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Abstract—In the evolution towards 6G user-centric networking,
the moving network (MN) paradigm can play an important role.
In a MN, some small cell base stations (BS) are installed on top
of vehicles, and enable a more dynamic, flexible and sustainable,
network operation. By "following" the users movements and
adapting dynamically to their requests, the MN paradigm enables
a more efficient utilization of network resources, mitigating the
need for dense small cell BS deployments at the cost of an
increase in resource utilization due to wireless backhauling. This
aspect is at least partly compensated by the shorter distance
between users and BS, which allows for lower power and
Line-of-Sight communications. While the MN paradigm has
been investigated for some time, to date, it is still unclear
in which conditions the advantages of MN outweigh the
additional resource costs. In this paper, we propose a stochastic
geometry framework for the characterization of the potential
benefits of the MN paradigm as part of an HetNet in urban
settings. Our approach allows the estimation of user-perceived
performance, accounting for wireless backhaul connectivity as
well as base station resource scheduling. We formulate an
optimization problem for determining the resource-optimal
network configurations and BS scheduling which minimize the
overall amount of deployed BSs in a QoS-aware manner, and
the minimum vehicular flow between different urban districts
required to support them, and we propose an efficient stochastic
heuristic to solve it. Our numerical assessment suggests that
the MN paradigm, coupled with appropriate dynamic network
management strategies, significantly reduces the amount of
deployed network infrastructure while guaranteeing the target
QoS perceived by users.

I. INTRODUCTION

The ever-increasing number of mobile subscribers, their
insatiable appetite for data, and the surging demand for
highly reliable, low-latency connectivity are pushing current
cellular network paradigms to their limits. Traffic forecasts
paint a daunting picture, with per-area data volume in future
networks projected to surge by 1000 times compared to current
levels [1], to support such high-bandwidth 6G applications
as holographic communications or immersive virtual reality.
This exponential growth, particularly pronounced in urban
environments, necessitates innovative solutions to efficiently
deliver high network capacity and a satisfying user experience.
Network densification, already a cornerstone of 5G technology
[2], addresses this challenge by deploying a denser network
infrastructure of small cells. However, this approach comes
at a significant cost. Densification puts a double whammy
on network operators, driving up both capital expenditure
(CAPEX) and operational expenditure (OPEX). Additionally,
densification often relies on over-provisioning, deploying
excess network resources to cope with unpredictable as well
as periodic traffic fluctuations due to user movements (for
example, from residential areas to business districts and
back every working day). This approach, while ensuring

network stability and high service availability, is inherently
inefficient. To overcome these limitations, unmanned vehicles
are considered as key enablers of the 6G landscape, as they can
address the limitations of traditional communication paradigms
by enabling innovative use cases, enhancing network efficiency,
improving system intelligence and resilience, and meeting the
high demands of immersive applications [3]. Specifically, a
promising avenue lies in the concept of moving networks
(MNs) [4, 5]. This paradigm is based on the integration of
ground vehicles (GVs) as mobile base stations (MBSs), i.e.,
small cells mounted on vehicles or other mobile platforms,
which can be strategically deployed to provide additional
capacity exactly where and when needed, catering to localized
traffic surges and thus potentially reducing over-provisioning
needs. The MN paradigm implies a much more extensive
and flexible exploitation of the traditional approach based on
truck-mounted BSs. While the latter were quasi-static, a MBS
can follow users in their daily movement from a residential
area to a business district, possibly also serving users stuck
in a traffic jam while commuting together with the BS. By so
doing, a mobile BS can take the place of several fixed small
cell BSs, and take advantage of proximity to end users.

Previous studies have delved into optimizing MBS position-
ing and addressing mobility-related challenges. [6] proposes
an optimization algorithm to ensure fairness among UEs while
maximizing the throughput in two-tier networks with macro
cells and cognitive micro cells. However, they do not account
for the impact of backhauling. A similar analysis with relay
nodes, instead of mobile BS, was conducted as outlined in [7].
All these works however consider static scenarios, and thus
do not account for MBSs’ ability to dynamically and naturally
adapt BS density to both spatial and temporal variations in
user density and traffic patterns, particularly in urban settings
[8], thanks to the correlation between cell user densification
and vehicular densification patterns. [9] characterizes the
correlation between patterns of mobile user densities and
those of vehicles in a set of realistic urban scenarios. The
authors also propose an approach for dynamic interference
management in a network with MBSs. However, all these
works do not allow quantifying the reduction in the amount of
network resources required to serve users with a target QoS
which UGVs as MBS enable with respect to traditional, static
BS deployments (thus potentially reducing also the overall
energy footprint of the network [10]) and to unmanned aerial
vehicles (UAVs) which consume more energy for the flying
part.

This paper addresses this critical question by proposing
a novel framework for deriving a first-order quantitative
evaluation of the infrastructure savings achievable in MNs in



Integrated Access and Backhaul (IAB) scenarios. We introduce
an analytical approach to determine the optimal configuration
in terms of static and mobile BS density aiming to minimize
overall infrastructure requirements while guaranteeing the
desired Quality of Service (QoS) for all users. Crucially, our
approach accounts for the target QoS and resource utilization
of wireless backhauling links. Our main contributions are:
• We propose an analytical approach for the analysis of

moving networks, which incorporates the effects of IAB of
moving BSs;

• We elaborate an optimization framework for the derivation
of the CAPEX optimal configurations of the network, while
ensuring a target QoS for users and backhaul;

• We characterize the optimal configurations resulting from
our optimization framework in a simplified urban baseline
scenario, allowing a first evaluation of those conditions in
which the moving network paradigm enables substantial
savings in terms of deployed infrastructure.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider a finite area of the plane modeling an urban
scenario, populated by BSs belonging to two tiers. Namely,
we assume a fraction of the BSs in the area, denoted as
moving BS (MBS), are installed on vehicles, such as cars
or drones, and thus able to move between regions, while
the remaining BSs, denoted as static BS (SBS), are at fixed
locations, both distributed according to homogeneous planar
Poisson Point Processes (PPP). At any time instant, we assume
MBS distributed uniformly at random in the given area.
The mobility of MBSs is modeled such that their spatial
distribution varies dynamically across different time slots.
An analogous modeling approach applies to user dynamics.
We consider user equipments (UEs) are broadband (BB)
terminals, distributed in space according to a PPP. Note though
that our analysis extends straightforwardly to scenarios with
heterogeneous users, e.g. including IoT devices. The two
PPPs that describe the distribution in space of MBSs and
UEs are assumed to be positively correlated (as observed
in [11]) so that the system can deploy MBS since UEs are
present in the scenario. We define the observation window
as a finite time interval divided into J equal-sized sections,
where j ∈ 1, ..., J denotes the label of the j-th section. We
assume the considered area to be partitioned into Z different
regions with specific traffic profiles. In every time interval j,
λz
u,j denotes the intensity of the PPP of UEs, in users per

m2. Such intensity might vary between intervals to model
day/night patterns of activity or commuting, among others.
We assume in-band wireless backhauling for MBSs, by which
SBSs act as wireless access points for MBSs. We adopt a
channel model that considers only distance-dependent path
loss, though our results can be easily extended to incorporate
fading and shadowing. We assume a random frequency
reuse scheme, with reuse factor k. We consider only the
downlink of the cellular access, and we assume the generic
UE (respectively, MBS) located at x is served by the BS
(respectively, SBS) that provides the largest SINR at x. Since
we are ignoring fading effects, we can reasonably assume that
users are served by the BS providing the highest received
power. [12]. We assume that static base stations correspond
to macro cells, which transmit at a power level Ps, while
moving base stations are modeled as small cells transmitting
at a power level Pm ≤ Ps. Leveraging Shannon’s capacity law,

the capacity of a user located at a distance r from the BS is
C(r, P, I) = (B/k) log2(1 + Pr−α(N0 + I(r, k))−1), where
B is the channel bandwidth, α is the attenuation coefficient,
I is the total received interfering power, N0 is the power
spectral density of the additive white Gaussian noise, and P
is the transmission power of the serving base station tier.
We assume that a weighted processor-sharing (WPS) mecha-
nism is used to divide BS time among all the connected users.
By doing so, a notion of fairness is imposed among users
from a same class and associated to a same BS, since they are
all served for an identical fraction of time. We model wireless
inband backhauling by assuming that SBSs serve two classes
of users (BB users and MBS), each with its own WPS weight.
To model the QoS perceived by a user, we use the per-bit
delay, defined as the inverse of the short-term user throughput
[13]. We assume that the mean utilization of BS (i.e., the
fraction of time during which a BS, mobile or static, is active)
and the WPS weights are tuned in such a way as to achieve
the target QoS for all classes of users.
We assume that at each SBS the WPS weights for MBSs
and BB users are equal to one, and ϕz

j ≥ 0, respectively,
with ϕz

j taking the same value for all SBSs.The utiliza-
tion of a SBS serving NM MBSs and NU UEs is thus
Us = (NM + ϕz

jNU )/(NM + ϕz
jNU + βs), where βs is the

fraction of BS time during which the SBS is not serving
any user (and thus potentially saving energy). For MBS
instead, we have Um = NU/(NU + βm). For BB users,
the key performance parameter is the Palm expectation of
the per-bit delay experienced by a typical user who is just
beginning service [14]. For backhauling links instead, the
main performance indicator is the violation probability, i.e. the
probability that the per-bit delay perceived by the backhauling
connection is insufficient to carry the aggregate traffic demand.
Thus, both MBSs and SBSs tune their utilization and the WPS
weight to have at the same time the Palm expectation of the
per-bit delay perceived by the typical BB user coinciding with
a target value τ0, and the violation probability for BH traffic
below a target value δ.

III. AN ANALYTICAL MODEL FOR USER-PERCEIVED
PERFORMANCE

To derive analytical relationships between the main system
parameters and the network’s key performance indicators, we
focus on the ideal per-bit delay perceived by a user, which is
the per-bit delay perceived when the serving BS has utilization
equal to 1. Indeed, given our assumptions, the actual per-bit
delay is given by the product of the ideal per-bit delay and
the BS utilization.
Let S(x) denote the location of the BS that is closest to the
user located at x. For the typical user at the origin served by
the closest SBS in S(0), the ideal per-bit delay perceived is

τs(S(0)) =
NM (S(0)) + ϕz

jNU (S(0))

ϕz
jC(D(0), Ps, I)

(1)

where NM and NU are the number of MBSs and UEs served
by the SBS in S(0), respectively, and D(0) is the distance
between the user at the origin and its serving BS. If the user
at the origin is an MBS (i.e. if it is a backhauling connection),
the ideal per-bit delay is τM (S(0)) = τs(S(0))ϕ

z
j . Similarly,
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if a MBS serves the BB user, the ideal per-bit delay the user
would perceive is

τm(S(0)) =
NU (S(0))

C(D(0), Pm, I)
(2)

where NU is the number of UEs served by the MBS in S(0),
and D(0) is the distance between the given MBS and its
serving SBS.
In region z and time interval j, let τ̄ j,zm and τ̄ j,zs denote the
Palm expectation of the ideal per-bit delays perceived by
BB users joining the system, and λz

m,j (resp. λz
s) the mean

density of MBSs (resp. of SBSs, which remains constant over
time). With the following result, we model the probability
distribution function of the distance between the users and
their serving base station in our HetNet with two BS tiers.

Lemma 1. Given a heterogeneous network with two popula-
tions of BSs, denoted as m and s, both distributed as a PPP
with intensity λi and transmit power Pi, i ∈ m, s. Then the
pdf of the distance of the ideal user arriving in the system
from its serving base station is

fm,s(r) = 2πr(λs + λmρ2ms)e
−πr2(λs+λmρ2

ms) (3)

with ρms = α

√
Pm

Ps
.

For the proof, please refer to Appendix A of the extended
version [15].
The following result connects the mean total interference
perceived by a user to the mean ideal per-bit delay perceived
by users in the system.

Lemma 2. The mean total interference power perceived by a
user at a distance r from its serving BS in z and interval j is

Ī(r, τ̄ j,zm , τ̄ j,zs ) =
2πr2−α

k(α− 2)τ0
(Pmτ̄ j,zm λz

m,j + Psτ̄
j,z
s λz

s,j)

For the proof and the derivation of the average BS utilization,
please refer to Appendix B of the extended version [15].
The following theorem gives the expressions for the Palm
expectation of the ideal per-bit delays perceived by BB users.

Theorem 1. In a HetNet with two tiers of BS, moving and
static, the Palm expectation of the ideal per-bit delay perceived
by BB users joining the system in region z and time interval
j, and served by a MBS (respectively, a SBS) is approximated
as the unique solution of the following fixed point problem:

τ̄ j,zm =

∫ ∞

0

λz
u,jhm(r)

1− e−λz
u,jhm(r)

H(Pm, r)dr

τ̄ j,zs =

∫ ∞

0

(
ϕz
jλ

z
u,jhs(r)

1− e−λz
u,jhs(r)

+ λz
m,jhBH(r)

)
H(Ps, r)

ϕz
j

dr

(4)
with

H(P, r) =
e−(ρ2

msλ
z
m,j+λz

s)πr
2

(ρ2msλ
z
m,j + λz

s)2πr

C(r, P, I(r, τ̄ j,zm , τ̄ j,zs ))

hm(r) =

∫ ∞

0

∫ 2π

0

e−λz
sA(r,x/ρms,θ)−λz

m,jA(r,x,θ)xdθdx

hs(r) =

∫ ∞

0

∫ 2π

0

e−λz
sA(r,x,θ)−λz

m,jA(r,xρms,θ)xdθdx

hBH(r) =

∫ ∞

0

∫ 2π

0

e−λz
sA(r,x,θ)xdθdx

(5)

and A(r, x, θ) = πx2 − [r2 arccos
(

r+x sin(θ)
d(r,x,θ)

)
+

+x2 arccos
(

x+r sin(θ)
d(r,x,θ)

)
− 1

2

√
r2 − (d(r, x, θ)− x)2·

·
√
(d(r, x, θ) + x)2 − r2], where d(r, x, θ) is the euclidean

distance between (x, θ) and (0,−r).

For the proof, please refer to Appendix C of the extended
version [15]. Note that these results assume that there is at
least one user in every cell. This is reasonable in practical
scenarios, as when user density is lower than this (off-peak,
e.g. at night), operators typically put some BSs to sleep to
save energy, or in the case of MBS, they move them where
needed.

The following result gives the expressions for the CDF of
the per-bit delay in backhauling.

Theorem 2. In a given time interval j and region z, the
CDF of the ideal per-bit delay which an SBS delivers to an
MBS, denoted as τM , is given by CDFr

(
g−1(τ)

)
, with

CDFr(y) =

∫ y

0

e−λz
sπx

2

λz
s2πxdx

and g(r) =
λz
m,jhBH(r)+ϕz

jλ
z
u,jhs(r)

C(r,Ps,I(r,τ̄
j,z
m ,τ̄j,z

s ))
.

For the proof, please refer to Appendix D of the extended
version [15]. To model the violation probability of a back-
hauling link, we focus on the traffic demand at a MBS, in
terms of the per-bit delay of the aggregate downlink traffic at
the given MBS. Then we express the violation probability as
the probability that the per-bit delay perceived in downlink by
MBSs is superior to the aggregate traffic demand in downlink
of an MBS.

Theorem 3. The BH violation probability in region z and
interval j is given by:

V z
j =

∫ ∞

0

fd

(
τ̄ j,zs x

τ0

)
(1− CDFτM (x− t)) dx

with

fd(τ) =

(
τ0
λz
u,j

) 7
2
343

15

√
7

2π
τ−

9
2 e

− 7τ0
2λz

u,j
τ

For the proof, please refer to Appendix E of the extended
version [15].

IV. PROBLEM FORMULATION

In this section, we present the formulation of the optimiza-
tion problem, which provides, for a given mean user density,
the density of BSs, both mobile and static, and the round-robin
coefficients which minimize the overall network deployment
costs while accounting for the target QoS for both fronthaul
and wireless backhaul traffic.
To model the benefit of having BSs that move following the
users’ densification patterns, we assume that the total number
of MBS in the area is constant over time. This approximates
well actual mobility patterns in a city, when the considered
urban area is large enough to cover the bulk of the daily
commuting patterns. Thus we have

∑Z
z=1 λ

z
m,jEz = M ∀ j,

where Ez denotes the area of the z−th region.

Problem 1. Minimization of BS deployment costs

minimize
λz
m,j ,λ

z
s ,ϕ

z
j

µM +

Z∑
z=1

λz
sEz
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Subject to, ∀j, z:

Z∑
z=1

λz
m,jEz = M (6)

τ̄zm,j , τ̄
z
s,j ≤ τ0 (7)

V z
j ≤ δ (8)

ϕz
j ≥ 0 (9)

Parameter µ captures the relative difference in unitary
cost (purchase and deployment) between SBSs and MBSs.
Constraints 7 impose that, both in MBSs and in SBSs,
the target QoS for BB users is achieved. Indeed, a Palm
expectation of the ideal per-bit delay perceived by users larger
than the target value τ0 implies that even with utilization
equal to one, BSs do not possess enough resources to
guarantee the target QoS for BB users. The value of δ in 8
must be set to a low enough value for violation events to
have a negligible effect on the performance perceived by users.

A. GA-Based Metaheuristic

Problem 1 thus aims at minimizing overall network de-
ployment costs while achieving the target QoS for both BB
users and BH links. Problem 1 has nonlinear and nonconvex
constraints, thus it cannot be solved efficiently. To address
this, we propose a metaheuristic whose fundamental idea is to
maximize the amount of reused base stations, to compensate
for the extra resource costs of MBS due to backhauling. Our
heuristic goes through three steps:
• Step 1: In every region, a lower bound to SBS density is

the minimum of the overall BS density required to serve
users in the whole observation window, as those BS do
not need to move between regions. These lower bounds
(denoted as λz

OnlyStatic) are derived by solving Problem 1 with
λz
m,j = 0 ∀j, z via the hippopotamus algorithms (HA) [16],

which has proven more efficient than the classical genetic
algorithm (GA). The inequality constraints of Problem 1 are
incorporated through an additive penalty objective function.

• Step 2: Problem 1 is solved with HA independently for
every region z, and assuming λz

s ≥ λz
OnlyStatic. Let λz∗

s , λz∗
m,j

and ϕz∗
j denote the output of this step.

• Step 3: The values of λz∗
m,j found in step 2 represent an

upper bound on the optimal densities of MBS in every
region and time interval. This is because when the original
Problem 1 is considered, possibly not all MBS in excess
in a given region and time interval may be reused in other
regions in that time interval, due to e.g. low traffic demand
in those regions at the time interval in which that excess
is present. From the solutions of step 2, for every z let
∆z

m = minjλ
z∗
m,j denote the fraction of MBS which, in

the solutions of step 2, is present in every time interval
z (and which therefore does not need to move). Thus in
step 3 Problem 1 is solved with the additional constraints
∀z, λz∗

s ≤ λz
s ≤ λz∗

s +∆z
m, and 0 ≤ λz

m,j ≤ λz∗
m,j . Indeed

the optimal SBS density is lower than λz∗
s +∆z

m, as when
the excess MBS are swapped with an equivalent amount of
SBS there are fewer MBSs to serve, and the backhauling
traffic load is shared among a larger set of SBS. These two
constraints greatly reduce the solution space with respect to
the original problem formulation, drastically improving the
computational efficiency and accuracy of the HA algorithm.

Table I
ANALYTICAL VS SIMULATION RESULTS FOR τ0 = 10−3 S, 10 W

TRANSMIT POWER, AND 50% MOVING BSS.

User density [m−2] 10−3 10−2 10−1

Total BS density [m−2] 1.79e−4 6.78e−4 1.2e−3

Mean per-bit delay
(SBS) [µs]

Analysis 334 150 274
Simulation 348 147 289
95% Conf. Int. [238, 458] [133, 160] [273, 304]

Mean per-bit delay
(MBS) [µs]

Analysis 437 403 350
Simulation 428 401 352
95% Conf. Int. [377, 476] [391, 412] [345, 358]

Violation Probability Downlink 1.55% 0% 0.56%

V. NUMERICAL ASSESSMENT

In this section, we validate numerically our analytical results
and we investigate the potential resource savings enabled by
the moving network paradigm as a function of the main
system parameters. We assume all BSs work at a frequency
of 1.5 GHz and use a bandwidth of 10 MHz. We consider a
target QoS for BB users of 10−5 s (corresponding to a mean
throughput of 100 kbps) and of 10−6 s (1 Mbps). We assume
a path-loss coefficient of 3, typical of urban scenarios, a 3 W
transmit power and a reuse factor of 3, as typical of small
cell settings [8]. We consider a density of connected users
ranging from 103 to 105 users per km2, as close to typical
daily variations in residential and business districts during
working hours in many large cities.
The multiplicative factors in the penalty functions used to solve
Problem 1, derived empirically, have been 150 for Constraint
7.1, 100 for Constraint 7.2, and 1000 for Constraint 8. To
allow the HA algorithm to effectively explore the feasibility
region, we set the number of search agents to 70. The HA
algorithm stopped when the average change in the fitness
function was less than 10−8 over 30 iterations.

A. Single region static scenario

To assess the accuracy and reliability of our model, and
to identify the main performance patterns arising from it, in
a first set of experiments we considered a static scenario,
composed of a single region, and we analyzed different setups
in terms of user and base station densities while assuming the
same transmission power to compare the effects of wireless
backhauling on the system. As shown in Table I, in all settings
the analytical values are within the 95% confidence interval
of simulation results, suggesting that our model delivers
satisfactory accuracy levels across a variety of settings. In
addition, the violation probability measured from simulations
has been always inferior to the target maximum value, set to
5%.
In another set of experiments, we characterized the perfor-
mance of the systems as resulting from our heuristic as a
function of user density, of the target per-bit delay perceived by
users. Moreover, as moving and static base stations typically
have different installation and deployment (I&D) costs (with
wireless backhauling MBS being generally less expensive
than SBSs), we evaluated the impact of the relative I&D
unitary cost on the solutions. Our goal has been to understand
in which scenarios the typically lower deployment costs of
MBSs may compensate for their toll on network resource
utilization due to in-band backhauling.
As expected, the optimal density of active BSs (Figure 1(a))
grows with user density in all configurations, at a power law
rate which is larger when tightening the constraint on target
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(a) (b) (c)

Figure 1. Network configurations resulting as solutions of the heuristic in Section IV-A, as a function of user density, for different target QoS values, and
different relative BS unitary cost µ (ratio between the unitary cost of MBSs and SBSs). (a) Optimal BS densities; (b) Round robin weight ϕ at optimum for
backhauling links; (c) Mean BS utilization at optimum.

Lo

LH

(a)

%

(b)

%

(c)

Figure 2. (a) User density profile over 24 h for the residential and office district; (b) percentage of BS reused as a function of the area ratio γ, for a 90%
and 95% peak-to-trough ratio, (c) and of peak-to-trough ratio for different values of area ratio.

user-perceived QoS. Indeed, a higher end-user throughput
has the double effect of increasing the amount of network
resources required both in the fronthaul and in the wireless
backhaul of the network. In all settings but one, the optimal
configuration is with only SBSs. Only when the relative unitary
cost of MBSs is 0.1 or lower, the optimal solution involves a
majority of MBSs for a given range of user densities, with
a small density of SBS acting as access points for wireless
backhauling links. However, for very low user densities as
well as for high (≥ 10−2 users per m2) ones, the resource
cost of BH links is high enough for the optimal configuration
to switch from one in which BB users are mainly served
by MBSs, to one with only SBSs. As visible in Figure 1(b),
in this configuration the MBS density and the round-robin
weight vary with user density in such a way as to maintain
the same (low) mean number of users per BS, to maintain the
resource consumption of each BH link at a minimum. The
switch to SBS-only happens when the amount of SBS time
spent serving BH traffic becomes preponderant (as witnessed
by the low value of round-robin weight), so that the toll
which MBSs take on the overall network resources makes the
configurations with MBSs less competitive than those with
only SBSs. Overall, these patterns suggest that the resource
cost of QoS-aware wireless in-band backhauling has a high
impact on the resource efficiency of a MN. Note finally that
for τ0 = 10−6 s for low user densities the optimal BS density
does not decrease with decreasing user density, as doing so
would not allow satisfying target QoS constraints. Indeed, for
such low user densities, delivering the target QoS to users
involves keeping a substantial fraction of BSs active, even if
at any time instant a significant fraction of them do not serve
any user. In those configurations, (proactive) algorithms which

activate base stations according to user mobility would be
required, but they are out of the scope of this work, and they
would not decrease the optimal density of BS to be deployed.
Figure 1(c) shows the average BS utilizations at the optimum.
In those configurations in which only SBS are deployed,
utilization is very close to one as this allows minimizing
the amount of deployed BSs. When both MBS and SBS are
present at the optimum instead, the mean utilization of MBS
is substantially lower than that of SBSs. This happens because
the mean overall amount of traffic which a SBS has to serve is
way larger than that of a MBS, and because, as we have seen,
in this configuration the network tries to keep the traffic at
each backhauling link at a low level to minimize the amount
of resources required to serve it at a SBS. The inefficiency of
MBS in a scenario where the user distribution is static was
expected, since the advantages of MBS can only materialize
when their movement allows the same MBS to play the role
of multiple SBS in different time intervals. In order to assess
the benefit of the multiple roles of MBS we thus need to look
at scenarios with more than one region.

B. Two-Regions Urban Scenario
In a second set of experiments, we considered a simplified

model of an urban scenario, composed of two regions
modeling a residential and an office area, respectively. Our
goal was to show how our theoretical framework can be used
to evaluate how much saving in terms of number of deployed
BS (and thus CAPEX) is made possible by reusing MBS in
different regions of a city at different points in time.
We assumed in each region the density of users to vary between
a high and a low value (denoted in Figure 2 as Lh and
Lo, respectively) during a day. To model the effects of user
mobility within the urban scenario, we assumed that the high
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and low user density levels are the same in both areas, and
that the switch between high and low levels in one region
corresponds to a switch in the opposite sense in the other
region. At night (i.e., between 8 p.m. and 4 a.m.) we assume
both areas are at their low level of user density (Figure 2a).
Note that the solutions of Problem 1 do not depend on the
duration of any of these intervals. This setup is an idealized
version of what takes place in practice in real scenarios, but
it is already sufficient to evaluate some key performance
patterns. To model differences in user densities between the
two regions (and in particular, the typically lower density
found in residential regions with respect to office/business
districts), while keeping equal the maximum total amount of
users over the whole urban scenario, we assumed an office
region of one km2, and a residential region of γ km2, where
γ ≥ 1 is the area ratio. As γ increases, users in the residential
area become more dispersed and less clustered. MBS and SBS
have the same unitary cost. Figure 2(b) shows the amount of
MBS at the optimum that are reused, i.e. that serve users of
both regions in the same 24h period, as a percentage of the
total amount of BSs in the scenario. This value corresponds
to actual CAPEX gains with respect to an equivalent fully
static scenario in which MBS users are served by static small
cells with wireless backhauling (as it is common in urban
scenarios, due to the costs and the many practical limitations
of wired backhauling for small cells). We note how the gains
are maximal when the peak and low density levels are the
same in both regions (γ = 1). Indeed, when γ increases, in
the residential region users are distributed over a larger area,
thus requiring on average a higher BS density to be served
with a given target QoS. The figure also shows that gains
increase when increasing the target user performance. This
is because a raise in the target QoS increases the number of
extra BSs which are required when passing from low to high
user density levels (as visible also from the difference in the
slopes of the curves in Figure 1 as a function of target QoS),
and thus the amount of BS which are available for being
reused whenever a region is at the low-density level. For the
same reason, when the peak-to-trough ratio (i.e. the difference
between the high and low user density levels, expressed as
a reduction in % of the high-density level) is kept constant,
increasing the low user density level increases the gains in
terms of fraction of MBSs reused.
Bottom line, these results derive from the fact that the marginal
cost of serving more users or of raising the target QoS
perceived by them increases with increasing user density.
This is also evident when increasing the peak-to-trough ratio.
Adjusting the peak-to-trough ratio models various traffic
patterns for urban, suburban, or rural areas. Figure 2(c) shows
indeed that increasing this ratio increases the amount of MBSs
which are redundant during the low traffic period, and which
can thus be reused, lowering the total amount of deployed
BSs. We note that gains increase faster than linearly when
the peak-to-trough ratio increases. All these results suggest
that, as new applications and use cases in future 6G networks
(such as Ar/XR and 6DoF) are predicted to increase traffic
burstiness and require ever higher throughputs, the moving
network paradigm holds the potential to play a central role
in improving the overall resource efficiency and financial
sustainability of future networks.

VI. CONCLUSIONS

In this paper, we presented a novel analytical framework
for quantifying the potential advantages of the MN paradigm
within urban environments. Our results show that a significant
amount of GV as moving base stations can be reused in
the majority of the considered setups, suggesting the overall
validity of the MN approach to mitigate the need for dense BS
deployments. As a followup, we plan to extend this work to
account for more realistic MBS mobility patterns (including
the impact of the urban road grid geometry).
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APPENDIX

A. Proof of Lemma 1

The pdf fm,s(r)dr of the distance of typical user from the
serving BS can be obtained as the complementary probability
of not having other BS, both of type s and m in the circle
of radius r centered at the user. This can be easily computed
using the void probability of the concerned PPP. As in general
the transmit power of each of the two populations may be
different if the distance from a BS of population s is r, the
distance from a BS of population m such that the received
power will be the same as for the BS from population s is
given by

r′ = rρms = r α

√
Ps

Pm

The void probability of the PPP associated with the population
s, evaluated in the ball of radius r centered at the origin is
e−πr2λs Similarly, the probability of not having other BS
from the population m at a distance smaller than r′ from the
user at the origin is given by e−πr2ρ2

baλb . Recalling that the
two processes are independent, we have:

Fm,s(r) = 1− e−πr2(λs+λmρ2
ms)

Thus,

fm,s(r) =
d

dr
Fm,s(r) = 2πr(λs+λmρ2ms)e

−πr2(λs+λmρ2
ms)

B. Proof of Lemma 2

Lemma 3. The mean utilization in region z at time slot t of
small cells and macro cells is given, respectively, by

Ū j,z
m = Um(τ̄ j,zm ) =

τ̄ j,zm

τ0

and

Ū j,z
s = Us(τ̄

j,z
s ) =

τ̄ j,zs

τ0

Proof. The ideal per-bit delay is the delay perceived by the
typical BB user in x when the utilization of his serving small
cell is equal to 1. Specifically,

τ idealm (x) =
NU + 1

C(x)

where C(x) is the capacity at x. When the utilization of the
small cell is given by the general expression in Section II, we
can compute the actual per-bit delay of the typical user in x
as

τ j,zm (x) =
NU + 1 + βm

C(x)

Thus, the utilization of the small cell serving the typical user in
x can be expressed as Um(x)τ j,zm (x) = τ idealm (x). The result
follows from computing the Palm expectation of both sides
and assuming that utilization is tuned such that the average
actual per-bit delay is equal to the target value τ0. The same
steps are valid for macro cells.

The formula for the average interference is derived by com-
puting the Palm expectation of the total received interfering
power I(D, z, j, k) =

∑
i∈ϕz

j
Pr−α

i uz
i (j) at time t and area

z for a user distant D from the serving BS, where P is the
transmission power depending on the BS tier, uz

i (j) = 1 if
the BS is active in z at j and ϕz

j (k) is the PPP thinned by
k and intensity λz

m,j + λz
s,j . The final formula is derived

from considering that BSs are active only for a fraction

of time equal to their utilization and that both static and
moving BS contribute to inter-BS interference. Furthermore,
we approximate the BS utilization as the average for moving
and static BS. Note that this formula also assumes that MBS
move by remaining, at any time instant, uniformly distributed
on the region of reference.

C. Proof of Theorem 1

We will focus on the derivation of τ̄ j,zs while the derivation
of τ̄ j,zm follows the same line as in [17]. The Palm expectation
of τ j,zs (S(0), D) perceived by user in S(0) (i.e. at the origin)
at a distance D from its serving BS, in region z and time slot
j, is

E0[τ j,zs (S(0), D)] = E0

[
NM (S(0)) + ϕz

jNU (S(0))

ϕz
jC(D(0), Ps, I)

]
≈

∫ ∞

0

E0[NM (S(0)) + ϕz
jNU (S(0))|r ≤ D ≤ r + dr]

ϕz
jC(D(0), Ps, Ī(D))

P (r ≤ D ≤ r + dr)dr

where Ī(D) is the mean interference given by Lemma 2. For
dr → 0 we have:

P (r ≤ D ≤ r + dr) ≈ fm,s(r)

with fm,s(r) as in Equation 3.
To derive the final expression, we compute the expected value
of the Poisson distribution of users served by a SBS E0[NM +
ϕz
jNU |r ≤ D ≤ r + dr] of intensity ϕz

jλ
z
u,j + λz

m,j . Thanks
to the additivity of the expectation we can split the equation
for MBS and BB users. Since the delay for BB users is
trivial if only one user is associated with the BS we will
consider the truncated PPP. To compute an expression for
the average size of the Voronoi cell hBH(r) we proceed as
in [14] and we move the typical MBS in (0,−r) so that its
serving static BS is located at the origin. Then we consider a
user in (x, θ) served by the BS at the origin and impose that
no other BSs are closer. This event occurs with a probability
e−λz

sA(r,x,θ), where A(r, x, θ) is the area of the circle centered
at (x, θ) that is not overlapped by the circle centered at the
typical MBS. The derivation of hs(r) and hm(r) is similar
but without accounting for the PPP of MBS as serving BS for
the BH. Specifically, when the static serving BS is distant r,
hs(r) =

∫∞
0

∫ 2π

0
e−λz

sA(r,x,θ)−λz
m,jA(r,xρms,θ) since no other

SBS must be closer in A(r, x, θ) and no other MBS must be
in the smaller area A(r, xρms, θ). It is important to note that
when computing the average number of BB users and MBS
served by the SBS, the sizes of Voronoi cells are different.
Specifically, for the BB users we account for MBS in proximity
reducing the overall size of the Voronoi cell.
The existence and uniqueness of the fixed point derive from
applying the Banach fixed-point theorem to the fixed point
problem at hand, as it can be proved that the system of
equations for the average per-bit delays is a contraction using
well-known inequalities.

D. Proof of Theorem 2

For simplicity, we drop the location indication, and we
denote S(0) and D(0) as S and D respectively. CDFr(r) is
the cumulative distribution function of the distance of users
from their serving base station derived from the probability of
not having other SBS than the serving one in the annulus of
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radius r and r+ dr. To prove the result, we need to compute
the mean per bit-delay in downlink for MBSs as a measurable
function g(r). In Euclidean space with Lebesgue measure,
measurable functions are continuous. For z ∈ {R,O} and
j ∈ {1, ..., J}, we rewrite the expression in Equation (1) for
MBS as

τM =
NM (S) + ϕz

jNU (S)

C(r, P, I)

To obtain g(r), we compute the number of users served by the
static BS in S as a function of r. For the PPP of users with
density λz

m,j+ϕz
jλ

z
u,j , this quantity has expression (NM (S)+

ϕz
jNU (S))(r). Its mean value is thus given by (λz

m,jhBH(r)+
ϕz
jλ

z
u,jhs(r)), where hs(r) and hBH(r) are the mean areas

of the Poisson Voronoi cell of a static BS, respectively with
and without accounting for MBSs in the system, conditioned
to having the user at a distance r from its serving BS and
having a SBS as serving BS. Their derivation follows as in
the proof of Theorem 1.

E. Proof of Theorem 3

We consider an MBS cell in the region z and interval j,
serving NU BB users. We have the following result.

Proposition 1. For λz
u,j < 1, the variance of the PPP of

users is lower than the variance of the Poisson Voronoi cell
area.

Proof. The variance associated with the number of users in
a generic Voronoi cell of area A is equal to the density
λz
u,jA. Also, if the user density is lower than 1, then the

average size of Poisson Voronoi cells associated with BS is
≥ 1 m2. The variance of the surface of Poisson Voronoi
cell A can be derived from the second moment as V ar(A) =
2
7

(
1

ρmsλz
m,j+λz

s

)2
. Since the ratio between the density of users

and BS is always greater than 1, then (ρmsλ
z
m,j + λz

s) < 1,
and the result follows.

Due to this assumption, the stochasticity of the per-bit
delay is only associated with the cell’s area rather than being
influenced by fluctuations in the number of users.

Lemma 4. When the utilization of the MBS is less than 1, the
PDF of the per-bit delay of the backhauling traffic demand in
downlink for an MBS is fτd(t) = a

7
2
343
15

√
7
2π t

− 9
2 e−

7
2

a
t , with

a = τ0
λz
u,jA

(ρmsλ
z
m,j + λz

s).

Proof. We consider the worst case in which users always have
data to download. When the utilization of the MBS is less than
1, for the assumption made on the BS service model, the MBS
is serving each user with a mean per-bit delay corresponding
to the target value, equal to τ0. Thus the mean per bit delay
of the aggregate traffic demand is τd = τ0

NU
. For Proposition

1, the PDF of τd is dominated by the stochasticity of the area

of the cell of the MBS. Thus the random variable τd can be
written as

τd =
τ0

λz
u,jA

where A is the area of the Voronoi cell of the MBSs. An
exact analytical expression of the probability distribution
of the area of a Poisson Voronoi tessellation is available
only in the single-dimension case. However, accurate ap-
proximations are available for the two-dimensional case.
The PDF fA(y) of the normalized area of a Voronoi cells
is fA(y) = 343

15

√
7
2πy

5
2 e−

7
2y, where y is the area of the

Poisson Voronoi cell divided by the average surface given
by 1/(ρmsλ

z
m,j + λz

s) where ρ = α
√
Pm/Ps accounts for the

difference in the transmission powers. The expression for the
PDF fτd of the per-bit delay associated with the aggregate
traffic demand in downlink is derived from the following
transformation formula:

fτd(τ) = fA(g
−1(τ))

∣∣∣∣ ddτ g−1(τ)

∣∣∣∣
with τd = g(A) = τ0

λz
u,jA

(ρmsλ
z
m,j + λz

s).

We now derive the violation probability, i.e. the probability
that the per-bit delay perceived by the backhauling connection
is insufficient to carry the aggregate traffic demand (that is,
that it is larger than τd). Given that with τM we denote the
ideal per-bit delay perceived by the backhauling connection,
the actual per-bit delay of the backhauling connection is given
by τM/Ūs, where Ūs is the mean utilization of SBSs. We
thus have that the violation probability can be expressed as

P (τM > Ūsτd) = 1− P (τM ≤ Ūsτd) = 1− CDFτM (Ūsτd)

we consider the random variable T = Ūsτd − τM and recall
that τd and τM are independent from each other. Then we
compute the CDF of the new random variable T :

CDFT (t) = P (Ūsτd + (−τM ) ≤ t) =∫ ∞

0

∫ ∞

x−t

fτd,τM (Ūsx, y)dydx

=

∫ ∞

0

fτd(Ūsx)

∫ ∞

x−t

fτM (y)dydx

where fŪsτd,τM (·, ·) is the joint pdf of (τd, τM ), the last
equality follows from the independence of the given random
variables and∫ ∞

x−t

fτM (y)dy = 1− CDFτM (x− t)

Thus, P (τM > Ūsτd) = CDFT (0) is given by:∫ ∞

0

fτd(Ūsx)(1− CDFτM (x− t))dx
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