
FedGP: Genetic Programming for Evolutionary
Aggregation in Federated Learning with non-IID

data

Elia Pacioni1,2[0000−0002−1557−4870], Francisco Fernández De
Vega1[0000−0002−1086−1483], and Davide Calvaresi2[0000−0001−9816−7439]

1 Universidad de Extremadura, Av. Santa Teresa de Jornet, 38. 06800 Mérida, Spain
eliapacioni@unex.es, fcofdez@unex.es

https://www.unex.es
2 University of Applied Sciences and Arts of Western Switzerland (HES-SO

Valais/Wallis), Rue de l’Industrie 23, 1950 Sion, Switzerland
elia.pacioni@hevs.ch, davide.calvaresi@hevs.ch

https://www.hevs.ch

Abstract. Federated Learning (FL) represents a distributed, privacy-
preserving machine learning (ML) paradigm that enables decentralized
model training across multiple clients. While traditional aggregation
techniques, such as Federated Averaging (FedAVG), have demonstrated
effectiveness, they often struggle in Not Independent and Identically
Distributed (non-IID) scenarios, where data distributions vary signifi-
cantly among clients. To address these limitations, this study introduces
FedGP, a novel aggregation strategy based on Genetic Programming
(GP). FedGP dynamically evolves aggregation functions, enabling adap-
tive and personalized model updates that better capture the heterogene-
ity inherent in distributed data. The proposed method is evaluated on
the PathMNIST dataset, employing a comprehensive experimental de-
sign comprising 24 configurations, including 8 setups with FedAVG and
16 with FedGP. The comparative analysis highlights FedGP’s superior
generalization capabilities and reduced biases, outperforming FedAVG
in terms of accuracy. These results position FedGP as a robust and scal-
able solution for real-world FL applications, particularly in environments
characterized by data heterogeneity.

Keywords: Federated Learning · Genetic Programming · Model Aggre-
gation · FedGP · FedAVG

1 Introduction

FL was introduced by Google in 2016 as a collaborative ML paradigm that trains
models across decentralized data sources while keeping data localized on client
devices [1]. Designed to address growing privacy and confidentiality concerns,
FL enables the development of large-scale models without requiring data trans-
fer to a central server [2]. A notable application is Google’s Gboard, which uses

2 E. Pacioni et al.

data from Android devices to train predictive text models locally, enhancing
user experience while maintaining privacy [3]. Beyond mobile applications, FL
has seen significant adoption in sectors such as healthcare [4] and finance [5, 6],
where sensitive data demands robust privacy measures. At the core of FL is the
aggregation of models, a pivotal step in the distributed training process. During
aggregation, client devices send locally trained models (or their weights) to a
central server, which synthesizes them into a global model using a predefined
aggregation strategy. This process maintains data locality, reducing communica-
tion overhead and ensuring client privacy. In 2017, McMahan et al. [1] proposed
the de-facto standard approach, namely Federated Averaging (FedAVG), that
combines client updates through weighted averaging based on local data sizes.
However, FedAVG faces significant challenges in non-IID settings, where data
distributions vary across clients [7, 8]. In such cases, it struggles to effectively
capture local data peculiarities, potentially resulting in a global model with
reduced generalization capability [9, 10]. Simplified variants of FedAVG, which
eliminate client weighting, have been explored to address privacy concerns, but
they often fail to address data heterogeneity effectively. Improving model ag-
gregation in FL remains a critical challenge. Recent studies highlight the need
for techniques that accommodate client-specific variability and adapt to the dy-
namic nature of distributed systems [9, 10]. Enhancing aggregation mechanisms
is essential for boosting global model accuracy and robustness, particularly in
complex, heterogeneous environments.

This paper introduces FedGP (Federated Genetic Programming aggrega-
tion), a novel approach that leverages GP to address the limitations of traditional
aggregation methods [11]. GP, a well-known ML evolutionary algorithm, is well-
suited for adaptive and complex problems. During the last decades, it has shown
flexibility to adapt to many different tasks, and has demonstrated its capabilities
for addressing symbolic regression problems. This particular kind of problem is
the inspiration for the problem we address: the dynamic evolution of aggregation
strategies in the context of FL. As we show below, FedGP reduces biases and
enhances generalization, surpassing the constraints of averaging-based methods.

The remainder of this paper is organized as follows: Section 2 outlines the
theoretical background and technologies relevant to FL and GP. Section 3 de-
tails the methodology, including the FedGP framework, its evolution process,
and selection criteria. Experimental results on the PathMNIST dataset [12], fo-
cusing on non-IID scenarios, are discussed in Section 4, comparing FedGP with
FedAVG. Finally, Section 5 summarizes the findings, highlights contributions,
and proposes avenues for future research.

2 State of Art

Since its introduction, FL has enabled decentralized ML across mobile and IoT
(Internet of Things) systems, utilizing the vast amounts of locally generated data
without requiring centralization. This paradigm has revolutionized distributed
learning, with applications in mobile systems (e.g., GBoard for typing predic-

FedGP: Genetic Programming-based Aggregation in FL 3

tion [3], Siri for text prediction and speech recognition [13]), healthcare (e.g., clin-
ical data aggregation [14]), finance, and beyond. FL operates through an iterative
process where client devices train local models on private data. Instead of sharing
raw data, only model updates (weights or gradients) are sent to a central server
for aggregation, preserving privacy [2]. FL can follow either a centralized or de-
centralized architecture [15]. Centralized FL relies on a server to aggregate local
patterns, while decentralized FL distributes this task among devices, enhancing
robustness against server failures or attacks. FL can also utilize horizontal or ver-
tical data partitioning [16, 17]: in horizontal partitioning, clients hold data with
similar attributes but different examples, while in vertical partitioning, clients
have different attributes but the same examples, requiring complex integration
techniques. Model updates in FL occur synchronously or asynchronously [17].
Synchronous FL waits for all clients to finish training before aggregation, which
can cause delays in heterogeneous networks. Asynchronous FL updates models
as client contributions arrive, improving efficiency but introducing challenges in
stability. Security and privacy in FL are bolstered by differential privacy, secure
multiparty computation (SMC), and homomorphic encryption, which protect
user data during model updates [18, 19]. Techniques like gradient compression
and quantization further optimize communication in low-bandwidth environ-
ments. Aggregation is at the core of FL. Federated Averaging (FedAVG) is the
most widely used method, combining local updates through a weighted average
based on client data sizes [20]. However, FedAVG struggles in non-IID scenarios
where data distributions vary across clients, leading to suboptimal global mod-
els. Alternative approaches, such as local customization and meta-learning, have
been explored to address these limitations [21]. Another method, FedSGD, up-
dates models using stochastic gradients instead of averaging but is less commonly
adopted [22]. Model adaptability remains a critical challenge in FL, particularly
in non-IID environments and resource-limited settings. Meta-learning has shown
promise in enabling global models to quickly adapt to new contexts with minimal
data [21]. Additionally, bio-inspired algorithms have been explored to optimize
transmission efficiency and model performance [23].

2.1 Genetic Programming and its role in FL

Introduced by Koza et al. [24], GP excels in optimizing non-linear functions and
dynamically generating solutions. Since its inception, various versions of GP
have been introduced, each contributing unique methodologies and insights to
the field. These include (i) Linear GP [25], which structures programs as linear
sequences of instructions, thereby enhancing their interpretability and optimiz-
ing performance; (ii) PushGP [26], a variant that employs the Push programming
language, specifically designed to handle complex data structures and streamline
the manipulation of evolving programs; (iii) Cartesian GP [27], which represents
programs as acyclic directed graphs, affording greater flexibility in structural
representation and facilitating the modeling of complex functions and systems;
(iv) Geometric Semantic GP [28], which incorporates geometric operators to im-
prove solution-finding efficiency and yield more robust outcomes than conven-

4 E. Pacioni et al.

tional methodologies; (v) Grammatical Evolution [29], which leverages formal
grammars to direct program evolution, thus enabling the generation of solutions
in specific programming languages through the encoding of grammatical rules;
and (vi) Genetic Improvement [30], which utilizes evolutionary techniques to en-
hance existing software, thereby augmenting performance, energy efficiency, or
adaptability to new platforms while preserving the software’s original function-
ality.

GP has demonstrated success across diverse domains, including creative ap-
plications (e.g., designing a commemorative coin in Portugal [32]), music tran-
scription [33], learning the behaviors and generate controllers in the gaming
field [34], in healthcare to improve medical image analysis [35], and to predict
stock option prices in finance [36].

Notably, GP addresses a variety of problems, with the symbolic regression [31]
being particularly salient, as it seeks to develop mathematical models that accu-
rately represent a given set of data points defining the model. As described be-
fore, in FL, we need a mathematical function -the aggregation function- to work
with multiple data, which somehow resembles the symbolic regression approach
frequently addressed by means of GP. GP can be thus leveraged to evolve ag-
gregation strategies tailored to heterogeneous data and varying client resources.

Its ability to adapt to complex scenarios makes it well-suited for enhancing FL
aggregation methods. Despite advances in aggregation, traditional approaches
like FedAVG show clear limitations [2], particularly in non-IID settings [5, 6].
This paper proposes a novel use of GP to address these challenges, focusing on
two key research questions: RQ1: How can GP improve model aggregation in
FL, particularly in non-IID contexts? RQ2: What is the impact of parameter
and hyperparameter configurations on the performance of FedGP compared to
FedAVG (e.g., batch size, aggregation frequency)?

3 Methodology

To address challenges related to the aggregation limitations of traditional meth-
ods, such as FedAVG, in FL scenarios characterized by non-IID distributions,
we developed FedGP, a GP method designed to improve model aggregation.
This approach dynamically optimizes aggregation functions to accommodate
data variability across clients. In addition, to evaluate the performance of FedGP
compared to FedAVG, we explore the effect of different parameter configurations
and hyperparameters, such as batch size and aggregation frequency, by analyzing
their impact on the generalization ability of the overall model.

The methodology, illustrated in Figure 1, is structured into six main blocks
in agreement with the project’s design phases. In particular, selection of the
dataset study (3.1); technology stack definition (3.2); aggregation methods se-
lection (3.3); FL and GP’s parameters setup (3.4); environments configuration
and tests execution (3.5); and results aggregation and analysis (3.6).

FedGP: Genetic Programming-based Aggregation in FL 5

S1 S2 S3 S4 S5 S6

Dataset
Selection

Technology stack
Selection

Aggregation
method

 Selection

CNN
hyperparameters

Optimization

GP primitives
Selection

GP parameters
Study

Test environment
Configuration

FedGP tests
Execution

FedAVG tests
Execution

Results
Aggregation and

Analysis

Fig. 1. Methodology organized in steps

3.1 S1: Dataset Selection

The first step concerns selecting a dataset suitable for FL experiments. Among
FL’s main application areas is the medical field, so the PathMNIST dataset from
the MedMNIST collection [12], designed for medical image analysis, was chosen.
Specifically, PathMNIST contains 107,180 colon histopathological images, each
28x28 pixels in size, it is important to note that in this study, we work directly
with images and not with features pre-extracted in tabular data. The dataset
is divided into nine classes representing different tissue types and histological
structures. Derived from pathology slides, the dataset is intended for classifica-
tion tasks in medical research, supporting automated diagnosis and analysis. The
compactness and variety of classes make PathMNIST ideal for FL experiments.
Figure 2 shows a sample montage of images from the dataset. The classes present
are: (i) adipose, (ii) background, (iii) debris, (iv) lymphocytes’, (v) mucus’, (vi)
smooth muscle, (vii) normal colon mucosa, (viii) cancer-associated stroma, (ix)
colorectal adenocarcinoma epithelium.

3.2 S2: Technology stack selection

The entire project is developed using Python with PyTorch libraries to handle
neural network (NN) training, operations on tensors, and DEAP [37] for GP.
The model adopted for training the PathMNIST dataset is a convolutional neural
network (CNN) suggested by the creators of the dataset. It has five convolutional
layers followed by batch normalization, ReLU (rectified linear unit) activations,
max-pooling, and a final section of fully connected layers. During the training
process, accuracy and loss will be calculated for both training and validation
data.

Individuals in FedGP are represented as expression trees, where each node
corresponds to an operation or value. The tree structure is ideal for representing
aggregation functions, as it allows mathematical and aggregation primitives to
be dynamically combined to create complex functions. We describe below the
functions and terminals used to build these expression trees.

6 E. Pacioni et al.

Fig. 2. PathMNIST image collage. Source: [12]

3.3 S3: Aggregation method Selection

Figure 3 shows the FL workflow. We have the central server and the user clients.
Initially, the global model is trained on the server and sent to the clients. Once
in the clients, local training begins on the user data. Using the synchronous,
centralized version of FL, the server waits to receive the clients’ models before
aggregating them into a new global model.

In these expressions, one will always work with model weights. However, there
are aggregation methods that work with gradients.

The aggregation step represents a crucial moment in the FL process.
As analyzed in the literature review, there are several methods. However,

since this is the first step toward introducing a new aggregation method, un-
weighted FedAVG was chosen as the reference method for comparison. FedAVG
is a logical choice since it represents the standard for aggregation in FL. The
choice of the unweighted version is intended to provide privacy to users, so the
server does not need to know how much data each client has processed and what
type it is. FedAVG averages the weights of the clients and thus creates a new
model to propagate. Overall, this study proposes the introduction of FedGP. The
latter, unlike FedAVG, does not simply average but generates an expression tree
that will then be applied to the clients to aggregate the weights and generate
the new model to be propagated.

In the FL workflow, these operations are repeated cyclically unless a stop
condition is established, such as a threshold on the metrics.

3.4 S4: FL and GP configurations

To ensure the proper functioning of the system, a prior study is carried out on
the hyperparameters to be used for CNN. Specifically, we have:

FedGP: Genetic Programming-based Aggregation in FL 7

Local 
Model

Client 1

Local 
Model

Client 2

Local 
Model

Client 3

Aggregation 
Server

W_x_1 W_x_2 W_x_n

Aggregation Phase

FedAVG

<latexit sha1_base64="BFmCL5emDWiDkCM8wmJMk5+Cu+M=">AAACQXicbVDLSgMxFM34rPU16tJNsAiCUGaKVDdC0Y3LCvYBnTJk0kwbmkmGJCOWYX7NjX/gzr0bF4q4dWOm7aIPLwTOPece7s0JYkaVdpw3a2V1bX1js7BV3N7Z3du3Dw6bSiQSkwYWTMh2gBRhlJOGppqRdiwJigJGWsHwNtdbj0QqKviDHsWkG6E+pyHFSBvKt9ueMHLuTr0I6UEQpq0s85/gNfRCifAM67vwHM60lbzFPaHVPM+zlGdF3y45ZWdccBm4U1AC06r79qvXEziJCNeYIaU6rhPrboqkppiRrOglisQID1GfdAzkKCKqm44TyOCpYXowFNI8ruGYnXWkKFJqFAVmMj9ULWo5+Z/WSXR41U0pjxNNOJ4sChMGtYB5nLBHJcGajQxAWFJzK8QDZILTJvQ8BHfxy8ugWSm71XL1/qJUu5nGUQDH4AScARdcghq4A3XQABg8g3fwCb6sF+vD+rZ+JqMr1tRzBObK+v0DV5ywrg==</latexit>

Wx =
W1 + W2 + · · · + Wn

n

FedGP

Global Model PropagationLocal Model Propagation Local Model Training

Fig. 3. FL workflow with explanation of FedAVG and FedGP aggregation methods.

– Learning rate: 0.0005. The optimizer’s learning rate controls the weights’
update rate during training.

– Momentum: 0.9. Momentum factor applied to improve convergence by re-
ducing oscillations during optimization.

– An SGD optimizer is used to update CNN weights during training.
– Cost function: unweighted CrossEntropyLoss.

Next, the parameters for FL are set: (i) 5 clients; (ii) 2 epochs of global model
training; (iii) 15 epochs of local training.

Before addressing the GP parameters, it is essential to define the primi-
tives and the terminals that the GP can use during the evolutionary process.
FedGP uses a specific set of primitives to work with PyTorch tensors. The
functions torch.sum, torch.sub, torch.mul, and torch.abs are comprise in
the PyTorch library, and torch protected div, torch mean, torch median,

torch protected sqrt have been implemented for this study. For examples
torch median and torch mean receive an arbitrary number of tensors, and place
them in a stack. In turn, the averaging function is applied, so a new tensor with
the same shape as the starting tensors and whose values are the mean and me-
dian of the tensors are obtained.

To handle data variability and prevent numerical errors, protected functions,
such as protected division and protected square root, were introduced to avoid
problematic situations such as division by zero and square roots of negative
numbers.

F =

torch.sum, torch.sub, torch.mul,

torch protected div, torch mean,

torch median, torch.abs, torch protected sqrt

 (1)

Equation 1 shows the available primitives, groupable into categories:

8 E. Pacioni et al.

– Arithmetic operations: torch.add, torch.sub, torch.mul, torch protected div
– Aggregation functions: torch mean, torch median
– Transformations: torch.abs, torch protected sqrt

These primitives allow a wide range of aggregation configurations to be ex-
plored.

As terminals, placeholders are set up to represent the clients (equation 2) that
have submitted their weights. Thus, when the tree is processed by the fitness
function, the placeholder is replaced with the appropriate tensor.

T =
{
CLIENT1, CLIENT2, . . . , CLIENTn

}
(2)

A study is also carried out over GP parameters, choosing: (i) Generations:
10; (ii) Elitism: 1; (iii) Mutation rate: 40%; (iv) Crossover rate: 60%

To balance the complexity of the generated aggregation functions and their
generalization, a minimum depth of 1 and a maximum depth of 5 were set
for the trees. These depth limits were also chosen to avoid trees that might be
computationally burdensome. Trees are combined through a one-point crossover,
in which a subtree of one individual is swapped with another, maintaining the
syntactic validity of the trees. Mutation is done by generating a subtree and
replacing it with a subtree of the individual. The elitism of size 1 is adopted,
preserving the individual with the best fitness in each generation to ensure that
the best solutions are preserved.

The fitness function performs model validation on a test dataset. Model val-
idation consists of making predictions on the GP aggregated model, and the
fitness value is the accuracy value obtained as a result of the inference. The test
dataset used for inference comprises a subset of PathMNIST images not used in
the training phase, with an IID distribution to evaluate the entire model equally.

3.5 S5: Tests Performed

The FL process was implemented in a virtualized environment, leveraging threads
to simulate distributed execution rather than employing physically distributed
devices. This approach was adopted to avoid introducing additional variables
that were not instrumental to the study. All tests were conducted on a server
running Ubuntu 20.04.6, equipped with two Intel® Xeon® Silver 4310 pro-
cessors, 512 GB of RAM, and four NVIDIA A100 PCIe GPUs (40 GB memory
each), using CUDA version 12.4 and Python version 3.11.10. The GP algorithm
was executed on the CPU, while the training and validation of FL models, as well
as the evaluation of GP individuals, were performed on the GPU. To emulate
the federated setting, model training executions were conducted in isolation on
the same machine, with no physical distribution of devices. This methodology al-
lowed for an accurate investigation of FL dynamics in a controlled environment.
Each configuration was executed 30 times to ensure the statistical robustness
and reliability of the results.

All experiments are performed with horizontal data partitioning and cen-
tralized and synchronous FL architecture. Given the nature of the proposed

FedGP: Genetic Programming-based Aggregation in FL 9

methodology, the results can be easily generalized to asynchronous decentral-
ized architecture.

Table 1 shows the variable parameters used in the experiments. Combining
the available parameters between FedAVG and FedGP, taking into consideration
that the number of individuals is only relevant for GP. The batch size represents
the amount of data processed at each iteration in the NN. The Weights Send-
ing Frequency determines every how many epochs model weights are sent from
clients to servers, thus when the aggregate model is created. Then, the GP algo-
rithm will run whenever the model needs to be aggregated. The iid parameter
represents the data distribution; if the iid variable is false, data will have a non-
IID distribution; otherwise, it will IID distribution. Figure 4 shows an example
of IID and non-IID data distribution. In the non-IID case, it is not guaranteed
that all clients have at least one example for each class; this condition promotes
the divergence of local models from the global model trained on all classes. In-
dependent of data distribution, a test dataset containing data from each class is
used when the model is evaluated. For FedGP, the use of 20 or 50 individuals
for the population is proposed. Finally, we find the chosen aggregation methods:
FedGP and FedAVG.

Table 1. Possible values for each variable parameter in the experiment configurations.

Parameter Values

Batch Size 64, 128

Weights Sending Frequency 3, 5

IID TRUE, FALSE

Individuals (FedGP only) 20, 50

Aggregation Method FedAVG, FedGP

IID NON-IID

Fig. 4. Example of IID and non-IID data distribution for the PathMNIST dataset.

Table 2 summarizes the configurations used for the tests. Notably, the server
is initialized with 10% of the dataset data to create the base model. The remain-

10 E. Pacioni et al.

ing 90% is distributed among the clients. This design choice is intentional and
not a fixed requirement; it allows the model to be heavily influenced by client
contributions, enabling a clearer evaluation of aggregation effects. The experi-
ments are divided into two groups: the first uses a batch size of 64, while the
second uses a batch size of 128.

Table 2. Experiments’ Configurations (Aggregation frequency is expressed in epochs).

ID
Batch
Size

Agg.
Freq.

IID Ind. Method ID
Batch
Size

Aggr.
Freq.

IID Ind. Method

1 64 3 TRUE - FedAVG 13 128 3 TRUE - FedAVG

2 64 3 TRUE 20 FedGP 14 128 3 TRUE 20 FedGP

3 64 3 TRUE 50 FedGP 15 128 3 TRUE 50 FedGP

4 64 3 FALSE - FedAVG 16 128 3 FALSE - FedAVG

5 64 3 FALSE 20 FedGP 17 128 3 FALSE 20 FedGP

6 64 3 FALSE 50 FedGP 18 128 3 FALSE 50 FedGP

7 64 5 TRUE - FedAVG 19 128 5 TRUE - FedAVG

8 64 5 TRUE 20 FedGP 20 128 5 TRUE 20 FedGP

9 64 5 TRUE 50 FedGP 21 128 5 TRUE 50 FedGP

10 64 5 FALSE - FedAVG 22 128 5 FALSE - FedAVG

11 64 5 FALSE 20 FedGP 23 128 5 FALSE 20 FedGP

12 64 5 FALSE 50 FedGP 24 128 5 FALSE 50 FedGP

3.6 S6: Results Aggregation and Analysis

For each run, accuracy values for each epoch of the server and all clients are
saved, along with data for each aggregation step. With the information ob-
tained, mean and standard deviation are then calculated for server, client, and
aggregate. So, the average among the 5 clients of all runs is averaged for each
configuration. Afterward, the data is prepared for analysis and is eventually
processed to generate a graph. Initially, a graph is created for each configura-
tion, and subsequently, additional graphs are produced to directly compare two
configurations in order to determine which one performs best.

4 Results and Analysis

The results of the experiments are shown in Figures 5 and 6 and represent the
comparison between FedGP and FedAVG, in terms of accuracy, in the above
configurations.

For FedGP to improve the compactness of the narrative, only the experiments
involving 50 individuals are shown since they performed slightly better than the
version with 20 individuals in each case.

FedGP: Genetic Programming-based Aggregation in FL 11

4.1 IID Data Distribution

Figure 5 deals with the experiments with IID data distribution; experiments 1-3
and 7-9 have a batch size of 64, while experiments 13-15 and 19-21 have a batch
size of 128. In this case, a larger batch size helps to decrease the results’ vari-
ability by presenting a reduced standard deviation. Examining the comparison
between FedGP (orange color) and FedAVG (blue color), we see that FedGP
always obtains higher accuracy results than FedAVG. Results are always better
regardless of the frequency of aggregation of the weights. In some cases, FedGP
performs higher than the maximum value obtained by the clients; in each case,
it obtains higher accuracy than the average of the clients.

1 - 3 7 - 9

13 - 15 19 - 21

Fig. 5. Experiments with distribution of IID data. The blue represents the FedAVG,
while the orange represents the FedGP.

4.2 non-IID Data Distribution

Focusing on the analysis of the experiments with non-IID data distribution,
Figure 6, we notice that the standard deviation takes significant values; this is
because clients are not guaranteed to have examples of every class in the dataset,
so at the time of evaluation, clients are obtained that perform very well and

12 E. Pacioni et al.

others of poor quality. This scenario is critical because it more closely represents
the reality of FL application. Also, it is evident how FedGP always gets superior
results than FedAVG. Moreover, with non-IID data, FedGP aggregates models
with accuracy higher than the best of clients; this highlights the robustness and
quality of the proposed aggregation method.

4 - 6 10 - 12

16 -18 22 - 24

Fig. 6. Experiments with distribution of non-IID data. The blue represents the Fe-
dAVG, while the orange represents the FedGP. The numbers below each graph repre-
sent the configurations shown.

Thus, regardless of batch size, aggregation frequency, and data distribution,
FedGP represents a promising aggregation method in FL.

Figure 7 represents an expression tree produced by GP. It shows how it com-
bined the primitives of mean and median and selected the clients by effectively
discarding client3. Therefore, it is interesting to study how, in addition to ag-
gregating the weights, GP can select the clients that bring quality to the final
solution while directly ignoring the others.

However, occasionally, GP produces higher quality but also bigger individu-
als than the one presented in Figure 7. For instance, Figure 8 shows the largest
individual produced by GP, respecting the algorithm’s depth limits. In the fu-
ture, we plan to analyze the way GP produces the aggregation of clients which
may be of help to design new strategies.

FedGP: Genetic Programming-based Aggregation in FL 13

torch
mean

torch
mean client2

torch
median

client2 client2client1

client4 client4 client1 client1

Fig. 7. Representation of an individual produced by the FedGP at the end of the
evolutionary process.

torch
median

torch
mean

torch
mean

client4 client2 client4

abs

torch
meantorch

mean

mul

torch
median

client4

client5
client4

client5client2

client1
client3

client4 client2

client1 client3

client2

torch
protected

sqrt

client2

client1

client4

torch
median

torch
protected

sqrt

client3

torch
median

client5
client3

sub

client2 client2

Fig. 8. Representation of the biggest individual produced by the FedGP.

Although only one network type was used for this experiment, FedGP is
designed to be model-agnostic, thus applicable to any network architecture.

5 Conclusions

This paper introduced FedGP, a novel GP-based aggregation method for FL.
To evaluate its effectiveness, FedGP was compared against FedAVG, the most
widely adopted aggregation method in FL. The results demonstrate that FedGP
consistently outperforms FedAVG and, in some cases, even surpasses the best-
performing individual client. These findings highlight the robustness and supe-

14 E. Pacioni et al.

rior performance of GP-driven aggregation compared to traditional global mod-
els.

A key insight from the experiments is that FedGP is minimally impacted
by changes in aggregation frequency. Aggregation intervals were varied between
every three epochs and every five epochs, yet FedGP outperformed FedAVG in
both configurations, showcasing its adaptability to diverse operational settings.

Further testing in both IID and non-IID data environments confirmed FedGP’s
efficacy in addressing challenges associated with heterogeneous data distribu-
tions. While the experiments focused on a CNN, the model-agnostic design of
FedGP indicates its potential applicability to other types of NNs.

This study marks a significant step forward in advancing aggregation tech-
niques for FL through GP. To enhance the proposed method’s validation, fu-
ture work includes (i) comparing FedGP with alternative aggregation methods
beyond FedAVG, (ii) exploring a gradient-based version of FedGP in place of
the current weight-based approach, (iii) investigations into FedGP’s resilience
in privacy-preserving scenarios by analyzing its behavior in the event of noise
injection; (iv) The study of the impact of dynamic variation in client data on
FedGP; (v) Finally, expand the range of GP primitives and incorporating ran-
dom ephemeral constants could further refine its ability to handle tensor data
transformations.

In summary, FedGP offers a compelling improvement over FedAVG, paving
the way for the development of innovative aggregation operators through evolu-
tionary algorithms. This work underscores promising opportunities for enhancing
the future of Federated Learning.

6 Acknowledgements

This work was partially supported by the HES-SO RCSO ISNet HARRISON
grant (WP2), the Spanish Ministry of Economy and Competitiveness (PID2020-
115570GB-C21, PID2023-147409NB-C22), funded by MCIN/AEI/10.13039/5011
00011033, and the Junta de Extremadura (GR15068).

References

1. McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and Agüera y Arcas,
B. (2017). Communication-Efficient Learning of Deep Networks from Decentralized
Data. In Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics (AISTATS). http://arxiv.org/abs/1602.05629.

2. Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N.,
Bonawit, K., Charles, Z., Cormode, G., Cummings, R., D’Oliveira, R. G. L., Eichner,
H., El Rouayheb, S., Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B.,
Gibbons, P. B., Gruteser, M., Harchaoui, Z., He, C., He, L., Huo, Z., Hutchinson,
B., Hsu, J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Konecný, J., Korolova,
A., Koushanfar, F., Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M., Nock,
R., Özgür, A., Pagh, R., Qi, H., Ramage, D., Raskar, R., Raykova, M., Song, D.,

FedGP: Genetic Programming-based Aggregation in FL 15

Song, W., Stich, S. U., Sun, Z., Suresh, A. T., Tramèr, F., Vepakomma, P., Wang,
J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X., Yu, H., and Zhao, S. (2021). Advances
and Open Problems in Federated Learning. Now Foundations and Trends

3. A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein, H. Eich-
ner, C. Kiddon, and D. Ramage, “Federated Learning for Mobile Keyboard Predic-
tion,” arXiv preprint, 2019. Available at: https://arxiv.org/abs/1811.03604.

4. Rieke, N., Hancox, J., Li, W., Milletar̀ı, F., Roth, H. R., Albarqouni, S., Bakas, S.,
Galtier, M. N., Landman, B. A., Maier-Hein, K., Ourselin, S., Sheller, M., Sum-
mers, R. M., Trask, A., Xu, D., Baust, M., and Cardoso, M. J. (2020). The future
of digital health with federated learning. npj Digital Medicine, 3(1), art. no. 119.
https://doi.org/10.1038/s41746-020-00323-1.

5. Y. Liu, Z. Ai, S. Sun, S. Zhang, Z. Liu, and H. Yu, “FedCoin: A Peer-to-Peer Pay-
ment System for Federated Learning,” in Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), vol. 12500, Springer, 2020, https://doi.org/10.1007/978-3-030-63076-
8 9.

6. G. Long, Y. Tan, J. Jiang, and C. Zhang, “Federated Learning for Open Banking,” in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 12500, Springer, 2020, pp.
https://doi.org/10.1007/978-3-030-63076-8 17.

7. W. Nie, L. Yu, and Z. Jia, “Research on Aggregation Strategy of Feder-
ated Learning Parameters under Non-Independent and Identically Distributed
Conditions,” in Proceedings of the 2022 4th International Conference on Ap-
plied Machine Learning (ICAML), Changsha, China, 2022, pp. 41–48. DOI:
10.1109/ICAML57167.2022.00016.

8. H. Reguieg, M.E. Hanjri, M.E. Kamili, and A. Kobbane, “A Comparative Evalua-
tion of FedAvg and Per-FedAvg Algorithms for Dirichlet Distributed Heterogeneous
Data,” in Proceedings of the 2023 10th International Conference on Wireless Net-
works and Mobile Communications (WINCOM), Istanbul, Turkiye, 2023, pp. 1–6.
DOI: 10.1109/WINCOM59760.2023.10322899.

9. X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the Conver-
gence of FedAvg on Non-IID Data,” arXiv preprint, 2020. Available at:
https://arxiv.org/abs/1907.02189.

10. Wang, J., Liu, Q., Liang, H., Joshi, G., and Poor, H. V. (2020). Tackling the objec-
tive inconsistency problem in heterogeneous federated optimization. In Proceedings of
the 34th International Conference on Neural Information Processing Systems (NIPS
’20) (art. no. 638, pp. 1–13). Curran Associates Inc., Red Hook, NY, USA.

11. Pacioni, E., Fernández De Vega, F., Calvaresi C., “Towards a Meaningful Commu-
nication and Model Aggregation in Federated Learning via Genetic Programming”.
ICAART 2024.

12. Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfister, H., and Ni, B. (2023).
MedMNIST v2: A large-scale lightweight benchmark for 2D and 3D biomedical image
classification. Scientific Data, 10(1), 41. Nature Publishing Group UK London.

13. Granqvist, F., Seigel, M., van Dalen, R., Cahill, Á., Shum, S., and Paulik, M.
(2020). Improving on-device speaker verification using federated learning with pri-
vacy. https://arxiv.org/abs/2008.02651.

14. du Terrail, J. O., Léopold, A., Joly, C., Beguier, C., Andreux, M., Maussion, C.,
Schmauch, B., Tramel, E. W., Bendjebbar, E., Zaslavskiy, M., Wainrib, G., Milder,
M., Gervasoni, J., Guérin, J., Durand, T., Livartowski, A., Moutet, K., Gautier, C.,
Djafar, I., Moisson, A.-L., Marini, C., Galtier, M., Bataillon, G., and Heudel, P.-E.

16 E. Pacioni et al.

(2021). Collaborative Federated Learning behind Hospitals’ Firewalls for Predicting
Histological Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Can-
cer. medRxiv, DOI: https://doi.org/10.1101/2021.10.27.21264834.

15. Mart́ınez Beltrán, E. T., Pérez, M. Q., Sánchez, P. M. S., Bernal, S. L., Bovet,
G., Pérez, M. G., Pérez, G. M., and Celdrán, A. H. (2023). Decentralized Federated
Learning: Fundamentals, State of the Art, Frameworks, Trends, and Challenges.
IEEE Communications Surveys & Tutorials, 25(4), 2983–3013, Fourthquarter 2023.
DOI: 10.1109/COMST.2023.3315746.

16. Yang, Q., Liu, Y., Chen, T., and Tong, Y. (2019). Federated Machine Learning:
Concept and Applications. ACM Transactions on Intelligent Systems and Tech-
nology (ACM Trans. Intell. Syst. Technol.), 10(2), Article 12, 19 pages. DOI:
https://doi.org/10.1145/3298981.

17. Xu, C., Qu, Y., Xiang, Y., and Gao, L. (2023). Asynchronous federated learning
on heterogeneous devices: A survey. Computer Science Review, 50, 100595. ISSN:
1574-0137. DOI: https://doi.org/10.1016/j.cosrev.2023.100595.

18. Mugunthan, V., Polychroniadou, A., Byrd, D., and Balch, T. H. (2019). SMPAI:
Secure Multi-Party Computation for Federated Learning. In 33rd Conference
on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
https://www.jpmorgan.com/content/dam/jpm/cib/complex/content/technology/ai-
research-publications/pdf-9.pdf.

19. Madi, A., Stan, O., Mayoue, A., Grivet-Sébert, A., Gouy-Pailler, C., and Sirdey, R.
(2021). A Secure Federated Learning framework using Homomorphic Encryption and
Verifiable Computing. In 2021 Reconciling Data Analytics, Automation, Privacy,
and Security: A Big Data Challenge (RDAAPS), Hamilton, ON, Canada, pp. 1–8.
https://doi.org/10.1109/RDAAPS48126.2021.9452005.

20. Qi, P., Chiaro, D., Guzzo, A., Ianni, M., Fortino, G., and Piccialli,
F. (2024). Model aggregation techniques in federated learning: A com-
prehensive survey. Future Generation Computer Systems, 150, 272–293.
https://doi.org/10.1016/j.future.2023.09.008.

21. Fallah, A., Mokhtari, A., and Ozdaglar, A. (2020). Personalized Federated Learn-
ing: A Meta-Learning Approach. https://arxiv.org/abs/2002.07948.

22. Yuan, H.; Ma, T. Federated accelerated stochastic gradient descent. Adv. Neural
Inf. Process. Syst. 2020, 33, 5332–5344.

23. Souza, M. M. de, Holm, A., Biczyk, M., and de Castro, L. N. (2024). A Systematic
Literature Review on the Use of Federated Learning and Bioinspired Computing.
Electronics, 13(16), 3157. DOI: https://doi.org/10.3390/electronics13163157.

24. John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press. http://mitpress.mit.edu/books/genetic-
programming

25. Brameier, M., and Banzhaf, W. (2007). Linear Genetic Programming. Springer,
New York, NY. DOI: https://doi.org/10.1007/978-0-387-31030-5.

26. Spector, L. (2001). Autoconstructive Evolution: Push, PushGP, and Pushpop. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO).

27. Miller, J. F., and Thomson, P. (2000). Cartesian genetic programming. In Lecture
Notes in Computer Science, Vol. 1802, pp. 121–132. https://doi.org/10.1007/978-3-
540-46239-2 9.

28. Moraglio, A., Krawiec, K., and Johnson, C. G. (2012). Geometric semantic genetic
programming. In Lecture Notes in Computer Science, Vol. 7491 (Part 1), pp. 21–31.

29. O’Neill, M., and Ryan, C. (2001). Grammatical evolution. IEEE
Transactions on Evolutionary Computation, 5(4), 349–358. DOI:
https://doi.org/10.1109/4235.942529.

FedGP: Genetic Programming-based Aggregation in FL 17

30. Petke, J., Haraldsson, S. O., Harman, M., Langdon, W. B., White, D. R., and
Woodward, J. R. (2018). Genetic Improvement of Software: A Comprehensive Sur-
vey. IEEE Transactions on Evolutionary Computation, 22(3), 415–432, June 2018.
https://doi.org/10.1109/TEVC.2017.2693219.

31. Augusto, D. A., and Barbosa, H. J. C. (2000). Symbolic regression via genetic pro-
gramming. In Proceedings, Vol. 1, Sixth Brazilian Symposium on Neural Networks,
Rio de Janeiro, Brazil, pp. 173–178. https://doi.org/10.1109/SBRN.2000.889734.

32. Machado, P., Martins, T., Correia, J., Santo, L. E., Lourenço, N.,
Cunha, J., Rebelo, S., Martins, P., and Bicker, J. (2024). Designing Coins
with Evolutionary Computation. SIGEVOlution, 17(2), Article 1, 9 pages.
https://doi.org/10.1145/3695933.3695934.

33. Miragaia, R., Fernández, F., Reis, G., and Inácio, T. (2021). Evolving a Multi-
Classifier System for Multi-Pitch Estimation of Piano Music and Beyond: An
Application of Cartesian Genetic Programming. Applied Sciences, 11(7), 2902.
https://doi.org/10.3390/app11072902.

34. Wilson, D. G., Luga, H., Cussat-Blanc, S., and Miller, J. F. (2018). Evolv-
ing simple programs for playing Atari games. In GECCO 2018 - Proceedings
of the 2018 Genetic and Evolutionary Computation Conference, pp. 229–236.
https://doi.org/10.1145/3205455.3205578.

35. Langdon, W. B., Modat, M., Petke, J., and Harman, M. (2014). Improving 3D
medical image registration CUDA software with genetic programming. In GECCO
2014 - Proceedings of the 2014 Genetic and Evolutionary Computation Conference,
pp. 951–958. DOI: https://doi.org/10.1145/2576768.2598244.

36. Hsu, C.-M. (2011). A hybrid procedure for stock price prediction by integrating self-
organizing map and genetic programming. Expert Systems with Applications, 38(11),
14026–14036. https://doi.org/10.1016/j.eswa.2011.04.210.

37. Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., & Gagné, C.
(2012). DEAP: Evolutionary algorithms made easy. Journal of Machine Learning
Research, 13, 2171–2175.

