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Abstract—Internet of Things (IoT) devices often come with
batteries of limited capacity that are not easily replaceable
or rechargeable, and that constrain significantly the sensing,
computing, and communication tasks that devices can perform.
The Simultaneous Wireless Information and Power Transfer
(SWIPT) paradigm addresses this issue by delivering power
wirelessly to energy-harvesting IoT devices with the same signal
used for information transfer. For their peculiarity, these net-
works require specific energy-efficient planning and management
approaches. However, to date, it is not clear what are the most
effective strategies for managing a SWIPT network for energy
efficiency. In this paper, we address this issue by developing
an analytical model based on stochastic geometry, accounting
for the statistics of user-perceived performance and base station
scheduling. We formulate an optimization problem for deriving
the energy-optimal configuration as a function of the main system
parameters, and we propose a genetic algorithm approach to
solve it. Our results enable a first-order evaluation of the most
effective strategies for energy-efficient provisioning of power and
communications in a SWIPT network. We show that the service
capacity brought about by users brings energy-efficient dynamic
network provisioning strategies that radically differ from those
of networks with no wireless power transfer.

Index Terms—Article submission, IEEE, IEEEtran, journal,
LATEX, paper, template, typesetting.

I. INTRODUCTION

The advent of the Internet of Things (IoT) paradigm has sig-
nificantly impacted the energy consumption of Radio Access
Networks (RAN) [2]. On the one side, the proliferation of IoT
devices is leading to an exponential increase in the number
of connected devices and in the amount of data generated
and exchanged [3]. On the other, the wide heterogeneity of
IoT communication requirements and traffic patterns, together
with the irregularity in the profiles of device activity and sleep
cycles, induce patterns of energy consumption within the RAN
that differ substantially from those of traditional, broadband-
centric cellular networks [4], [5], with a strong impact on the
way the network is planned and operated.

This impact is further amplified when the cellular network
does not only deliver connectivity to all its users but also
power to IoT devices. In this work, we consider scenarios in
which IoT devices harvest RF energy from the environment
(passive energy harvesting - EH) as well as from the signal

0This paper was presented in part at the 20th International Symposium
on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt) [1].

transmitted by their serving base station (active EH) [6]. Such
configurations are interesting as they allow for overcoming the
power budget constraints that limit the potential of battery-
operated IoT devices in many application domains. Indeed,
these limitations often imply tight constraints on the amount
of sensing, computing, and actuation that IoT devices can
perform, negatively affecting their availability.

Among the available technologies for wireless power de-
livery to EH devices, simultaneous wireless information and
power transfer (SWIPT) [7]–[11] is of particular interest, as it
exploits the same cellular infrastructure used to deliver data.
This feature makes it easier and more cost-effective to deploy
than alternative wireless power delivery approaches. However,
differently than traditional single-service cellular networks
with no active power transfer, managing SWIPT networks for
energy efficiency implies accounting for the interdependence
between the energy consumed by BSs and that consumed by
IoT users which, for their ubiquity and rising numbers, are
poised to play a key role in determining the overall energy
footprint of the network. Thus, SWIPT networks require
the development of specific approaches for energy-efficient
network design and management, which may substantially
differ from traditional, single-service RANs. The issue of
energy efficiency in SWIPT is being actively investigated
[12]–[14]. However, these works consider simple network
scenarios, composed of a single base station (BS). They focus
on accounting for the impact of the interplay between power
and information delivery on the energy footprint of the BS.
Other works ( [15], [16]) consider a set of BSs deployed
according to a specific layout, and they propose heuristics
for saving energy in those configurations. Being tied to the
specifics of the scenario considered, these heuristic approaches
do not allow drawing general conclusions on the main features
and limitations of energy-optimal management strategies in
SWIPT networks. Another line of research focuses on applying
the tools of stochastic geometry (SG) [17]–[19] for modeling
system-level average performance in SWIPT networks. SG
allows focusing on the average behavior of the system over
many realizations of the process of UE (user equipment)
and BS spatial distributions, making it possible to analyze
the trade-offs between different potential objectives such as
maximizing coverage, maximizing throughput, and maximiz-
ing energy harvesting, in ways that would otherwise be very
difficult or way less accurate. Crucially, however, none of these
results account for the effects of resource scheduling among
users on user-perceived performance, nor do they address the0000–0000/00$00.00 © 2021 IEEE



key issue of characterizing energy-optimal strategies for QoS-
aware (for both power and information delivery) dynamic
network provisioning, as a function of traffic and energy
demand. Thus, it is still unclear what is the actual potential
for energy efficiency of strategies which dynamically tune the
configuration of SWIPT networks, and what is the impact
of optimizing the main system parameters on the energy
consumed by IoT users and BSs.

In this paper, we address these issues and propose a
stochastic geometry analytical framework for modeling the
relationship between energy consumption, user perceived per-
formance, and the main system parameters in SWIPT cellular
networks, which accounts for QoS-aware resource scheduling
among broadband and IoT EH users. Our framework allows
characterizing in a scenario-independent manner the potential
for QoS-aware energy efficiency in these networks, as well
as the main trade-offs between user-perceived performance
in the communication and power delivery services, resource
utilization, and overall energy consumption of the network.
Specifically, the contributions of this paper are as follows:
• We derive a set of analytical results for the key statistics

of the main performance indicators of a SWIPT network,
which account for resource scheduling among broadband
and IoT EH users, and allow modeling the impact of the
main system parameters on network energy consumption;

• We formulate an optimization problem to determine the
potential energy savings achievable by tuning the main net-
work parameters while guaranteeing a target user-perceived
performance for both information transfer (in downlink and
uplink) and wireless power delivery.

• We elaborate a Genetic Algorithm (GA) approach to de-
rive energy-efficient SWIPT network configurations which
achieve the target QoS levels;

• We validate numerically our approach, shedding light on
several aspects of the tradeoff between user-perceived per-
formance and resource efficiency in a SWIPT network.
Our analysis allows observing some unexpected and rather
surprising effects such as, in some cases, a decrease in the
optimal density of BSs required to serve an increasingly
dense population of UEs, and the irrelevance of active power
delivery for very dense populations of IoT devices.

The rest of this paper is organized as follows. Section II
reviews the relevant state of the art. In Section III, we present
the system model, and in Section IV our analytical approach
for user-perceived performance modelling for both information
and power transfer. In Section V, we present our formulation
of the optimization problem and the GA heuristic for solving
it efficiently. In Section VI we assess numerically our results.
Finally, Section VII concludes the paper.

II. RELATED WORKS

The growing interest towards the integration of wireless
power transfer in cellular networks is due to its potential
for enabling truly ubiquitous and self-sustained cellular-based
IoT [7]–[11]. Indeed, differently from other energy harvesting
techniques (e.g., based on solar, or solely on passive RF
harvesting) those based on active wireless power transfer have

the advantage of being stable and available at any time [6].
Several technical challenges however still need to be addressed
for the practical viability of SWIPT networks, related to
energy-harvesting transceiver and algorithm design, system
integration, protocol design, and energy-efficient network plan-
ning and operations [20], [21].

Initial works on energy efficiency in SWIPT networks
considered scenarios composed of a BS or a broadband unit
with several remote radio heads, and a population of EH
devices. These works aim to optimize the system configuration
in terms of energy efficiency [12], [13], [22]. Among these,
[12] characterizes the data rate vs. energy trade-off in a single
SWIPT BS scenario. For the same setting, [13] proposes an
approach for optimizing transmit power allocation to each user.
[22] elaborates a Markov chain model to derive the joint power
and connectivity outage probability. [23] investigates strategies
for transmit-power-efficient resource allocation. All of these
works provide a first insight into the basic performance
patterns of a SWIPT system. However, they are based on
single BS configurations, which are not representative of the
average performance of a whole SWIPT network, and they
do not account for the impact of the statistics of BS and
user distribution. In particular, they lack accurate modelling of
the effects of co-channel interference and passive RF power
transfer from BSs other than the serving one, as well as from
users associated with them.

Another set of results focuses on sample SWIPT network
configurations, with a given set of BS and a given spatial
layout of BS and of users. They propose algorithms for
energy-optimal configurations, for networks with CoMP [24],
in NOMA networks [25], in full duplex settings [26], as
well as in scenarios with two-way relays [27]. Among these,
[15] proposes an algorithm to minimize the total energy
consumption of a set of BSs and a population of IoT devices,
over sub-carrier and transmit power allocation. However, the
strategies proposed in these works focus on deriving the
optimal configuration for a sample BS deployment, with a
specific layout and with a given user spatial distribution. Being
tied to a specific setup, they do not allow drawing general
considerations on the overall potential of these schemes for
energy-saving.

Recently, stochastic geometry (SG) [17]–[19], [28] has
emerged as an effective modelling approach for a stochastic
characterization of the performance patterns in a wireless
network. SG allows focusing on the average behaviour of
the system over many realizations of the process of UE (user
equipment) and BS spatial distributions. In SWIPT networks,
SG has been used to characterize several performance as-
pects, such as the data rate vs. energy trade-off [18], or the
optimization of the D2D successful transmission rate [28],
to name a few. These works however, often for the sake
of analytical tractability, do not account for the effects of
resource allocation and scheduling among users (such as the
statistics of the sharing of BS time across all associated
users) which are key for accurate stochastic modelling of
the performance perceived by the user. As such, they do
not enable an accurate and realistic characterization of the
main trade-offs between the energy consumed by the network,
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Fig. 1. Outline of the system model for the SWIPT wireless network
considered in this work.

user-perceived performance (for both power and information
delivery), and resource utilization. Thus, they leave open the
more general issue of determining the most effective QoS-
aware dimensioning and tuning strategies to achieve system-
level energy proportionality in a SWIPT network, as a function
of the main system parameters.

In the present paper, we address these issues by proposing
an SG modeling framework which captures the relationship
between energy consumption, user-perceived performance, and
the main system parameters in SWIPT cellular networks. Our
framework allows characterizing in a scenario-independent
manner the potential for QoS-aware energy efficiency in
these networks, as well as the main trade-offs between user-
perceived performance in the communication and power de-
livery services, resource utilization, and overall energy con-
sumption of the network. Our analytical approach overcomes
the limitations of existing results, as follows:
• It allows an estimation of the potential energy savings

achievable in a SWIPT network through QoS-aware (for
both energy and data transfer) tuning of network parameters.

• It accounts for the effects of base station resource alloca-
tion and scheduling among users on the statistics of user-
perceived QoS.

In doing so, our work provides an initial characterization of
the performance-energy tradeoff in SWIPT cellular networks,
providing the instruments for evaluating the impact of UE
population density and QoS targets on the overall energy
efficiency of the network.

III. SYSTEM MODEL

We utilize stochastic geometry to model the spatial dis-
tribution of network elements in our system. Specifically,
we assume that BSs are distributed in space according to
a homogeneous planar Poisson Point Process (PPP) with a
density equal to λb BSs per km2. UEs are distributed in space
according to a homogeneous PPP with an intensity equal to
λu UEs per km2. UEs are either broadband (BB) terminals,
or IoT (Internet of Things) devices. We assume the latter are
a fraction γ of the total number of UEs.

As depicted in Fig. 1, we consider the case in which IoT
devices harvest the energy necessary for their own operation,
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Fig. 2. Difference in the harvesting process between SPS and DPS receiver
operating modes.

while BB users don’t. To this end, each IoT device is equipped
with two separate receivers, one for information and another
for energy, and it is capable of exploiting downlink signals
for decoding its intended information, as well as downlink
and uplink signals from both BSs and UEs for charging its
battery. The receiver operating modes we consider are [29]:

• Time Switching (TS), by which a fraction η (the time switch
ratio, with 0 ≤ η ≤ 1) of the time dedicated by a BS to
serve an associated IoT device in downlink is devoted to
active power transfer, i.e., it is used by the UE for harvesting
energy from the signal received from the BS. The rest of
that time is used for receiving information.

• Static Power Splitting (SPS). In this operating mode, the
receiver antenna at every IoT device is followed by a splitter,
which sends a fraction ν (the power split ratio, with 0 ≤
ν ≤ 1) of the total signal power received at any time instant
to the RF harvesting electronics. The rest of the received
signal power is instead used for decoding information.

• Dynamic Power Splitting (DPS). As depicted in Fig. 2, in
this operating mode, at every IoT user the power split ratio
is ν when the serving base station is serving that user, and
it is equal to one for the rest of the time. That is, when an
IoT node is not receiving data from its serving base station,
all the received power (from any RF source, including all
BSs and users) is fed to the RF harvesting electronics.

We assume η and ν are the same for all devices.
Thus, IoT devices harvest energy not only from their serving

BS (active charging), but also from the signal received from
all of the other BSs, as well as from uplink transmissions from
both IoT and BB UEs (passive charging).

We assume that BSs use a generalized processor sharing
(GPS) mechanism to divide BS time among all the connected
UEs. As represented in Fig. 3, in downlink, the GPS weights
are 1 for IoT UEs, and wd for BB UEs. The time spent
by the BS without transmitting is modeled as a user with
a GPS weight βd. As for uplink, in all configurations, the
GPS weights are 1 for IoT UEs, δu for BB UEs, and βu

for the uplink BS time not assigned to any UE. IoT UEs
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Fig. 3. Downlink time scheduling scheme for a SWIPT BS, for a network
with time switching EH receiver architecture, with GPS weights.

periodically cycle between two operational states. During the
active state, they send and receive data, plus possibly they
perform some other task, such as sensing, while harvesting
energy from active and passive sources. In the low power state,
IoT devices only harvest energy. We assume that each IoT
device is disconnected from the power grid, and possesses an
ideal battery (i.e., with efficiency equal to one) with enough
capacity to compensate for the fluctuations in the energy
consumed and harvested. Note however that our approach
can be easily extended to consider battery nonidealities and
limitations due to finite battery capacity. With ϕ we denote
the fraction of time spent by an IoT device in the active state.
BB users are instead assumed to always be in the active state.
We assume the system is in saturation, i.e., BSs have always
data to send to users, and users in the active state have
always data to transmit. A key aspect of the EH process is
the function h = Θ(hin) that maps the received power hin to
the harvested power h for EH IoT devices. Θ models the effect
of several technological factors affecting the efficiency of the
energy harvesting process, ranging from receiver antenna gain
to exposure of the specific IoT device, to receiver architecture,
among others. In this work, we consider two different models:
• a linear model, by which Θ(hin) = ξhin, with ξ ≤ 1; and
• a nonlinear model, where the mapping function is a normal-

ized sigmoid [30], given by

Θ(hin) = max

{
hmax

e−χhs+ι

(
1 + e−χhs+ι

1 + e−χhin+ι
− 1

)
, 0

}
(1)

hmax is the maximum harvested power when the energy
harvesting circuit is saturated, while hs is the harvester’s
sensitivity threshold, i.e. the minimum amount of power able
to activate the harvesting process. χ and ι are parameters
that control the steepness of the sigmoid.

Note however that our approach extends easily to other EH
models.
Given that the cellular RAN delivers two classes of services to
two different types of UE, the performance metrics are defined
as follows:
• Information transfer: For all UEs, the end-user perfor-

mance metric is the per-bit delay τ of data transfers. It is
the time required to transfer a single bit, and it is thus the
inverse of the short-term throughput, i.e., of the rate at which
data is transferred.

• Power transfer: The performance parameter is the amount
of power harvested by an IoT device, denoted with h.

TABLE I
MAIN NOTATION USED IN THE PAPER

Name Description
τ̄j , j = d, u Mean ideal per-bit delay in downlink/uplink (s−1)
τj , j = d, u Per-bit delay in downlink/uplink (s−1)
τ0j , j = d, u Target per-bit delay in downlink/uplink (s−1)
ξ EH conversion efficiency ratio (linear model)
h0 Minimum harvested power required by each IoT

device (W )
µ Maximum acceptable ratio of IoT users which har-

vest less than h0 W
ϕ Fraction of time in which IoT devices are active
λb Mean BS density (m−2)
λu Mean density of user terminals (m−2)
γ Fraction of user terminals which are IoT devices
η Fraction of the time dedicated by a BS to serve an

IoT device in downlink used for harvesting energy
from the signal received from the base station

ν Fraction of the power received at any time instant by
an IoT device which is used for energy harvesting

βj , j = d, u GPS weight of the amount of time spent by a BS in
idle mode in downlink/uplink

wd Ratio between the amount of time dedicated to
serving a BB UE and the one dedicated to serving
an IoT user in downlink

δj , j = d, u Ratio between the BS time dedicated to a BB user,
and the base station time dedicated to an IoT user
for data transfer in downlink/uplink

k Frequency reuse factor
α Path loss exponent
P BS transmit power (W )
G BS antenna gain
L BS antenna loss (out of beam)

As a result of the scheduling strategy (both in downlink and
uplink), the amount of harvested energy may vary substantially
across the various devices. These metrics must be considered
relative to the corresponding application demands. As an ex-
ample, the energy harvested by each device during a complete
on-off cycle (and therefore the value of the parameter h) must
be sufficient to compensate for the energy consumed during
the cycle by such tasks as sensing, processing, storing, and
distributing data, while accounting for battery efficiency and
for fluctuations in consumption patterns due to changes in
the operational state of IoT devices. Accordingly, the target
performance for information transfer is related to application-
specific requirements.

A. Channel and Service Model

Our channel model only takes into account distance-
dependent path loss. Incorporating the effects of fading and
shadowing would not alter our approach, and is left for future
consideration. We assume that random frequency reuse is in
place, with reuse factor k. That is, every BS is assigned one out
of k frequency bands with equal probability.We assume that
UEs are associated with the BS that provides the largest SINR
at the user location. We consider urban scenarios, where the
high capacity demand justifies strategies for energy-efficient
network planning and management, and where the assumption
of high attenuation (with exponent α ≥ 3) typically holds.
In these settings, as no fading is considered and all BSs use
the same transmit power, assuming that users associate to the
closest BS is a reasonable approximation [19].
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We assume BS antennas use beamforming, and we denote
with G the beamforming gain and with L the side lobes
attenuation. If with a we denote the aperture of the main lobe
(in degrees), the relationship between G and L is given by

L = 1− (G− 1)
a

360− a

Since users are assumed to be distributed uniformly in space,
and base station time is supposed to be shared in equal parts
across users of the same type, the mean power received by
a user while it is not being served from the base station to
which it is associated (located at a distance r) is PLgr

−α,
with Lg = Ga+L(360−a)

360 . Thus Lgr
−α is the mean attenuation

with which the power transmitted by the serving base station
is received by a user when it is not being served. Denote by
S(x) the location of the BS that is closest to a UE located at
x. We denote the capacity of a user located at a distance r
from the BS by C(r, P,G, I) bit/s per Hertz, where P is the
BS transmit power, and I the total received interfering power.
We model C(r, P,G, I) using Shannon’s capacity law. Thus,

C(r, P,G, I) =
B

k
log2

(
1 +

PGr−α

N0 + I(r, k)

)
(2)

where α is the attenuation coefficient, N0 the power spectral
density of the additive white Gaussian noise, and k the reuse
factor.

B. Base Station and UE Energy Consumption Model

The power consumed by a BS depends on several factors,
which vary according to the BS type (e.g. macro, micro, femto)
and the implementation technology (e.g. standalone vs cloud-
RAN), among others. In what follows, we adopt a very flexible
BS energy model, first proposed in [31], [32], by which the
power consumed by a BS, denoted as PBS , is given by the
following expression:

PBS = q1 + Ud[q2 + q3(P − Pmin)] (3)

In this model, the power consumed is thus given by the sum
of three contributions.
• A first contribution, given by q1, is constant, and depends

only on the specific type of BS considered (e.g. macro,
micro, femto, cloud). It models the power consumed when
the BS is not carrying any traffic to/from users. As such,
it does not depend on utilization or transmit power, and it
is due to the power consumed by, e.g., part of the cooling
function, by power amplifier consumption in idle state, and
by all those functions which keep the BS in an operational
(i.e. non standby) state.

• The second component q2Ud, in which Ud is the downlink
BS utilization, models that fraction of consumed power
which depends on BS utilization (and it is thus proportional
to the amount of traffic served), but not on transmit power. It
models the power consumed by such functions as baseband
processing and RF signal processing.

• Finally, the third component q3Ud(P − Pmin) (where and
P is its transmit power, which we assume varies within

the interval [Pmin, Pmax]) models the fraction of consumed
power due to the power amplifier which depends, at the
same time, on the transmit power P and on the fraction of
time that the BS is busy transmitting (given by Ud).

This energy model is very flexible and suited for accounting
not only for implementations with different degrees of load
proportionality, but also for cloud RAN configurations.

C. Base station service model

We define the utilization U(S(x)) of the BS serving a UE
at location x as the average fraction of time in which the BS
is busy transmitting (in downlink – U(Sd(x))) or receiving
(in uplink – U(Su(x))), respectively. Thus, the expression of
the utilization of the BS is given by the fraction of BS time
dedicated to all active users:

Ud(S(x)) =
Niot(S(x)) + wdNbb(S(x))

Niot(S(x)) + wdNbb(S(x)) + βd
(4)

Uu(S(x)) =
Niot(S(x)) + δuNbb(S(x))

Niot(S(x)) + δuNbb(S(x)) + βu
(5)

where Niot(S(x)) and Nbb(S(x)) denote respectively the
number of broadband and IoT users in the active state, and
associated with the same BS as the UE at location x. Note
that, as IoT users cycle between active and inactive states, on
average only a fraction ϕ of them is active at any point in time.
Given wd and δu, by tuning βj it is possible to vary the mean
amount of service received by UEs for both communication
and energy transfer, and the overall BS utilization, both in
downlink and in uplink.

Definition. The ideal per-bit delay perceived by a UE is the
per bit delay which a UE would perceive if the BS with which
the UE is associated had utilization equal to 1.

Note that the above definition does not assume that all of
the BSs have utilization equal to one, but only the BS serving
the considered UE. From expressions (4), (5) and the above
definition, we have that for a UE at x, the relationship between
the ideal per bit delay τ idj , j ∈ d, u and the actual per bit
delay, both in uplink and in downlink, is Uj(S(x))τj(S(x)) =
τ idj (S(x)), with j ∈ d, u. Indeed, from the expression of the
utilization, the ratio between the ideal and the actual per-bit
delay is equal to the fraction of time the BS is active.

For each UE type, and for both uplink and downlink, a
notion of target minimum quality of service (QoS) is defined.
Namely, UEs are said to perceive satisfactory performance if
the average per-bit delay experienced by a typical BB user
(resp. IoT device)1 are less than their respective predefined
target values. In what follows, for a given η, we assume each
BS adopts the values of βj , j ∈ d, u (and thus of utilization
in downlink and uplink) which achieve the target QoS for
communications. This makes the average of the actual per bit
delays (over all the users associated to that BS) coincide with
the target values.

1The definition of the typical user in the system is provided by classical
Palm theory [33].
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IV. MODELING USER-LEVEL PERFORMANCE

In this section, we characterize the main performance pa-
rameters, i.e., the per-bit delay and the harvested power of
a typical user who is just beginning service2 , as well as
the mean harvested power, as a function of the main system
parameters. The expression of the power harvested by a user
at x is given by the following result.

Lemma 1. Let K(x) = [Niot(S(x))+wdNbb(S(x))]
−1. Then

the power harvested by a user at x is h(x) = Θ(hin(x)), where
the received power hin(x) is given by:
• TS:

hin(x) = PD(x)−αUd(S(x)) [GηK(x) + Lg(1−K(x))]

+ [1−K(x)Ud(S(x))(1− η)] (I(x) +O(x))
(6)

• SPS:

hin(x) = νPD(x)−αUd(S(x)) [GK(x) + Lg(1−K(x))]

+ ν(I(x) +O(x)) (7)

• DPS:

hin(x) = PD(x)−αUd(S(x)) [GνK(x) + Lg(1−K(x))]

+ I(x) +O(x) (8)

I(x) is the total power harvested by the user at x from BSs
other than the one with which it is associated. O(x) is the
power harvested from UE transmissions, averaged over time,
and Ud(S(x)) is the downlink utilization of the BS with which
the user at x is associated.

For a proof, please refer to Appendix A.
From its definition and from the service model description,

it derives that in downlink, the ideal per-bit delay perceived
by a BB UE at x is given by

τ idd (x) =
Niot(S(x)) + wdNbb(S(x))

wdC(x, P,G, I)
(9)

For IoT users, in the TS receiver mode, the ideal per-bit delay
is given by:

τ idd,I,TS(x) =
Niot(S(x)) + wdNbb(S(x))

(1− η)C(x, P,G, I)
(10)

while, in both the power split modes, the ideal per-bit delay
is

τ idd,I,PS(x) =
Niot(S(x)) + wdNbb(S(x))

C(x, (1− ν)P,G, (1− ν)I)
(11)

For the uplink instead, for broadband users, we have

τ idu (x) =
Niot(S(x)) + δuNbb(S(x))

δuC(x, PI , 1, 0)
(12)

For IoT users, the ideal per-bit delay perceived in uplink is
τ idu,I(x) = δuτ

id
u (x). With τ̄j (τ̄j,I ), j = d, u we denote

the average per-bit delay perceived in downlink (resp. in

2This assumption is standard in stochastic geometry, and it is one of the
possible ways of choosing the point of view from which to carry out the
analysis. Indeed, there is no difference in terms of performance with respect
of the case in which users have been in the system for a while.

uplink) by broadband and IoT users, respectively. By lever-
aging stochastic geometry, we now derive the main analytical
results, in terms of probabilistic expressions for user-perceived
performance metrics, which account for the random spatial
patterns of both BSs and UEs. The following result derives
an expression for the average per-bit delay perceived by the
typical user (BB or IoT) which is just beginning service.

Theorem 1. The mean ideal per-bit delays in downlink and
uplink, and the mean ideal per-Joule delay perceived by a
typical best-effort user joining the system are given by:

τ̄d =H(wd, wd, C(r, P,G, Ī)) (13)

τ̄d,I,TS =τ̄d
wd

(1− η)
(14)

τ̄d,I,PS =H(wd, 1, C(r, (1− ν)P,G, (1− ν)Ī)) (15)
τ̄u =H (δu, δu, C(r, PI , 1, 0)) (16)

τ̄u,I =δuτ̄u (17)

Where:

H(y, z, g(r)) =

∫ ∞

0

f(r, y)e−λbπr
2

λb2πr

zg(r)
dr. (18)

with

f(r, y) = λu [y + γ (ϕ− y)]

∫ ∞

0

∫ 2π

0

e−λbA(r,x,θ)xdθdx

A(r, x, θ) is given by A(r, x, θ) = πx2 −[
r2 arccos

(
r+x sin(θ)
d(r,x,θ)

)
+ x2 arccos

(
x+r sin(θ)
d(r,x,θ)

)
+

− 1
2

√
[r2 − (d(r, x, θ)− x)2][(d(r, x, θ) + x)2 − r2]

]
, and

d(r, x, θ) is the euclidean distance between (x, θ) and (0,−r).
C(r, P,G, Ī) is given by (2), with the interference term Ī given
by

Ī(r, k) =
PLgλb2πr

2−α

k(α− 2)

τ̄d
τ0d

(19)

For the proof, please refer to appendix B. We say that the
considered system is in the dense IoT regime when the density
of IoT users is such that the probability of having a cell without
IoT users is negligible. This assumption is coherent with many
current projections on expected IoT deployments in 6G, in
which the expected device densities are of the order of 10
million devices per km2 and more [34]–[37].

Theorem 2. In the dense IoT regime, the cumulative distri-
bution function CDF i

h, i ∈ {TS, SPS,DPS} of the power
harvested by an IoT user who is just beginning service is
CDF i

h(h0) = CDFr(g
−1
i (h0)) for all h0 ≥ 0. CDFr is the

cumulative distribution function of the distance of the user to
its serving BS:

CDFr(r) =

∫ r

0

e−λbπy
2

λb2πydy

where gi(r) = Θ
(
Fi(r) +

Zi(r)
f(r,wd)

)
, and f(r, wd) given by

Theorem 1. As for Fi(r) and Zi(r), we have:

• TS configuration:
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FTS(r) = Pr−αLg
τ̄d
τ0d

+ kĪ(r, k) + Ō

ZTS(r) =
τ̄d
τ0d

[
Pr−α(Gη − Lg)− (1− η)(kĪ(r, k) + Ō)

]
Ō =

(1− γ)δuPbb + ϕγPI

(1− γ)δu + ϕγ

λbπα

α− 2

τ̄u
τ0u

• SPS configuration: FSPS(r) = νFTS(r), and ZSPS(r) =
νPr−α τ̄d

τ0
d
(G− Lg).

• DPS configuration: FDPS(r) = FTS(r), and ZDPS(r) =
Pr−α τ̄d

τ0
d
(νG− Lg).

For the proof, please refer to Appendix C. Pbb and PI denote
the transmit power of BB and IoT UEs, respectively.

Theorem 3. (Maximally fair GPS weights). The values of
the GPS weight wd which maximize fairness among users are
given by wd = δd(1− η) for the time split (TS) mode, and

wd = δd
log2

(
1 + (1−ν)PGr̄−α

N0+(1−ν)Ī(r̄,k)

)
log2

(
1 + PGr̄−α

N0+Ī(r̄,k)

)
for the power split modes. r̄ is the mean distance of UEs from
the serving base station, and Ī(r̄, k) is given by Theorem 1.

Proof. In our GPS scheduler, wd is the ratio between the
amount of time dedicated to serving a BB UE and the one
dedicated to serving an IoT user (for both information transfer
and power transfer). We need to ensure fairness in resource
scheduling for information transfer between BB and IoT users
(as for power transfer, only IoT users are involved). This is
implemented by having the ratio between the (mean) amount
of bits received by a BB user and an IoT user be equal to
δd, i.e. to the ratio between the target values of throughput of
the two user classes. Thus we have, for the TS case, in any
location at a distance r from the serving base station,

δd =
wdR(r)

(1− η)R(r)

where with R(r) we denote the amount of bits received by the
user at r during the time that its serving bases station dedicates
to it. We recall that (1 − η) is the GPS weight dedicated to
information transfer to an IoT UE. This brings to wd = δd(1−
η). For the PS cases, we proceed in the same manner. We write
down the ratio between the amount of bits received from the
serving base station, using the Shannon capacity formula:

wd log2

(
1 + PGr−α

N0+I(r,k)

)
log2

(
1 + (1−ν)PGr−α

N0+(1−ν)I(r,k)

)
However such a ratio is a function of r, and of the interference
experienced by the specific considered user. Thus, we consider
the mean user, and set wd in such a way as to satisfy the
equality

δd =
wd log2

(
1 + PGr̄−α

N0+Ī(r̄,k)

)
log2

(
1 + (1−ν)PGr̄−α

N0+(1−ν)Ī(r̄,k)

)
where we approximate the mean interference perceived by the
user with the expression in Theorem 1.

V. ENERGY-OPTIMAL NETWORK CONFIGURATION

One of the main open issues in SWIPT networks is to
determine, as a function of the main system characteristics
as well as of the energy and traffic demands, how the main
network parameters should be tuned in order to optimize the
energy consumed by the system. To this end, in this section, we
elaborate the formulation of the optimization problem which
provides, for a given BS energy model, as well as for a given
user mean density, the energy optimal BS transmit power, the
optimal density of active BSs, as well as the optimal amount
of BS time dedicated to power transfer, which satisfy the
specified performance constraints.
The objective function is given by the mean power per unit
surface consumed by the network, as a function of the BS
density, of the BS transmit power, and of the time/power
switch ratio. It is thus derived as the product of the power
consumed by a BS (expressed in Equation (3)) and of the
mean BS density. Note that, by the definition of per bit
delay, Ud = τ̄d

τ0
d

. The optimization problem that can be
formulated with such an objective function depends also on
the EH operating mode. In the TS case, we have the following
optimization problem formulation:

Problem 1. (TS operating mode)

minimize
P,λb,η

λb

[
q1 +

τ̄d
τ0d

(q2 + q3(P − Pmin))

]
(20)

Subject to:

(C1) τ̄d
τ0
d
≤ 1, τ̄u

τ0
u
≤ 1

(C2) Pmin ≤ P ≤ Pmax
(C3) 0 ≤ η ≤ 1
(C4) CDFTS

h (h0, η, P ) ≤ µ
(C5) 0 ≤ λb ≤ λb,max

Constraints C1 requires the mean BS utilization in downlink
and uplink to be smaller than one. The expression of the ideal
per-bit delay is the one from Theorem 1. Constraints C2 and
C3 define the range of acceptable values for the BS transmit
power and the time split ratio, respectively. Constraint C4
requires that the probability for an IoT device to harvest less
power than the minimum required to operate (denoted as h0,
and accounting for the amount of energy required by the device
during a whole on-off cycle) be less than a given maximum ac-
ceptable value µ. The expression of the cumulative distribution
function is the one derived in Theorem 2. Finally, constraint
C5 derives from practical limitations to the maximum density
of BS deployments in realistic urban settings, which in any
realistic scenario cannot exceed a maximum value.

In the power splitting EH operating modes (both static and
dynamic), the resulting optimization problem takes a very
similar structure. In both SPS and DPS, the objective function
is the same, and decision variables are P ,λb and ν. Moreover,
constraint C3 is replaced by

(C3a) 0 ≤ ν ≤ 1 (21)

For SPS, constraint C4 becomes

(C4a) CDFSPS
h (h0, ν, P ) ≤ µ (22)
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For DPS, constraint C4 is substituted by

(C4b) CDFDPS
h (h0, ν, P ) ≤ µ (23)

with CDFTS
h , CDFSPS

h and CDFDPS
h given by Theorem

2. The other constraints and the objective function remain the
same. In all formulations, however, the optimization problem
is non-convex and nonlinear, and it cannot be solved effi-
ciently. This is since τ̄d (which appears in the expression
of both the objective function and in constraints C1) is a
nonlinear and non-convex function of the optimization vari-
ables. Similar consideration holds also for the expression of
CDFh(h0, η, P ) from Theorem 2, which is nonlinear and non-
convex in the three optimization variables.

VI. NUMERICAL RESULTS

In this section, we validate numerically our analytical re-
sults, and we investigate the properties of different strategies
for energy efficiency in SWIPT networks.

A. Setup

We assume base stations work in the 1.5 GHz band and
use a bandwidth of 50 MHz, compatible with 4G+ standards.
Unless otherwise indicated, we assume a percentage of IoT
devices equal to 80% of the total number of UEs (represen-
tative of many present-day scenarios), a transmit power equal
to 0.2 W for both IoT and BB UEs, and a frequency reuse
factor of 3. Moreover, by default, we assume a beamforming
gain equal to 10, constant over the whole main lobe aperture
(which we assume to be equal to 45 degrees), and a path
loss exponent equal to 3, typical of urban areas. For linear
energy harvesting, we assume a conversion efficiency of 0.9,
with no lower/upper threshold. We assume the deployed base
stations to be of the macro type, with a transmit power that
varies between 1 and 11 W. Unless otherwise stated, we set a
target mean per-bit delay in downlink for BB (resp. IoT) UEs
equal to 10−5 s (resp. 10−3 s), and in uplink equal to 10−4

s for all UEs, (e.g., typical of IoT systems for environmental
monitoring [15]). We consider the user density to vary from
10−4 users per m2 (modeling settings with a high share of
BB users) to 10−1 users per m2 (modeling scenarios with
crowds of BB UEs and high-density IoT deployments). Unless
otherwise specified, we assume IoT UEs to be active all the
time (ϕ = 1). We set to 5% the maximum acceptable share
of IoT users who are not able to harvest the target minimum
energy.

The parameters of the BS energy model are chosen to fit
two different types of BSs. The first type (labeled LLP – low
load proportionality) reflects the behavior of the majority of
current stand-alone BSs, and is characterized by a 27% load
proportionality (with q1 = 1100, q2 = 100, and q3 = 30).
Conversely, the high load proportionality (HLP) BS type (with
q1 = 482.3, q2 = 48.23, and q3 = 144.69) corresponds to
a 75% load proportionality, achievable, e.g., through time-
domain duty-cycling at the sub-system level, i.e., through
micro-sleep techniques involving modules of the BS or of the
BBU in cloud-RAN designs [38]. For the sake of comparison,
these parameters were chosen to fit a per-BS maximum

consumed power of 1500 W, typical of stand-alone macro
BSs [39]. The value of BS density has been varied with a
granularity of 10−4 m−2, to guarantee good accuracy of the
GA search process. We assume the mean number of users per
base station to be lower bounded by 5. This models the simple
energy-saving strategy common among MNOs, which switch
off those BSs that serve very few users to no user at all, as
they represent a very high energy cost per user and a small
benefit for performance. The size n of the initial population in
the GA algorithm was set to 100 chromosomes. This choice
proved to be a good compromise between computational load
and convergence speed. In the fitness function, parameters k1,
k2 and k3 were set to 1, 000, 5, 000, and 1, 000, respectively,
as these values proved appropriate to enable our GA approach
to explore effectively the borders of the feasibility region.
The termination condition of the GA was set based on the
convergence of the fitness value. Specifically, we assume that
convergence is reached when the geometric average of the
relative change in the value of the spread over (i = 10)
generations is less than 10−6, and the final spread is less
than the mean spread over the past i generations. We also
set a generation limit m to 150 to prevent potential infinite
iterations. This value was chosen based on an empirical
evaluation of the typical number of iterations required across
different starting points. Regarding the Crossover Heuristic, we
choose a ratio = 1.9, to have a good distance from parents,
and prevent the algorithm from easily getting stuck at a local
minimum.

B. Computational Complexity

As for the time complexity of the proposed GA, in the
worst case scenario, if n iterations are required per each
population of m chromosomes, and if with Tsim we denote
the time to compute the value of the function modeled by
the chromosome and to perform the estimation of the fitness
value, the time complexity of our algorithm is O(mnTsim).
In our setup, consisting in an Intel Core i5 6-core - used in
parallel - processor and 16 GB 2667 MHz DDR4 RAM, Tsim

has been always less than 2s. However, we have empirically
observed that in x tries of the GA, out of the number of
points evaluated for all the six configurations analyzed, our
termination condition always brought the GA to converge
before the maximum number of iterations. This confirmed
the validity of our heuristic choice of the three constants k1,
k2, and k3, as it is hard to model analytically the mutual
relationships between these constants and their impact on the
resulting value assumed by the overall function.

C. Linear Energy Harvesting

To assess the accuracy of our results, we simulated the
system for several values of user and BS densities, in the
linear EH case. For each of the three power harvesting
configurations, and over different values of user density, Fig. 4
shows the values of power per km2 consumed by the network
at the optima derived by our GA, as well as those derived by
simulating the system in those optima.
As the figure shows, the power consumed by EH IoT users
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(a) Time Switching (b) Dynamic Power Splitting (c) Static Power Splitting

Fig. 4. Power per km2 consumed by the network at the optimum vs user density, for different target minimum harvested power and IoT UE receiver
configurations. Markers denote values from simulations, derived with a 95% confidence interval of at most 8%.

has a strong impact on the total power consumed by the
network, irrespective of the degree of energy proportionality
of BSs. Indeed, at low user densities, consumed power more
than doubles when the target minimum harvested power passes
from 1 to 6 mW. At high user densities instead, the difference
is smaller because the power consumed to provide information
transfer dominates the overall energy footprint of the network.
This is also due to the growing inefficiency of information
transfer at high user densities, due to rising interference levels.
Fig. 4 suggests also that our modeling approach is extremely
accurate across very diverse system configurations. Indeed,
the markers reporting simulation results overlap the curves
obtained with our analytical model. In particular, very good
accuracy is achieved even for low values of user density, for
which the dense IoT regime assumption of Theorem 2 does
not hold.

These results suggest that, in sharp contrast to RANs deliv-
ering only connectivity, as the density of IoT users increases,
their contribution to the service capacity of the whole SWIPT
network (in the form of power delivered to other IoT users)
increases too. The effect is visible in all configurations when
comparing the setting in which the energy harvested originates
only from BS transmissions (the ”no UPC” curves in Fig. 4),
with those in which users can harvest energy also from trans-
missions of other users. In all configurations, we find that as
user density increases, its effects manifest as a decrease in the
power consumed by the network. Such a decrease continues
until a minimum is reached, after which the power consumed
increases again with increasing user density. Such behavior is
quite surprising, but is the result of the interplay between, on
the one side, the detrimental effect of rising interference on
communications (which decreases the efficiency with which
network resources are used), and on the other, the beneficial
effect of the increase in user transmissions on the amount of
power harvested by IoT users. When increasing user density
from very low values, these two contrasting effects cause
the overall power consumed by the network to decrease,
before increasing again due to the effects of high levels of
interference on user-perceived QoS for data. The impact of
user contribution to network service capacity is less marked
when the target minimum service capacity is low (e.g., in the
1 mW plots), due to the low impact of power delivery on
the overall consumed power of the network, and it increases
for higher target minimum harvested power. Such impact is

Fig. 5. Power consumed by the network for each user (broadband or IoT)
vs. user density, for different target minimum harvested power and IoT UE
receiver configurations.

Fig. 6. Increase in the power per km2 consumed by the network with respect
to linear EH, as a function of user density, for HLP 1 mW target minimum
harvested power, and for different IoT UE receiver configurations.

limited also in the SPS mode, due to the lower efficiency of
passive EH in that configuration.

These features of optimal power consumption suggest that
(possibly dynamic) configuration tuning holds the potential
to play a key role in minimizing the energy footprint of a
SWIPT network. Indeed, these features suggest that by taking
advantage of user-provided service capacity, it is possible to
make the network increasingly more energy efficient when the
demand (of both energy and communication) it must satisfy
grows. This is suggested also by Fig. 5, which shows that
for all configurations and target minimum harvested power,
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the network energy efficiency increases when user density
increases. Here too, when the user-provided service capacity
dominates the overall energy footprint of the network, the
decrease of per-user energy consumed is faster, while it tends
to slow down for those user densities for which the effects
of interference dominate. Quite surprisingly, for the same
target minimum harvested power, when user-provided service
capacity dominates, the power per user consumed by the
network does not depend on the amount of load proportionality
of the BS energy model (red and blue curves are very close).
It is only when interference dominates that the higher BS
densities required to satisfy the target QoS for information
transfer bring an increase in the impact of the fixed energy
costs of BSs on the overall energy footprint of the network.
The importance of passive energy harvesting in SWIPT net-
works is also visible from Fig. 6, which shows the increase
in the network consumption when only active charging from
the serving BS is available. Indeed, when passive EH is not
available (e.g., due to limitations in the HW architecture of
devices) the energy consumed by the network can be several
times larger than in the case in which passive EH is available.

Another noteworthy feature of a SWIPT network emerging
from Fig. 4 is that for each configuration of EH receiver
architecture and target minimum harvested power, there is
a value of user density below which no feasible solution to
Problem 1 exists. This is due to the lower bound on the
mean number of users per base stations (equal to 5 in our
evaluations). Indeed, as with increasing distance from the
serving base station the power received by users decays much
faster than channel capacity, guaranteeing a target QoS for
harvested power at low user densities requires ever increasing
BS densities and thus very low mean number of users per BS,
up to the point of economic unfeasibility.

Note however that this is relative to a scenario in which
users are distributed uniformly at random in space. In realistic
settings, this implies that deployments of small amounts of
EH IoT devices are of course feasible, but they should be, at
least locally, dense enough to be able to deliver power with
the target QoS while satisfying the system constraints.

In Fig. 7, 8, and 9 we plot the optimal values of BS density,
of transmit power, and of time split ratio (respectively, power
split ratio), for the three EH receiver configurations. As Fig. 7
shows, in the TS and DPS cases the evolution of the optimal
BS density as a function of user density is characterized by
three regimes. First, for very low user densities, the optimal
BS density increases with user density, as expected. For higher
user densities, the optimal BS density reaches a plateau in the
case without user-supplied service capacity, and it decreases in
the case in which the full potential of passive EH is available.
This feature suggests new and quite surprising patterns of
BS sleep modes which, in contrast to those for non-SWIPT
RANs, turn off BSs when demand increases. Finally, for even
larger user densities, in the interference-dominated regime, the
optimal BS density increases again. These three regimes are
not present however for all values of target minimum harvested
power, due to the minimum user-per-BS limit adopted. These
three regimes are not present in the SPS case, in which the
lower efficiency of passive EH brings optimal BS densities

which increase monotonically with user density.
From Fig. 8 we see that the optimal transmit power varies
with user density in a specular manner to optimal BS density,
decreasing when it increases, and vice versa. That is, the
energy optimal strategies emerging from our GA algorithm
tend to compensate for the thinning (resp. densification) of
BS density with cell zooming (resp. shrinking), via transmit
power tuning. This is likely due to the fact that, when IoT node
density increases, the impact on the system of the inefficiency
due to high distance between BS and EH IoT users is stronger,
pushing the optimal solution towards larger BS densities.

Fig. 9 offers some key insights on how tuning split fac-
tor contributes to achieving energy-optimal operation of a
SWIPT network. For low-load proportional BSs, as well as
for configurations with high target minimum harvested power,
the bulk of the energy consumed must be supplied by the
serving BS, which thus has to allocate the majority of its
time to transferring energy to IoT users. As expected, such
a share of BS time is larger in scenarios with a larger target
minimum harvested power. However, in all configurations, for
increasing user densities, the share of BS time dedicated to
active charging decreases, thanks to the combined effect of
user-supplied service capacity, and higher BS density. Beyond
a given user density (which depends on the BS energy model
and receiver EH architecture) the SWIPT network effectively
stops actively delivering power to IoT users (the split factor
gets values close to zero), as passive power supply from
ambient sources is sufficient to achieve the target QoS for
energy harvesting. Again, note that for the SPS configurations,
as harvesting from user transmissions is less efficient, the
decrease in the splitting factor with increasing user density
is substantially slower than in TS or DPS.
Finally, to characterize the effectiveness of our GA algorithm,
we have compared the results derived from it with those
achieved with a simple grid search heuristic. This latter is
based on the discretization of the optimization parameters,
and on an exhaustive search over these discrete values. In all
tests, overall considered settings and for different values of the
discretization step, the difference in results was only due to
the chosen discretization step, and could be made arbitrarily
small with a finer discretization step. This suggests that, for
all the settings we have considered, our GA algorithm proved
effective in avoiding the search process to get stuck into local
minima, while being substantially more efficient.

D. Impact of harvesting nonlinearities
A crucial aspect of the energy harvesting process is the

presence of nonlinearities in the relation between the output
power of the energy harvester circuit at the IoT devices and
its input power. Indeed, such aspect may heavily affect the
amount of harvested power as a function of the network
settings, and thus the energy-optimal configuration of the
whole SWIPT network. To investigate its impact on the
energy-optimal strategies derived by our GA, in another set of
experiments we considered the energy harvesting curve given
by Equation 1. Following indications from the literature [30],
we have set the maximum output power hmax to 10 mW, χ
to 274,
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(a) Time Switching (b) Dynamic Power Splitting (c) Static Power Splitting

Fig. 7. Optimal BS density for different target minimum harvested power and IoT UE receiver configurations.

(a) Time Switching (b) Dynamic Power Splitting (c) Static Power Splitting

Fig. 8. Optimal transmit power for different target minimum harvested power and IoT UE receiver configurations.

(a) Time Switching (b) Dynamic Power Splitting (c) Static Power Splitting

Fig. 9. Optimal time splitting factor (for TS) and power splitting factor (for DPS and SPS) for different target minimum harvested power and IoT UE receiver
configurations.

and the sensitivity threshold hs to 0.064 mW. Figure 10
shows the nonlinear EH curve for the chosen parameters and
for two values of ι, which tunes the maximum efficiency of the
nonlinear harvesting process. Its values have been chosen not
to have a maximum efficiency larger than one, and to approx-
imate the linear harvesting curve which we have considered in
the previous experiments. In the figure, we have also plotted
the linear harvesting functions whose slope approximates well
that of the two sigmoids. As the plot shows, both sigmoids are
characterized by a range of input power within which they are
well approximated by a linear function (and which we denote
henceforth as a ”quasilinear regime”). Note that, with the given
settings, choosing ι = 0.9 (respectively, 1.30) produces a
sigmoid which in the quasilinear regime approximates well
a linear model with slope 0.9 (respectively, 0.77).

Figure 11 illustrates the increase in power consumed at the
optimum induced by the nonlinear EH function versus that of
its linear approximation, for the given values of ι, and for time
splitting EH mode. As the plot suggests, nonlinearity brings
to an increase of the consumed power for target minimum
harvested power values which are much lower than hmax, and
for low values of user density. For a target harvested power
of 1 mW the sigmoid is in a regime in which the conversion

Fig. 10. Harvested power as a function of power received by IoT EH user,
for a linear (with conversion efficiency of 0.9 and 0.77 respectively) as well
as for the nonlinear model (Equation 1) with hs = 0.064 mW, and χ = 274.

efficiency is 20% to 30% less than its maximum value, pushing
the system to compensate with a more conservative transmit
power allocation, thus bringing to a higher overall consumed
power. This is more evident for lower user densities, as in
those regimes the lower mean amount of users per base station
brings (by the law of small numbers) to larger variance and
thus to greatly amplify the effect of the 20% to 30% decrease
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Fig. 11. Increase in consumed power with respect to linear EH, as a function
of user density, for different values of the parameter ι of the nonlinear EH
curve, and for different network setups, in the time splitting configuration.

in conversion efficiency on those users whose harvested power
falls on the tail of the distribution.

VII. CONCLUSIONS

In this paper, we proposed an analytical framework for
the characterization of the performance of a SWIPT network
serving a combination of broadband users and EH IoT devices,
and for the identification of energy-optimal network configu-
rations satisfying constraints on user-perceived QoS. A novel
model that includes the usage of non-linear harvesting has
been introduced taking into consideration aspects related to
sensitivity and maximum capacity. Numerical results suggest
that substantial energy savings are possible with schemes that
adapt the main network parameters to fluctuations in user
density. We also showed that such schemes remain essential,
even in more energy-proportional cloud-RAN settings. The
most interesting insight provided by our results concerns
the interplay between energy harvesting and interference in
cases of extreme densities of IoT devices. In such cases,
we observed that very high device densities facilitate energy
harvesting before interference becomes a problem. As a result,
the optimal base station density can be very low even when
the network load is high. This implies that base station sleep
modes in SWIPT networks should follow different dynamics
than those of networks that do not provide energy harvesting
to IoT devices.
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APPENDIX A
PROOF OF LEMMA 1

We derive the expression of hin only for the TS case,
as the SPS and DPS cases are a minor variation of the
former. The power the user receives at x by its serving BS is
PD(x)−α. K−1(x) = Niot(S(x)) + wd(1 − η)Nbb(S(x)) is
the sum of the GPS weights of all users served by the base
station serving the user at x. Given that η is the GPS weight
for the fraction of BS time dedicated to active power transfer
(to distinguish it from passive power transfer, i.e. from power

harvested by ambient radiation) to an IoT user, and as the
GPS weight of IoT users is 1, ηUd(S(x))K(x) is the fraction
of total base station time dedicated to actively charging the
user at x. Thus, the amount of active transfer energy received
by the user at x is PD(x)−αηUd(S(x))GK(x). This implies
that the expression for the fraction of total base station time
dedicated to transmitting information to the IoT user at x is
(1 − η)Ud(S(x))K(x), and that the BS time dedicated to
serving other users is (1 − K(x))Ud(S(x)). During this BS
time, the BS charges also passively the given user, though it
transmits to it with gain Lg .
From the above, it follows also that
[1− (1− η)Ud(S(x))K(x)] is the fraction of BS time
during which the user at x can harvest energy (from both
active and passive transfers) because this is the fraction
of time during which it is not receiving information, and
[1− (1− η)Ud(S(x))K(x)] (I(x) + O(x)) the received
power due to passive power transfer from BSs other than
the serving one, and from any transmitting user. Putting all
together we have Eq. 6.

APPENDIX B
PROOF OF THEOREM 1

We consider the user at zero, but we drop this indication in
what follows for ease of notation (i.e. S(0) becomes S, and
D(0) becomes D). To derive τ̄d, we start by computing the
Palm expectation of τ idd (x) (we drop the dependence on P and
G for notation ease):

τ̄d = E0

[
Niot(S) + wdNbb(S)

wdC(D, I)

]
=

∫ ∞

0

E0

[
Niot(S,D) + wdNbb(S,D)

wdC(D, I)
|r ≤ D ≤ r + dr

]
× P (r ≤ D ≤ r + dr)

≈
∫ ∞

0

E0[Niot(S,D) + wdNbb(S,D)|r ≤ D ≤ r + dr]

wdC(r, Ī(r, k))

× P (B(0, r) = ϕ)λb2πrdr

where Ī(r, k) is the average interfering power for the typical
user at r, given by Ī(r, k) = PLλb2πr

2−α

k(α−2)
τ̄d
τ0
d

[40]. The notation
Niot(S,D), Nbb(S,D) puts in evidence the fact that we
are considering a BS located at S, serving the user at zero
at a distance D. P (B(0, r) = ϕ) is the probability that
a ball of radius r centered at the origin is empty, equal
to e−λbπr

2

. If Ntot(S,D) = Nbb(S,D) + Niot(S,D), then
Niot(S,D) + wdNbb(S,D) = QNtot(S,D), with Q = wd +
γ(ϕ − wd). The palm expectation at the numerator becomes
QE0[Ntot(S,D)|r ≤ D ≤ r + dr]. The random variable
Ntot(S,D) is the total number of users present in the same
cell as the user at the origin, when his distance from its serving
base station is D. As users are distributed according to a PPP
with intensity λu, Ntot(S,D) is Poisson, with an intensity
given by the conditional Palm expectation inside the integral.

Using Campbell’s formula [33], this expectation becomes
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E0

[ ∫ ∞

0

∫ 2π

0

1(S(x,θ)=S|r≤D≤r+dr)λudθxdxQ

]
=

∫ ∞

0

∫ 2π

0

λuP (S(x, θ) = S|r ≤ D ≤ r + dr)dθxdxQ

The conditional probability within the integral is given by∫∞
0

∫ 2π

0
λue

−λbA(r,x,θ)dθxdx, where A(r, x, θ) is the area of
the circle centered at (x, θ) with radius x that is not overlapped
by the circle centered at (0,−r) with radius r [41]. By
substituting, we get the expression for τ̄d. The derivation of
τ̄u follows along the same lines.

Expressions (13), (14) and (15) are implicit in the per
bit delays. That is, they are a function of the per-bit delays
themselves, via the expression for the interference. Thus each
constitutes a fixed point problem. However it is easy to see
that the mapping operator associated with each of these fixed
points is contractive, and thus the problem admits a unique
solution. Specifically, to prove the existence and uniqueness of
the fixed point for Eq. 13, we prove that the operator T (τ̄d),
whose expression is given by the right member of (13), is a
contraction. To this end, we verify that Blackwell’s sufficient
conditions for a contraction [42] hold for T . The monotonicity
of T is straightforward, because increasing τ̄d increases the
mean BS utilization, and hence the mean interference level.
This translates into an increase in per-bit delays (i.e. a decrease
in mean throughput). For the discounting property, we prove
that ∃β ∈ (0, 1) such that T (τ̄d + a) ≤ T (τ̄d) + βa, ∀a ≥ 0
and for all system parameter values for which τ̄d is defined.
This is done by upper bounding Ī(τ̄d + a) as the sum of two
terms, one function of τ̄d and the other of a. Substituting into
(13), we have that the integrand in (13) can be upper bounded
as the sum of two terms, and after some algebraic steps this
allows proving the discounting property.

APPENDIX C
PROOF OF THEOREM 2

Lemma 2. The average power received from users for the
typical user arriving in the system at a distance r from the
serving BS is approximated by Ō = (1−γ)δuPbb+ϕγPI

(1−γ)δu+ϕγ
λbπα
α−2

τ̄u
τ0
u

.

Proof. The transmit power from a user (averaging between
IoT and BB users) is (1−γ)δuPbb+γϕPI

(1−γ)δu+γϕ . Let χ(j) is the set
of users served by the j−th BS, and x′

i(t), i ∈ χ(j) be
the position of the i-th user served by BS j at time t.
Let d(x, x′

i(t)) denote the distance between the two users
considered, and u(x′

i(t)) the probability that the given user
is transmitting at time t. Then

O(x, t) =
∑
j

∑
i∈χ(j)

(1− γ)δuPbb + γϕPI

(1− γ)δu + γϕ
d(x, x′

i(t))
−αu(x′

i(t))

(24)

As we assume the base station has utilization τ̄u
τ0
u

in the uplink,
u(x′

i(t)) = 1
λuAj

τ̄u
τ0
u

, where Aj is the area of the Voronoi
cell of BS j. Given that users are uniformly distributed in
the plane, the Palm expectation of (24) is well approximated

by (1−γ)δuPbb+γϕPI

(1−γ)δu+γϕ E

[∑
j

∫
x′∈Aj

d(x,x′)−αdx′

λuAj

]
τ̄u
τ0
u

. As Aj is

statistically independent on d(x, x′), the approximated formula
becomes

Ō =
(1− γ)δuPbb + γϕPI

(1− γ)δu + γϕ

∫ +∞
0

λumin(1, s−α)2πsds

λuĀ

τ̄u
τ0u
(25)

where Ā = λ−1
b is the mean area of a Voronoi cell for a BS

density of λb. The final expression of Ō is derived from the
high attenuation assumption (α > 2).

Proof. (Theorem 2) Let us rewrite expressions (5) to (7) in
the form h(x) = F (x) +K(x)Z(x). We have:
• In the TS mode, FTS(x) = PD(x)−αLUd(x)+I(x)+O(x)

and ZTS(x) = PD(x)−αUd(x)(Gη − Lg) − Ud(x)(1 −
η)(I(x) +O(x)).

• In the SPS mode, FSPS(x) = νFTS(x) and ZSPS(x) =
νPD(x)−αUd(x)(G− Lg).

• In the DPS mode, FDPS(x) = FTS(x) and ZSPS(x) =
PD(x)−αUd(x)(νG− Lg).

Let us consider first the TS case. Let’s compute E0[F (D)|r ≤
D ≤ r+dr]. In the TS case, ∀x, we approximate Ud(x) =

τ̄d
τ0
d

.
Thus PE0[D(x)−αLUd(x)|r ≤ D ≤ r + dr] = Pr−αLg

τ̄d
τ0
d

.
As for the remaining terms, O(x) does not depend on the
user distance from its serving BS. The expression of its
expected value is thus given by Lemma 2. As for the con-
ditional expectation of I(x), it is given by (19) in The-
orem 1, multiplied by the reuse factor k. We thus have
E0[I(x) + O(x)|r ≤ D ≤ r + dr] = kĪ(r, k) + Ō.
The SPS and DPS cases are derived similarly. As for
K(x)ZTS(x), Z(x) is a function of D, except for O(x), for
which we approximate E0 [K(D)O(D)|r ≤ D ≤ r + dr] =
E0 [K(D)|r ≤ D ≤ r + dr]O(r). We thus have

E0 [K(D)|r ≤ D ≤ r + dr]Z(r)

= E0

[
1

QNtot(D)
|r ≤ D ≤ r + dr

]
Z(r)

For Jensen’s inequality,
E0

[
1

Ntot(D) |r ≤ D ≤ r + dr
]
≤ 1

E0[Ntot(D)|r≤D≤r+dr] .
For a given cell, Ntot(D) is Poisson distributed. Thus the
ratio of the standard deviation over the mean of this variable
decreases with increasing user density. Therefore in the
dense IoT regime, such an inequality is tight. therefore, the
denominator is then computed as a function of r as in the
proof of Theorem 1. The derivation of the expressions for the
DPS and SPS cases follows along the same line.
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