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Abstract. Segmentation models achieved expert-level performance in a
large variety of medical applications. However, their robustness to rota-
tions, crucial for clinical use, is rarely discussed with the risk of discarding
subtle but diagnostically relevant structures appearing in a wide range
of positions and rotations. In this work, we investigate the robustness to
rotations of a standard 3D nnU-Net in the context of two segmentation
tasks: the hippocampus in MRI and the pulmonary airway system in CT.
In addition, we introduce a 3D Locally Rotation Invariant (LRI) operator
based on the bispectrum to achieve high robustness to input rotations. It
is compared to a standard nnU-Net, a nnU-Net with extended rotational
data augmentation and XEdgeConv, a state-of-the-art approach for RI.
While all models performed similarly regarding the Dice score for right-
angle rotations, the Bispectral U-Net outperformed other designs in the
context of finer and more realistic rotations. Furthermore, the Bispectral
U-Net and the XEdgeConv were more stable w.r.t. input rotation, i.e.
the predictions are significantly more consistent across input rotations.
Important inconsistencies of the nnU-Net were observed for lung airway
segmentation, suggesting potential risks for clinical use.

Keywords: Local Rotation Invariance · Robust 3D Segmentation · Con-
volutional Bispectral Network · Deep Learning · Medical Image Analysis

1 Introduction

Convolutional Neural Networks (CNN) are currently the workhorse for many
medical image analysis tasks. These models must reach high performance and
reliability for segmentation as errors can lead to severe clinical consequences.
The nnU-Net [7] introduced a self-adapting framework reaching state-of-the-art
performances. However, this framework relies solely on data augmentation to
achieve rotation robustness, which may not be sufficient for accurately contour-
ing biomedical structures appearing at a wide range of orientations, with global
as well as local image rotations. Nevertheless, the impact of input rotations on
the model’s performance has been little studied to date. In this work, we first
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evaluate the performance robustness and rotation stability of the nnU-Net. We
then propose a 3D extension of a 2D Rotation Invariant (RI) segmentation model
based on the bispectral operator [12]. The operator complexity, projection over
the spherical harmonics rather than the circular ones, and the range of possible
rotations (parameterized by 3 angles in 3D) make this step quite challenging. We
finally compare the performance and stability of these models with another RI
model, XEdgeConv, on two segmentation tasks. Code will be made available.

2 Related Work

CNN’s robustness to input rotations, a key property for various medical tasks,
has seen limited investigation. Generally, rotational robustness is achieved with
heavy data augmentation which does not pledge invariance. To address this,
invariant or equivariant convolution layers were proposed. One strategy is to
design group-equivariant convolution layers relying on rotated and reflected du-
plicates of all kernels to achieve equivariance [20, 1]. Other developed specific
parametric and/or steerable kernels [18] to create SE(3) equivariant networks
using Circular [22] or Spherical Harmonics [4].

For texture classification, handcrafted Locally Rotation Invariant (LRI) op-
erators achieved excellent results, e.g. local binary patterns [6] or steerable de-
tectors [5, 16]. Those operators have also been incorporated in 3D CNNs using
SHs [2, 11]. RI 3D point cloud segmentation was proposed [26, 14, 15, 8] but only
a few works focused on invariant segmentation of 3D images.

CubeNet [21] uses the group convolution in 3D to create rotation and trans-
lation equivariant CNNs using Klein’s four- and tetrahedral-group, yielding a
Roto-translational group-convolution. 3D-UCaps [10] proposed a 3D capsules
pathway in addition to a standard CNN. However, the capsules do not fully
encode rotation invariance as they reported similar segmentation performances
robustness compared to a standard U-Net. XEdgeConv [17] uses recent advances
in graph neural networks to construct a kernels from translation and permuta-
tion invariant graphs. Finally, [12] implemented a 2D LRI U-Net based on the
bispectrum operator, which we extend to 3D image segmentation in this work.

3 Methods

This section presents the mathematical background for the proposed Bispectral
U-Net for 3D images. By embedding the bispectrum operator in a convolutional
layer, it is convenient to compare the effect of various convolution strategies for
a given network architecture, e.g. a standard 3D convolution for the nnU-Net
model or another RI method such as XEdgeConv [17].

3.1 Notations

The 3D images considered are defined as functions I(x) ∈ L2(R3) where I(x) is
the image intensity at the location x = (x1, x2, x3) ∈ R3. The spherical coordi-
nates are defined as (ρ, θ, ϕ) where ρ ≥ 0 is the radius, θ ∈ [0, π] the elevation
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angle and ϕ ∈ [0, 2π[ the horizontal plane angle. On R3, the unit sphere is de-
fined as S2 = {x ∈ R3 : ||x||2 = 1}. Functions on the sphere are given as
f ∈ L2(S2) using the spherical coordinates. The inner-product for f, g ∈ L2(S2)
is defined by ⟨f, g⟩L2(S2) =

∫ π

0

∫ 2π

0
f(θ, ϕ)g(θ, ϕ)sin(θ)dϕdθ. The triangle func-

tion is defined as tri(x) = 1 − |x| if |x| < 1 and tri(x) = 0 otherwise. Finally,
the Kronecker product is denoted by ⊗ and the Hermitian transpose by †.

3.2 Bispectrum Operators

In addition to the global rotation and translation equivariance properties pro-
vided by any LRI operator [2], the bispectrum operator is sensitive to directional
patterns and complete, i.e. functions with identical bispectrum are rotated ver-
sions of each other [9]. As this work focuses on analysing rotation robustness,
we only recall essential definitions as extended details are provided in [11].

The bispectrum is computed using the Fourier transform on the sphere rely-
ing on Spherical Harmonics (SH). The family of SHs, made of functions Y m

n for
a degree n ∈ N and order m with −n ≤ m ≤ n, is known to form an orthonormal
basis of L2(S2). Therefore, any function f ∈ L2(S2) can be projected onto the
SH basis following the inner product

Fm
n = ⟨f, Y m

n ⟩L2(S2), (1)

in which case f =
∑

n≥0

∑
−n≤m≤n F

m
n Y

m
n . The Spherical Fourier (SF) vector

for a given degree n is grouping the coefficients of all orders m as

Fn = [F−n
n ..F 0

n ..F
n
n ]. (2)

Finally, following [19], a bispectrum coefficient of degree l, |n−n′| ≤ l ≤ n+n′,
n, n′ ≥ 0, of any function f ∈ L2(S2) obtained with the operator B is defined as

bln,n′(f) = [Fn ⊗Fn′ ]Cnn′F̃l
†
= B{Fn,Fn′ ,Fl}, (3)

where Fn⊗Fn′ is a 1×(2n+1)(2n′+1) vector and Cnn′ is the (2n+1)(2n′+1)×
(2n + 1)(2n′ + 1) Clebsh-Gordan matrix containing the namesake coefficients.
F̃l contains the SF vector of degree l. It is zero-padded to match Cnn′ size and
allows to select only the rows associated with the lth degree.

Bispectrum Operators for 3D Images While Eq. (2) applies to functions
defined on the sphere, this work is interested in its application to 3D images.
This requires extending SH bases to 3D volumes. The so-called Solid SHs are
created by multiplying SHs with compactly supported radial profiles hn(ρ) [11].
Solid SHs of degree n and order m evaluated on the Cartesian grid are defined
as

κmn (x ) = κmn (ρ, θ, ϕ) = hn(ρ)Y
m
n (θ, ϕ). (4)

From this equation, SF maps can be created for each degree by convolving the
image with the solid SHs as

Fn(x ) = [(I ∗ κmn )(x )]m=n
m=−n. (5)
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Note the slight abuse of notation as Fn(x ) is the local projection, around x , of
the image to a function on the sphere, further projected onto the SHs basis [11].
Finally, for any I ∈ L2(R3) and x ∈ R3, the bispectrum image operator of degree
n, n′ ≥ 0 and |n− n′| ≤ l ≤ n+ n′ can be created from Eq. (3) and (5) as

Gn,n′,l{I}(x ) = B{Fn(x ),Fn′(x ),Fl(x )}. (6)

This operator inherits the invariance properties (e.g. LRI) of the bispectrum [11].

3.3 Bispectral LRI Layer Implementation

The bispectrum operator implementation requires setting the maximal SH de-
composition degree N ≥ 0. The computed coefficients are restrained to limit the
computational cost, i.e. complexity of O(N3). In addition, N is limited by the
discretization of the solid SH on a cubic kernel, similarly to a Nyquist frequency,
by N ≤ πc

4 where c is the kernel size [2]. As stated in [11], only the components
satisfying 0 ≤ n ≤ n′ and 0 ≤ n + n′ ≤ N are kept as bln,n′(f) and bln′,n(f)
are proportional independently of f . In addition, only the indices where the sum
n+ n′ + l is even are kept as the coefficients are observed to be zero otherwise.

The implementation of the solid SHs is done in multiple steps. Firstly, the
radial profiles hn(ρ) are constructed as linear combinations of radial functions
ψj(ρ), Eq. (7) LHS. For this work, the radial functions were set to ψj(ρ) = tri(ρ−
j). The radial profiles are then evaluated on a Cartesian grid for discretization,
as in [2], and normalised. Finally, they are multiplied with the SHs to create the
kernel Eq. (7) RHS as

hi,on (ρ) =

J∑
j=0

wi,o
n,jψj(ρ)

Eq. (4)−−−−−→ κi,on,m =
( J∑
j=0

wi,o
n,jψj(ρ)

)
Y m
n (θ, ϕ), (7)

where wi,o
n,j are the trainable parameters of the model. J corresponds to the

number of radial profiles, i.e. half the kernel size. The indices i and o iterate over
[1, ..., Cin] and [1, ..., Cout] representing the number of input and output channels
of the layer. Each bispectral convolution is performed in four steps. First, the
feature maps, i.e. SF maps, are computed as a convolution

Fo
n(x ) =

Cin∑
i=1

[(yi ∗ κi,on,m)(x )]m=n
m=−n, (8)

with yi the ith channel of the previous feature maps and κi,on the kernel de-
scribed in Eq. (7). The indices i and o iterate over all input and output chan-
nels. The second step is to compute Eq. (6), using the SF maps of each degree
{Fo

n(x),Fo
n′(x),Fo

l (x)}. We consider the LRI output feature maps computed at
each layer via the multichannel bispectrum operator

Go
n,n′,l{y}(x ) = [Fo

n(x )⊗Fo
n′(x )]Cnn′ ˜Fo

l (x )
†
, (9)
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where y(x) = [y1(x), . . . , yCin
(x)] and Fo

n(x) is given by Eq. (8). Note that
stricly speaking, the operator Eq. (9) is not a bispectrum operator in the sense of
Eq. (6) due to the sum in Eq. (8). It, however, inherits the bispectrum operator’s
equivariance properties, which we demonstrate in Supplementary material 2.

A non-linearity, σ(x) = sign(x)log(1 + x), is applied to avoid vanishing and
exploding gradients due to the bispectral feature maps sizes. Finally, a bias is
added and a ReLU function is applied to the features maps before the final
1× 1× 1 convolution to reduce the number of output channels to Cout.

3.4 Datasets

The evaluation was conducted on two datasets pre-processed using nnU-Net [7]
pipeline. The first one is the HippoCampus (HC) segmentation task of the Med-
ical Segmentation Decathlon dataset1 [3]. This dataset consists of 260 3D Mag-
netic Resonance Imaging (MRI) volumes with two classes contoured, i.e. the HC
head as well as the union of its body and tail. 80% of the data (208 images) are
used for training and the remaining 20% (52 images) for testing. The training
set is split in four folds with 75% for training (156 images) and the remain-
ing 52 images for validation. A second dataset, the Airway Tree Modeling 2022
(ATM22)2 [24, 13, 25, 27, 23] dataset was also selected as it may be more prone
to rotation sensibility. Its main task is to segment the pulmonary airway tree
on Computed Tomography (CT) images. The first pre-processing step is to re-
sample images to have an isotropic sampling, discarding images with a spacing
difference larger than 0.5, resulting in 288 usable images. 75% (215 images) are
used for training while the remaining 25% (73 images) are selected for testing.
A subset of 22 test images were randomly selected to limit computational load
when applying test time image rotations required to evaluate robustness (see
Section 3.6). The training set is split again in two folds with 156 training and 59
validation images. For both datasets, the test results are the averaged model’s
output of all folds producing a more robust estimate of the model performances.

3.5 Network Details

The network architecture was generated using nnU-Net framework [7]. The en-
coder path was composed of four modules each containing two convolutional
layers with a kernel size of 3. Every layer was constituted of a convolution fol-
lowed by batch normalisation and LeakyRELU, with a negative slope of 0.01.
Depending on the model tested, i.e. either standard convolution, XEdgeConv or
bispectral, the convolution type was selected accordingly in each of those layers.
Between modules, a max pooling layer, with a stride and kernel of 2 was used to
reduce the dimensionality. The decoder path comprised three modules preceded
by a trilinear upsampling. Finally, the prediction was computed with a 1× 1× 1
standard convolution and a softmax activation and binarized with argmax. For
1 http://medicaldecathlon.com/, July 2024.
2 https://atm22.grand-challenge.org/, July 2024.
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HC, a patch size of 403 was used based on nnU-Net implementation [7] whereas
for ATM22, a patch size of 563 was selected based on GPUs’ memory limitation.
Even though this patch size is rather low to segment the whole airway tree, our
main interest is to investigate the rotation stability and not the absolute seg-
mentation performance. Compared to other models, the number of base features
of the Bispectral U-Net is reduced to eight to fit the available memory. The
network was trained using Dice and cross-entropy losses on an NVIDIA V100
for HC3 and A100 for ATM224. The Bispectral U-Net used Adam optimization
with a decaying learning rate starting at 1e-3. The maximum number of epochs
was set to 100 for the HC and 50 for ATM22 as the models reached a plateau.
Two other models were selected for comparison. nnU-Net [7] as a baseline and
XEdgeConv [17], a state-of-the-art model regarding rotation stability in medical
images. Both methods were trained with their default parameters, stochastic
gradient descent and learning rate decay starting at 1e-2. PyTorch 2.1.1 was
used for all models. All three models used the standard nnU-Net data augmen-
tation during training, including rotation randomly sampled between ±30◦ for
each axis. However, as the nnU-Net’s robustness to rotation solely relies on aug-
mentation, a fourth model, referred to as nnU-Net Extended, was trained with
an extended rotational augmentation range of ±180◦ for each axis.

3.6 Metrics and Evaluation

The rotational robustness and stability of each model are assessed by feeding
multiple rotations of every test image and comparing the results between rota-
tions for two tests. The first, referred to as performance robustness test, shows
the segmentation performance of the model via the standard Dice Similarity Co-
efficient (DSC) between the rotated image with the rotated ground truth. The
second, referred to as the rotational stability test, directly evaluates the model’s
stability by comparing the prediction of each rotated image with the non-rotated
prediction. First, the network is fed with multiple rotations of the same image.
Then, the inverse rotation is applied to each output probabilities map before
being compared to the non-rotated probability map. Finally, the Root Mean
Square Error (RMSE) between them measures consistency across rotations, e.g.
a perfectly equivariant network will have an RMSE of zero. A set of rotations
must be selected as testing every angle is not feasible. The first set comprises
the 24 right-angle rotations according to Euler intrinsic angles zx′z′′. However,
since patient orientation is often controlled in medical images, i.e. a brain MRI
or lung CT are unlikely to be upside down, right-angle rotations could be irrel-
evant since simple pre-processing steps could align all images. A set of realistic
rotations is created by uniformly sampling 13 spherical coordinates within a cone
of 45 degrees angle, i.e. ϕ ∈ [−45◦, 45◦] and θ ∈ [0, 360◦], referred to as Cone5.
Only rotations along z and x′ are tested as z′′ rotations induce limited variations
for the right-angle test.
3 An epoch was computed in ≈ 15 minutes using up to 27Gb for a batch size of two.
4 An epoch was computed in ≈ 45 minutes using up to 70Gb for a batch size of one.
5 A spline interpolation of order three was used when executing those rotations.



A Bispectral 3D U-Net for Rotation Robustness 7

4 Results

The right-angle rotations distributions are shown in Fig. 1 a) and c) while the
Cone rotations distributions are shown in Fig. 1 b) and d). The classic nnU-Net
is also included as the training range of rotations includes the testing rotations.
The means of each distribution are reported in Table 1. Qualitative comparisons
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Fig. 1. DICE performance robustness of each model is shown on the darker side of each
violin plot while the lighter side shows the RMSE rotation stability. The violin plots
are created using the metrics score for every image and every rotation. Sub-figures
a), b) are the HippoCampus (HC) dataset with both classes aggregated in a single
distribution. Sub-fig. c), d) shows Airway Tree Modeling (ATM22) distributions.

are provided in Supplementary material 1. For right-angle rotations on the HC,
all models except Bispectral U-Net and XEdgeConv second class (p = 0.06),
are performing significantly different from each other in terms of performance
robustness (p ≤ 0.015). For rotational stability, Bispectral U-Net achieved sig-
nificantly lower RMSE from all models (p ≤ 0.016), while nnU-Net Extended
and XEdgeConv are not significantly different (p = 0.10) for the second class.
For cone rotations, all performance distributions except XEdgeConv and nnU-
Net Extended (Class 1 p = 0.67, class 2 p = 0.49) are significantly different
(p = 0.02). Regarding stability for realistic rotations, only the first class dis-
tributions of Bispectral U-Net and nnU-Net Extended (p = 0.25) are not sig-
nificantly different. For extreme rotations on ATM22, nnU-Net Extended and
XEdgeConv show no significant difference in performance (p = 0.058), but the
Bispectral U-Net differs significantly from both (nnU-Net Extended p = 0.0005
and XEdgeConv p = 0.0055). All RMSE distributions have significantly different
null p-values. For moderate rotations, only nnU-Net and nnU-Net Extended per-
formance distributions are not different (p = 0.39). For rotational stability, only
XEdgeConv and nnU-Net Extended are not significantly different (p = 0.82).
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Table 1. HC and ATM22 performance and stability metric means for the experiments
with either 24 right-angle or 13 Cone rotations. Best results are highlighted in bold.
Note that nnUNet results are not included in the table as they are worse than its
extended version and compromise the table’s readability. For the HC, both class’s
performances are regrouped in a single distribution.

performance robustness (DSC) rotational stability (RMSE)
Model Right-Angles Cone Right-Angles Cone

HC ATM22 HC ATM22 HC ATM22 HC ATM22
Ext.

nnU-Net
87.88% 64.93% 85.17% 50.97% 10.23e-3 4.96e-3 2.64e-4 1.74e-2

XEdge 88.38% 67.42% 85.21% 58.95% 8.13e-3 1.18e-3 3.09e-4 1.61e-2
Ours 88.93% 64.40% 87.21% 68.89% 6.74e-3 0.75e-3 2.72e-4 0.85e-2

5 Discussions and Conclusions

In this work, we investigated segmentation network stability w.r.t rotations. This
question has seen limited investigations even though medical images contain
complex structures in a wide range of rotations. We first investigated nnU-Net
stability to right-angle rotations. Note that the nnU-Net was trained with a wider
range of rotations than the default (±180◦ instead of the basic ±30◦). We then
evaluated the same rotations on two RI networks trained without the extended
rotation augmentation. One state-of-the-art approach, XEdgeConv, and the pro-
posed 3D Bispectral U-Net based on its 2D alternative [12]. When comparing the
three networks for extreme rotations, clear benefits from the invariant networks
can be observed w.r.t rotation stability while preserving the segmentation per-
formance. Both invariant networks share very close performances with slightly
better stability for the Bispectral U-Net. However, for smaller and more realistic
rotations (i.e. Cone), the standard and extended nnU-Nets showed moderate
performance robustness and rotational stability, with potentially serious clinical
consequences. In this context, the Bispectral U-Net achieved significantly higher
performance robustness and rotational stability for both datasets, even more so
for the ATM22 dataset.

When looking at the prediction confidence of different models, available in
the Supplementary material 1, both nnUNet models have much more voxels with
lower confidence, i.e. greener, compared to other models. In addition, in some
extreme cases, the models even detect the positive class outside of the main
structure. When looking at right-angle rotations, the confidence of each model
is higher, except for the normal nnUNet.

The distinct observed trends between extreme and Cone rotations could be
due to (i) more complex directional structures in ATM22 being more sensitive
to smaller rotations and (ii) the induced effect of the rotations on the images is
less diverse with right-angle rotations as they contain trivial symmetries. The
difference with XEdgeConv can be explained as they use a maximum pooling
across neighbouring voxels, which could lose information for smaller rotations.



A Bispectral 3D U-Net for Rotation Robustness 9

Our tests also show that the nnU-Net Extended is very competitive with RI
networks regarding rotation stability for extreme rotations.

Our network shows several limitations. The bispectrum coefficients require
large memory to be computed during training, as well as testing, thus limiting
maximum decomposition degree, kernel size and patch size. However, such a bis-
pectral model could be more than beneficial for datasets with smaller volumes
and further computational optimisation. In addition, the training is much longer
than other approaches even if the number of parameters is significantly lower as
the bispectrum generates large matrices. Similarly, during inference, the predic-
tion also requires an important memory and a rather long time to compute all the
bispectrum coefficients. Nevertheless, we could successfully apply it to two real-
world clinical applications. Finally, when subject to right-angle rotations, the
Bispectral U-Net did not show a generalised performance increase compared to
the state-of-the-art model. Further improvements would be to conduct a hyper-
parameters search and test the network with larger kernel sizes and maximal
degrees to extract more information. Similarly, the effect of smaller rotations
should be more thoroughly investigated to know when a Bispectral U-Net would
be preferred.
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