Combining local search and directed mutation in
evolutionary approaches to 4-part harmony

Elia Pacionil0000—0002—1557—4870] ,,,q Francisco Ferndndez De
Vegal0000-0002-1086—1483]

Universidad de Extremadura, Av. Santa Teresa de Jornet, 38. 06800 Mérida, Spain
HES-SO Valais/Wallis, Sierre, Switzerland
eliapacioni@unex.es, elia.pacioni@hevs.ch, fcofdez@Qunex.es
https://www.unex.es

Abstract. Artificial Intelligence assisted music composition has gained
popularity during the last decade, but still faces problems and difficul-
ties. This paper approaches 4-part harmonization problem in the context
of evolutionary computation, a topic that has been discussed for more
than forty years but still represents an open challenge. This research pro-
poses local search to improve directed mutation and guide the algorithm
towards qualitatively better solutions. Human learning and Evolutionary
Machine Teaching are also used: data from music conservatory students
are exploited to guide the algorithm. The results show that local search
significantly improves the quality of the mutation performed. Moreover,
a series of longer runs are able to find free error scores.

Keywords: Directed Mutation - Local Search - Evolutionary Machine
Teaching - Human Teaching - 4-part harmonization.

1 Introduction

Art and music have become integral parts of computational creativity, and their
interest in the scientific community is growing. Specifically, a comprehensive
search conducted through the Scopus database concerning the intersection of
AT or EA with Music or Art, encompassing articles published in peer-reviewed
journals and conferences from the years 2018 to 2023, reveals a discernible up-
ward trend, as illustrated in Figure 1. Importantly, research pertaining to Al in
relation to Music or Art comprises a total of 14,884 articles, whereas this figure
is about 4,024 when considering EA in conjunction with Music or Art.

An analysis of artificial intelligence methods used in music composition has
identified the most suitable techniques for each specific task. For example, neural
networks are particularly effective in imitative systems, while Markov models
excel in predicting musical notes based on previous ones. In addition, genetic
algorithms (GAs) prove very suitable for generating chord progressions [1, 2],
although completely satisfactory results in the field of evolutionary algorithms
(EAs) for music composition have not yet been obtained, despite the numerous
studies carried out over the years. The simulations performed, which often do

2 E. Pacioni and F. Ferndndez De Vega

4000
—EA ——A
3500
3000
2500
2000

1500

1000

500

2018 2019 2020 2021 2022 2023

Fig. 1. The interest of the scientific community in evolutionary algorithms (EA, blue),
artificial intelligence, (AI, orange) both in the area of art and music (Data collected
from Scopus).

not reflect real scenarios, have almost always used limited and simplified problem
sets.

4-part harmonization, also known as SATB (soprano, alto, tenor, and bass),
is a widely used choral music technique. Bach is considered the starting point of
this technique in the Baroque era, and its rules evolved and were polished dur-
ing the classicism. Nowadays, it is a technique that every music student must
learn. The most important aspects studied in this topic are chord progression,
prohibition of certain dissonant combinations, melodic movements, and sound
balance between different voices. Previous research involved music experts, but
their constraints strongly limit the number of valid solutions in a large search
space. In contrast, algorithms developed without experts risk oversimplification,
producing more but lower-quality solutions. Thus, balancing expert input with
coding complexity is essential. Sometimes, despite having experts, translating
their knowledge into algorithms is challenging, leading to human integration at
various stages. One example is interactive EAs for artistic evaluation. Yet, chal-
lenges remain, particularly for the problem we face: four-part harmonization, as
simulations often use simplified problem sets. In the next section, we describe the
problem, the more relevant approaches, and the difficulties in applying evolution-
ary techniques for exploring the search space, mainly due to the large number
of chord dispositions that are available for harmonizing every single note within
a score.

In this paper, we aim to improve the quality of results when evolutionary
approaches are applied to the problem at hand. Specifically, a kind of directed
mutation operator has been improved by adding a local search mechanism that
helps to better explore the search space. As described below, this mechanism
saves computing time while improving the quality of solutions found. To the
best of our knowledge, this is the first time that results without any error have
been found for a complex melody in a reasonable running time.

Improving directed mutation with local search 3

The paper is organized as follows: Section 2 presents a literature review on the
4-part harmonization problem. Section 3 outlines the methodological approaches
employed and details the experimental configurations. Section 4 discusses the
results, and Section 5 concludes the paper.

2 4-part harmonization and Evolutionary Algorithms

Computer science and the arts have long been interconnected, giving rise to
numerous areas of interest over time, particularly computer-assisted music com-
position. Over the years, various Al-based approaches to music composition have
been introduced, employing different techniques.

2.1 SATB harmonization problem

We focus on 4-part harmony, an introductory composition exercise for music
students. Typically, a teacher provides a melody—a single voice, usually the
soprano—and the student must construct the remaining three voices: alto, tenor,
and bass. This task requires following rules that dictate permissibility, which
have evolved over centuries to help create beautiful choral scores. For those
interested, the Sharpmony project!' lists up to 50 commonly used rules and
exceptions.

A number of evolutionary approaches have been proposed during the last
decades to solve this problem. However, many of these solutions simplify the
real challenge, such as the one proposed by Horner and Goldberg in 1991 [3]. In
1994, MclIntyre introduced a method that starts with a given melody and key to
harmonize it. Unfortunately, harmonizing just nine notes required the efforts of
thousands of individuals over hundreds of generations [4].

In 2014, Kaliakatsos et al. attempted to generate a chord progression by
assigning scale degrees to each note, then selecting chords and individual voice
notes based on these scale degrees [5]. They identified issues associated with the
many rules needed to ensure the quality of the produced scores.

More recently, in 2017, Fernandez presented a new genetic algorithm-based
approach that successfully evolved an entire musical score. By applying only 11
rules during the evolutionary process, the resulting score had 10 errors, although
it took 24 hours to achieve this outcome [6].

De Prisco et al. presented EvoComposer [7], an evolutionary algorithm for
automatic 4-part harmonization. The system operates based on a multi-objective
approach, optimizing both harmonization through appropriate chord selection
and the melodic quality of vocal lines. To comply with harmonic and melodic
rules, EvoComposer uses a hybrid evaluation function, which combines theoret-
ical rules from classical music with weights derived from a statistical analysis
of Bach chorales, ensuring stylistic and creative consistency. However, this ap-
proach does not have sufficient granularity to stabilize errors in the final score

! https://sharpmony.unex.es/index.php?r=tutorials%2Fharmonic-manual

4 E. Pacioni and F. Ferndndez De Vega

while assuring the quality of the solution. Because it is based on a statistical
approach related to Bach’s chorales, it does not consider the evolution of the
rules from the Baroque era to the present.

In 2024, Pacioni and Fernandez presented a new version with over 50 rules
and exceptions [8]. While the increased number of rules brings the system closer
to practical reality, it also increases the computational time required for the
genetic algorithm to find feasible solutions. To address this issue, the directed
mutation was added to guide the system toward better solutions, and antici-
patory partial fitness evaluation has been applied to enhance the algorithm’s
performance. In this context, directed mutation and the creation of synthetic
models were also introduced [8], demonstrating how directed mutation can help
improve the algorithm’s convergence.

Also, in 2024, an approach related to Human Teaching/Learning and Evolu-
tionary Machine Teaching was presented based on data collected from conserva-
tory students using the Sharpmony 2 application [9]. This approach analyzes ex-
ercises produced by conservatory students: 13,000 exercises were analyzed, from
which chord pairs were extracted and errors were calculated. The results were
saved in a database indicating key, tonality, degree, and number and kind of er-
rors in the pair. Additional information to distinguish between chords extracted
from students’ exercises and those new ones that may automatically be gener-
ated and explored by the algorithm was also added. This data is paramount since
it allows us to extract all the knowledge teachers convey to students to guide the
algorithm as one guides a student through the teaching process. Additionally,
these data are crucial for reducing the search space and assisting the algorithm
in converging to better quality solutions. The above described approach was able
to find in a 24-hour run over student data obtained a musical score with 5 errors
at the end of the evolutionary process [9].

This paper builds on these previous versions of the genetic algorithm de-
scribed in [8] and [9], where the number of rules provided by experts have sig-
nificantly increased, more than 50 rules and exceptions applied, thus drastically
reducing the number of solutions available.

2.2 Directed Mutation

To fully understand the importance of using local search in these experiments,
it is necessary to describe first the directed mutation operator. In the problem
being addressed, the mutation occurs at the chord level. Specifically, during the
mutation process, the algorithm randomly selects a chord and replaces it with
a new chord, thus changing the notes and, probably, if the new chord degree is
different from the initial one, the chord progression.

To improve this process and guide the algorithm toward better solutions,
directed mutation was proposed. This operator uses information about the errors
between pairs of chords and the chord positions with errors to determine which
chord to mutate. Specifically, an array of the chord positions containing errors

% https:/ /sharpmony.unex.es

Improving directed mutation with local search 5

within the pair is created during fitness evaluation before the mutation occurs.
A random chord is extracted from this array and used for mutation. This new
operator has been shown to improve the algorithm’s convergence [8].

Building on this foundation, we experimented with an approach focused on
evolutionary machine teaching. In this case, the search space during mutation
was initially restricted to that used by Sharpmony students. When the algorithm
performs a directed mutation, it will search for a new chord among those available
in the database that has been previously used by students. This approach has
further improved the evolutionary process [9].

Although directed mutation with human teaching/learning and evolutionary
machine teaching improved previous approaches, it does not guarantee that each
mutation will reduce the errors in the pairs undergoing mutation. Therefore,
there is still room for improvement, particularly through the use of local search.

2.3 Local search

In the context of genetic algorithms, hybridization through local search tech-
niques has given rise to memetic algorithms (MA) [10]. Moscato, the creator of
the term memetic algorithms [10], defines them as an inspiration to Dawkins’
concept [13] of memes, in which individuals adapt through imitation and neigh-
borhood exploration, hence local search.

Local search can be an important component in genetic algorithms and,
more generally, complex combinatorial problems [11, 12]. Its importance derives
from its ability to explore a specific area of the solution space, improving the
quality of the proposed solution. This approach emphasizes the use of problem-
specific knowledge to make research more effective than classical evolutionary
approaches.

Moscato and Cotta also theorized hybrid algorithms with periodic local
search phases and global search phases to prevent premature convergence, em-
phasizing the importance of population heterogeneity [14].

Local search strategies used in MA can vary depending on the type of prob-
lem and the characteristics of the solution to be optimized. The local improve-
ment operators typically adopted include mutations with changes introduced
with problem-specific knowledge and iterative improvement methods that pro-
gressively optimize a solution until an acceptable level of quality is reached or a
local maximum is met. In addition, many implementations of MA include local
search adaptation mechanisms, in which operators dynamically change based on
real-time results, allowing the algorithm to respond to changes in the solution
landscape in an agile and flexible manner [13].

MA finds applications in many fields, from engineering to medical, and via
multi-objective problems [13].

2.4 Beyond the state of the art: challenges and limitations

The state-of-the-art developments we have explored demonstrate a transition
from small-scale experiments that lack real-world relevance to research that in-

6 E. Pacioni and F. Ferndndez De Vega

creasingly aligns with the 4-part harmonization techniques employed by both
students and teachers. However, the approaches presented thus far encounter
two significant limitations: (i) the algorithm’s convergence is slow and does not
guarantee a final music sheet with zero errors, and (ii) the algorithm’s runtime
is too lengthy to render the system practical for production applications.

By employing a human teaching and learning approach to reduce the solution
space, we have achieved a notable decrease in execution time; nonetheless, it
remains a challenge.

Therefore, it is crucial to implement techniques that facilitate algorithm con-
vergence without adding excessive overhead. Achieving zero-error scores in fewer
generations would significantly decrease the computational time required, thus
enhancing the algorithm’s applicability.

3 Methodology: applying local search to reduce errors
between chord pairs

The methodology proposed in this paper exploits local search within the di-
rected mutation operator to improve the algorithm’s convergence. Local search
is performed on the entire database of chord pairs produced by the evolutionary
machine teaching process on student data. Thus, mutation is used to fix errors
between chord pairs. But let us first describe the problem, the main issues we
face, and how local search can be added to the directed mutation operator.

3.1 The problem

To fully grasp the problem at hand, it is crucial to understand the genetic al-
gorithm used for evolving SATB musical scores. The starting point is a given
melody (the one we want to harmonize) of a series of bars —eight in the ex-
ample illustrated in Figure 2—which is the starting point for the evolutionary
procedure.

First of all, two evolutionary stages are employed, the first one for deciding
scale degrees to be applied to every note provided in the melody (for instance
degrees II, V, or VII for a D note in C Key), and the second one to decide the
distribution of chord notes in the remaining voices, once the scale degree to be
applied is known (if IT degree is to be applied, and D is in the melody, we must
assure that F and A are present in the other voices, if a triad is applied).

Thus, in the first stage, an individual is represented by a sequence of chords
(I, II, ..., VII), with one degree per note in the melody, and this initial genetic
algorithm is employed to determine an appropriate sequence of chord degrees
to emulate the composition style students practice. A given melody can be con-
sidered to belong to a single key, C Major, for instance, or instead, can include
modulations, which allow to go from one key to another one, such as going from
C Major to A minor or from C Major to G Major. Yet, in what follows, we
consider that modulations are not allowed, and we will restrict the search for
solutions to a single key: C Major.

Improving directed mutation with local search 7

05 — : I —— o : : :
%5“"" . e e S —r e o e ot (T hetlo
AR ST S E R A S e L O O O O =
P S Y P I 'Y P 'Y 3 2 PR S 3 P S 'Y 2
D= -t t ratot PR ‘ot b=t t ot t
5 F— ; —— —— ———— 3 F — ¥
¢ e ¢ L AU LI ¢ e e L €

Fig. 2. Melody provided to the algorithm to perform harmonization.

Although many kinds of chords may be used, according to harmony rules, we
are only considering here diatonic triads and seventh chords, augmented sixth
(italian, french, german and neapolitan chords) as well as secondary dominants.

A second genetic algorithm is initiated afterward to evolve the complete mu-
sical score, where the chromosome includes all the notes assigned to all the voices
along the score. This involves assigning notes to each voice that aligns with the
previously selected chord degrees—for example, assigning C, E, and G to form
a I degree triad in C major. Figure 3 shows the chromosome structure of the
two genetic algorithms and the correlation between them. Finally, when chord
notes are distributed along the remaining voices according to degrees previously
evolved, the whole score has to be checked using the fitness function that em-
bodies all the harmony rules usually applied, which includes 50 different errors
to be checked, such as:

Parallel 5th.
— Parallel 8th.
— Overlapping voices.

— (up to 50 rules, as described above)

We must bear in mind that no specific rules for the degrees movements are
included within this fitness function in the second stage, so we are not checking
cadences or phrasing endings here. Yet, the first stage of the evolutionary process
is in charge of finding an appropriate chord progression, which is then employed
by the second one.

Some of the available rules establish if a given set of chords are available
or not, such as secondary dominants, seventh chords, neapolitan chords, sixth
chords, etc. Thus, when new kinds of chords are added, the search space signifi-
cantly grows, and rules to be checked also grow, making the search for solutions
harder. Moreover, the higher the number of rules to be checked, the longer the
time required to check a pair of chords’ errors: 22.5 seconds are required for
analyzing a single pair of chords when all the rules are applied, according to
Sharpmony implementation of the fitness function, implemented in Common
Lisp and run over SBCL3, using the hardware described below. This means that
analyzing a single chromosome -fitness function applied to an exercise- may take
around 10 minutes.

To mitigate this challenge, we attempted to anticipate the computing of
partial fitness values corresponding to potential errors in successive chords and

3 https://www.sbcl.org

8 E. Pacioni and F. Ferndndez De Vega

Chromosome of the
1 v I vi w Vi] - - - individual from the first
genstic algorithm

—)

s [F E ‘ D ‘ D ‘] ‘ [} ‘ E ‘ s ‘ s s J
A c c ‘ B ‘ A ‘ B ‘ B ‘ c ‘ s ‘ s s
Cl of the
individual from the
second geneic algorithm
T A G G F F [} A s s s
) [F £ ‘ G ‘ D ‘ B ‘ E ‘ A ‘ s ‘ s s J

Example
of achord

Fig. 3. Above is represented an individual’s chromosome from the first genetic al-
gorithm, considering C Major Key. Shown at the bottom is the chromosome of the
individual from the second genetic algorithm.

store them in a database. This is possible by analyzing and storing a pair of
chords that students apply within their solutions. Once this is available, checking
the number of errors of a given pair of chord errors will take the time required
to access the database: 0.001 milliseconds instead of 22.5 seconds to compute all
the rules.

This strategy would allow us to assess which pairs of chords can be used with
a given pair of consecutive melody notes and select those that minimize errors.
Yet, there is a difficulty: all possible chord configurations must be precomputed,
and then for every possible pair of consecutive chords, errors detected must
be stored in the database. As described in [9] the number of possible chord
pairs are beyond the available computing capabilities, thus we decided to only
precompute those pairs ever employed within the 13,000 students exercises that
we have already analyzed. This allowed us to initially restrict our search space
to 67,240 pairs of chords instead of the 8,151,025 available in a single key, as
described in [8,9].

3.2 Adding local search to directed mutation

In Pacioni and Ferndndez 2024 [8], the directed mutation is applied, which re-
stricts mutation to only consecutive chords where errors have been found. The
idea is to try to fix errors, while maintaining untouched parts of the chromosome
that are correct. In any case, given that crossover is also applied, any chromo-
some position may change, thus allowing exploration of other areas of the search
space. Yet, we try here to improve the mutation operator by adding a local
search process: instead of randomly choosing a new chord for a given position,
we try to analyze the neighborhood of a chord -chords whose notes are in close
positions in the score and try to see which one is better when considering errors
that may appear when introducing that new chord.

Improving directed mutation with local search 9

In practice, each time the mutation is applied, the algorithm creates an array
of positions with errors, and from those positions, a chord is chosen to mutate.
Two modes of local searches are proposed: (i) the key and degree of the original
chord are retained, and a different chord notes disposition is searched in the
database; (ii) the original key is retained, and the algorithm can choose the
most appropriate chord and degree from those belonging to the same key. In
both cases, the main goal is to minimize the number of errors. Figure 4 illustrates
the process carried out by local search to select the best chord during mutation

]
)
J
J

.
-

—
3|

e wll
-
W

Nlis —eh

.
Wl
L
-
.
-

sl

Y
.

(
(
(
(

(Ghord key and dogree.
oR
Chord key only)

Fig. 4. Local search process: exploring nearby chords in the precomputed chord pairs
errors

3.3 Tests Performed

To apply the proposed methodology and compare the current results with those
previously obtained, 35 runs were conducted with a population of 8 individuals.
For the first stage, when the progression of chords is evolved, the evolutionary
algorithm was run for 50 generations. For the second stage, when chord notes are
distributed among voices, 10 generations were computed again with 8 individu-
als in the population. A roulette selection method and directed mutation were
used in the second stage. A 50% crossover probability is applied in both stages.
Initially, the database includes only the chord pairs derived from the study of
student solution space. A total of 67,240 chord pairs are available, which can be
extended by the algorithm along the search process: when no suitable chord pair
is found, the system can explore new not seen chord pairs, evaluate the quality,
and store the information for future search.

All experiments are conducted on a Dell M1000e cluster consisting of 15
M600/M610 blades. The processors in use are Intel Xeon models, specifically
E5506, E5507, E5640, E5520, and X5670. The cluster offers a combined total
of 136 cores and 376 GB of RAM. Each test run is performed using a virtual
machine configured with 8 virtual CPUs and 8 GB of RAM running the Debian
12.

10 E. Pacioni and F. Fernidndez De Vega

4 Experiments and results: the impact of local search

Experiments are conducted using a database derived from the analysis of student
exercises as described above. Together with the student pairs already stored,
the algorithm can generate new pairs when no suitable one is found among
students’ pairs. Yet students ones are prioritized. The search for a new chord,
when a mutation operator acts, works as follows: We need a new chord in a given
position, but the new chord must feature the melody note already available, that
cannot be changed. Moreover, this new chord, when inserted, will be analyzed
in its context, and we want it to feature the smallest number of errors possible.
Thus, we also consider for the search the previous chord, and try to search for
pairs in the database that include as the first chord that previous one, and is
followed by another chord with the given note in the soprano (melody). Among
those available, we will take the pair with a smaller number of errors. We must
remind that this info is available for every pair of precomputed chords. If no
pair is found, the system will try to generate and compute pair of chords -much
slower process- to decide which chord to use in the mutation process, and this
computed information of new pairs will be saved for future search.

Figure 5 shows the process for generating and storing a new chord pair.
Also, when the crossover is applied, new chord pairs could be generated since
the point where the crossover occurs could combine two chords that are not in
the student database as a pair; again, the new information enriches the database.
This section examines the evolution of the database, the resulting solution space,
and the algorithm convergence based on the configurations used.

Considered

chord pair
Iy , ; I | I N a
g —t —+ ™ s t r un — 3 T
@ : —— = L i R — | s b L e e e L 2 i T
+ g o5 o § - — = o L — | - fhr 8
? VF [[P Yy Tl I LI et i r [l il
- - - L -
LI IR By Y P B N N N ra P E D
D= = 1 — p— - $ =¥
i e i e o e) 7 e e —T e e s i
—r T T T T T V r T T T | T T T T T T
Chord
mutatio
Ch Has the chord Looking for a
dmseaad been found? valid new chord
random chor ? in the DB
YES
Calculates errors in
the newly generated Sand the chord

chosen for
mutation

pair and saves the
data in the db

Fig. 5. Process to create and save a new chord pair.

4.1 Updated solution space

During the evolutionary process, the genetic algorithm concatenates the chords
by creating musical scores containing pairs in the database and, in some cases,

Improving directed mutation with local search 11

combines the chords, generating new pairs. In this case, the new pairs are added
to the database together with the number of errors that the fitness function has
computed, and a specific label that allows us to distinguish them from those
coming from students exercises. These labels allow us to analyze the database
resulting from the experiments. At the end of the experiments, the database
consists of 107,774 chord pairs, of which 40,534 are new ones produced by the
EA, and 67,240 were initially collected from the students’ exercises, represent-
ing 37.61% and 62.39%, respectively. This database will be employed in future
experiments, so we foresee it will continue growing and thus allowing to speedup
experiments in the future, given that a larger number of pairs are already pre-
computed.

Figure 6 shows the distribution of chords with the relative number of errors.
We can see that students produced about 43% (about 29,000) of chord pairs
without errors, while the EA only 24%. Specifically, the EA added 9,813 new
items to the database without errors, while the remainder contained between 1
and 13 errors. Notably, most introduced pairs contain less than 4 errors, corre-
sponding to 91.96% (about 37,000). In any case, we see that students are capable
of better selecting chord pairs, and this is one of the reasons behind the human
teaching inspired approach we follow.

29000
28000
27000
26000
25000
24000
23000
22000
21000
20000
19000

u EA Frequency m Students Frequency

18000
17000
16000
15000
14000
13000

12000

11000

10000

9000

8000

7000

6000

5000

4000

3000

2000 I

I R

0 1 2 3 4 5 6

7 8 9 0 1 12 13
Number of Errors

Frequency

Fig. 6. Errors distribution:

Figure 7 compares the error types committed by the EA and the students.
Among students, we can see that the most common errors are (i) wrong note
duplications, (ii) missing third in a chord, and (iii) wrong chord or chord not in
the key. While EA mainly makes errors in (i) direct fithts or octaves, (ii) overlap-
ping voices, (iii) incorrect resolution 7th/9th. In general, EA has a more uniform
distribution of errors than students, except for direct fiths or octaves, constitut-

12 E. Pacioni and F. Ferndndez De Vega

ing 20.8% of EA errors. Interestingly, students fail more frequently missing the
third in a chord or duplicating an incorrect note.

INCORRECT RESOLUTION 7TH / 9TH INCORRECT RESOLUTION 7TH / STH

MISSING THIRD IN A CHORD

INTERVAL WIDER THAN MISSING THIRD IN A CHORD.

THay
THE 10TH AMONG VOICES.

OIRECT FIFTHS i
OR OCTAVES
WRONG NOTE DUPLICATIONS FALSE RELATION

VOICES RANGE
INTERVAL WIDER THAN
THE 10TH AMONG VOICES

WRONG CHORD OR
‘CHORD NOT IN THE KEY
WRONG KEY MODULATION

FALSE RELATION WRONG NOTE DUPLICATIONS. ’
WRONGCHORDOR VOICES RANGE OVERLAPPING VOICES

CHORD NOT IN THE KEY

Al Students

Fig. 7. Error types comparison between students and Al

4.2 Runs

Figure 8 shows the convergence of the algorithm in three different configurations:
(1) without local search; (i) with local search, maintaining chord key and degree;
(iii) with local search and only chord key.

At generation 0, the values are quite similar among the different versions of
the algorithm. Versions (i) and (ii) show almost equal convergence, with version
(ii) slightly better. These negligible differences may be understood if we remem-
ber that we do not allow the algorithm to change the chord degree, which means
that the only possibility is to change how notes are distributed among voices, so
local search is not free enough for a proper search.

Nevertheless, version (iii) shows big differences in the convergence process:
when we allow to change chord degree, freedom provided allow the system to
find much better solutions. Consequently, local search with the right degree of
freedom significantly helps the algorithm to converge to better solutions. In this
case, local search is not an overhead because the chord pairs can be sorted by
the number of errors directly in the database query, with minimal computational
cost. We must also bear in mind that the system allows to search for previously
unseen pairs of new chords.

Finally, we decided to launch longer run experiments - 10 executions - in
order to foresee the potential of the algorithm and compare it to previous results
obtained along 24 hours of evolution. The experiment was thus performed with
the same configurations as described above, but over 50 generations (estimated
number of generations requiring 24 hours).

Surprisingly, analyzing the execution time for the 10 runs, we get that the
average time is 13 hours and 30 minutes, with a standard deviation of 5 hours.

Improving directed mutation with local search 13

—e— NO Local Search
30 —o— Local Search With Key and Degree
—e— Local Search With Key

Fitness

Generations

Fig. 8. The plot compares convergence of best fitness average values among the 3
versions of the algorithm over 35 runs

The best time is about 6 hours with one interesting individual who stopped
execution at generation number #14, when an error-free solution was found (see
Figure 9). Interestingly, this solution applies secondary dominants from C Major,
such as chord #19, that includes I* (C-E-G-Bb) to go to IV, which is quite a
nice solution to harmonize Bb in the soprano without going out of C major.
Similarly, F# in the soprano note is harmonized using a IT* triad distributed in
voices as F#-D-A-F that performs a chromatic movement towards V7, F-D-B-G,
and then to I, E-C-G-C, in a proper final V7-I perfect cadence. Moreover, the
lead tone in the tenor voice indirectly resolve to the alto, which is in interesting
resource to solve the mandatory resolution of lead tone.

Figure 10 shows the average best fitness over the 10 runs. The graph shows
the convergence curve and the standard deviation trend. We can see how, even
though we start with more than 30 errors, we arrive at an average fitness of 1.8
with a standard deviation of 1.77. Specifically, 4 runs produce individuals with
0 errors, the rest produce individuals with errors between 0 and 5, respectively:
5,2,3,1,4,3. To the best of our knowledge, this is the first time that an error-free
4-part harmony has been obtained by evolutionary approaches for a complex
melody.

/I | S o IR T N e ——
(EeeeE e Ee S S eSS s= —= S Ssss =
VAR A N R A F E\ “jf rr'rr f r'f 8
Y VU P MY B Y P P PO M A P P PR
-;;;;1rrr r;'wr_ = A

Fig. 9. Error-free harmony produced by the EA.

14 E. Pacioni and F. Fernidndez De Vega

Fig. 10. Fitness convergence for long execution.

5 Conclusions

This paper describes an improvement to the 4-part harmonization problem by
adding local search to directed mutation. The approach used is based on the
evolutionary machine teaching principles that exploit the idea of human teach-
ing/learning. By using Sharpmony students’ data, we narrow the search space
to the area exploited by students and thus drive the algorithm toward better
solutions. Specifically, the solution space becomes hybrid, with student data
combined with the new chord pairs created by the EA. Specifically, the start-
ing database contained 67,240 students’ chord pairs, while it now has 107,774.
Thus, the EA created 40,534, of which 9,813 were error-free. Local search is in-
cluded during the mutation step: the experiments show that local search within
the original chord key produces better solutions than the version without local
search or with too stringent criteria. We also launched longer runs, where we
obtained an average fitness of 1.8 and 4 runs found error-free solutions. To the
best of our knowledge, this is the first time that a proper solution is found for a
complex melody when 50 harmony rules and exceptions are applied.

In future work, we plan to add local search during the initialization step, when
individuals are created in the initial population using the progression provided
by the first evolutionary stage described above.

In any case, although execution times are still about 13 hours -much better
when compared to 24 hours required for previous approach to find a reasonable
solution, the solution presented in this study is a first step toward generating
error-free music sheets in reasonable time runs.

6 Acknowledgements

We acknowledge support from the Spanish Ministry of Economy and Compet-
itiveness under projects PID2020-115570GB-C21 and PID2023-147409NB-C22
funded by MCIN/AEI/10.13039/501100011033. Junta de Extremadura under
project GR15068.

Improving directed mutation with local search 15

References

1. Omar Lopez-Rincon, Oleg Starostenko and Gerardo Ayala-San Marti’n: Algoritmic
Music Composition Based on Artificial Intelligence: A Survey. In: International Con-
ference on Electronics, Communications and Computers (CONIELECOMP), 2018,
pp. 187-193 https://doi.org/10.1109/CONIELECOMP.2018.8327197

2. Hung Liu, Chien and Kang Ting and Chuan: Computational Intelligence in Music
Composition: A Survey. IEEE Transactions on Emerging Topics in Computational
Intelligence 1(2), 2-15 (2017)

3. Horner, A., and Goldberg, D. E. Genetic algorithms and computer-assisted music
composition. In: International Conference on Mathematics and Computing, 1991,
pp- 437-441.

4. Mclntyre, R. A. Bach in a box: The evolution of four part baroque harmony using
the genetic algorithm. In Evolutionary Computation, 1994. IEEE World Congress
on Computational Intelligence, Proceedings of the First IEEE Conference, 1994, pp.
852-857 https://doi.org/10.1109/ICEC.1994.349943

5. Kaliakatsos-Papakostas, M., and Cambouropoulos, E.: Probabilistic har-
monization with fixed intermediate chord constraints. In ICMC, 2014,
https://doi.org/10.13140/2.1.3079.5526

6. Francisco Fernidndez de Vega: Revisiting the 4-part harmonization problem
with GAs: A critical review and proposals for improving. In: TEEE Congress
on Evolutionary Computation (CEC), Donostia, Spain, 2017, pp. 1271-1278,
https://doi.org/10.1109/CEC.2017.7969451.

7. R. De Prisco, G. Zaccagnino, R. Zaccagnino; EvoComposer: An Evolutionary Al-
gorithm for 4-Voice Music Compositions. Evol Comput 2020; 28 (3): 489-530. doi:
https://doi.org/10.1162/evco_a_00265

8. Elia Pacioni, Francisco Ferndndez de Vega. On the impact of directed mutation
applied to Evolutionary 4-part harmony models. In: Artificial Intelligence in Music,
Sound, Art and Design. EvoMUSART (EvoStar2024), https://doi.org/10.1007/978-
3-031-56992-0_20.

9. Elia Pacioni, Francisco Ferndndez de Vega. Paving the way towards evolutionary
machine teaching: an application to 4-part harmony. In: International Conference,
Evolution Artificielle, EA2024.

10. Moscato, Pablo. On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Caltech concurrent computation program, C3P
Report 826.1989 (1989): 37.

11. Moscato, P., Cotta, C. (2003). A Gentle Introduction to Memetic Algorithms. In:
Glover, F., Kochenberger, G.A. (eds) Handbook of Metaheuristics. International
Series in Operations Research & Management Science, vol 57. Springer, Boston,
MA. https://doi.org/10.1007/0-306-48056-5_5

12. Moscato, P., Cotta, C. (2010). A Modern Introduction to Memetic Algorithms. In:
Gendreau, M., Potvin, JY. (eds) Handbook of Metaheuristics. International Series
in Operations Research & Management Science, vol 146. Springer, Boston, MA.
https://doi.org/10.1007/978-1-4419-1665-5_6

13. Neri, F., Cotta, C., Memetic algorithms and memetic computing optimization: A
literature review, Swarm and Evolutionary Computation, Volume 2, 2012, Pages
1-14, https://doi.org/10.1016/j.swevo.2011.11.003

14. Cotta, C., Gallardo, J.n Mathieson, L., Moscato, P. (2016). Memetic Algo-
rithms: A Contemporary Introduction. In book: Wiley Encyclopedia of Elec-
trical and Electronics Engineering (pp.1-15)Publisher: John Wiley & Sons
https://doi.org/10.1002,/047134608X.W8330.

