
each group. The extensive time investment for training GANs is a practical consideration 
for future applications, especially in clinical settings where rapid image processing is often 
required. It is also important to consider other resource demands such as the need for 
high-performance GPUs, their cost, and CO2 footprint. GANs are also “notoriously unsta-
ble and sensitive” during training, which often requires careful hyperparameter tuning and 
experimentation [64,65]. Additionally, GANs also suffer from mode collapse issues [66] and 
convergence failure [64].

Several studies [67–72] have utilized ComBat to harmonize radiomic features. More 
recently, Lee et al. [73] showed that the stability measurement of radiomic features could 
serve as an evaluation metric in training a GAN to denoise CT images. The image was 
randomly divided into ten patches, from which radiomic features were extracted, includ-
ing first-order features, texture features, and wavelet features. To assess the reproducibility 
of radiomics, the CCC was calculated between the source and target image patches, using 
0.85 as a threshold; features exceeding this threshold were considered reproducible. This 
approach not only confirmed the feature stability but also enabled the fine-tuning of the 
GAN’s hyperparameters. Our study explores two methods from two different domains; one 
is a method (ComBat) applied to the features, while the other (GAN) is applied directly to 
the images. Feature-level harmonization, such as ComBat, effectively removes batch effects 
and biases, ensuring stable and reproducible radiomic features. However, it might exclude 
some subtle informative features and depend heavily on annotated data. Image-level harmo-
nization using deep learning approaches like GANs can better preserve spatial and textural 
information and improve feature consistency across data heterogeneity but is computation-
ally intensive and may introduce unnatural artifacts if not properly implemented. Moving 
forward, we plan to integrate radiomics reproducibility assessments into GAN training to 
prioritize feature harmonization.

Previous studies have demonstrated the effectiveness of ComBat in harmonizing radiomic 
features across different datasets and have explored the use of GANs for image translation. 
Our study advances the field by uniquely combining these two methodologies in a sequential 
approach. Whereas prior research typically focused on either feature-level or image-level har-
monization independently, our work integrates both levels to evaluate their complementary 
effects on the stability and discriminative power of radiomic features. However, our study’s 
reliance on phantom data rather than real patient scans may limit the direct clinical applica-
bility of our findings. While phantoms are valuable for standardized testing, they cannot fully 
capture the complexity of human pathology. Future work should, therefore, focus on applying 
these harmonization techniques to patient datasets to confirm their effectiveness in a clinical 
setting. While this study investigated models trained on paired data, it would also be worth-
while to develop generalizable models on unpaired data.

Additionally, the influence of other CT scanning parameters, such as dose, tube voltage, 
and pitch, should also be considered, as they could also impact the characteristics of radiomic 
features [12]. This study used data acquired from a single CT scanner, which allowed for con-
trolled analysis of harmonization methods but does not encompass the full range of imaging 
conditions encountered across different scanners. As iterative reconstruction algorithms vary 
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considerably between manufacturers and software versions, comparing data from different 
institutions can be challenging.

Additionally, domain adaptation/generalization techniques could be explored to enhance 
further the generalizability and robustness of radiomic features across diverse imaging con-
ditions. Given the strong results achieved with feature-based methods like ComBat, statisti-
cal feature-based methods could be integrated with deep features [8] to limit the disparities 
caused by scanners and protocols.

Conclusions
In summary, the variations in CT scanner settings significantly influence radiomic features, 
impacting their reliability for clinical tasks. Our study shows the effectiveness of harmoni-
zation techniques like ComBat and GANs to mitigate these variations, enhancing the repro-
ducibility stability, and discriminative power of radiomic features in personalized medicine. 
By integrating these methodologies, we aim to refine the robustness of radiomics analysis, 
ensuring that these biomarkers remain consistent and discriminative across different scanners 
and protocol settings.

Supporting information
S1 File.   S1 Fig. UMAP plots with each subplot showing 360 radiomic features samples 
(from 30 scans, 4 ROIs and original/harmonized/reference features), described by 93 radio-
mic features, and across harmonization methods for Group 1. S2 Fig. UMAP plots with 
each subplot showing 360 radiomic features samples (from 30 scans, 4 ROIs and original/
harmonized/reference features), described by 93 radiomic features, and across harmonization 
methods for Group 2. S3 Fig. UMAP plots with each subplot showing 360 radiomic features 
samples (from 30 scans, 4 ROIs and original/harmonized/reference features), described by 93 
radiomic features, and across harmonization methods for Group 3. S4 Fig. UMAP plots with 
each subplot showing 360 radiomic features samples (from 30 scans, 4 ROIs and original/
harmonized/reference features), described by 93 radiomic features, and across harmonization 
methods for Group 4. S5 Fig. UMAP plots with each subplot showing 360 radiomic features 
samples (from 30 scans, 4 ROIs and original/harmonized/reference features), described by 93 
radiomic features, and across harmonization methods for Group 5. S6 Fig. UMAP plots with 
each subplot showing 360 radiomic features samples (from 30 scans, 4 ROIs and original/
harmonized/reference features), described by 93 radiomic features, and across harmonization 
methods for Group 6. S7 Fig. UMAP plots with each subplot showing 360 radiomic features 
samples (from 30 scans, 4 ROIs and original/harmonized/reference features), described by 
93 radiomic features, and across harmonization methods for Group 8. S8 Fig. Samples of 
generated images from GAN harmonization. S9 Fig. Probability Density Function (PDF) 
plots showing the distribution of selected radiomic features across harmonization methods 
(ComBat, GAN, GAN+ComBat) for different ROIs. Features displayed per ROI include: Each 
plot compares the original (O, blue), harmonized (H, red), and reference (R, green) feature 
distributions, highlighting the effect of each method on radiomic features. S1 Table. Group-
Wise and ROI-Specific Classification Scores: AUC scores for Non- Harmonized Radiomic 
Features S2 Table. Group-Wise and ROI-Specific Classification Scores: AUC scores for 
ComBat harmonization S3 Table. Group-Wise and ROI- Specific Classification Scores: AUC 
scores for GAN harmonization S4 Table. Group-Wise and ROI-Specific Classification Scores: 
AUC scores for GAN+ComBat harmonization S5 Table. Pairwise Wilcoxon signed-rank test 
Bonferroni corrected p-values comparing AUC differences among harmonization methods
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