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Abstract. Hand-labelling clinical corpora can be costly and inflexible, requiring
re-annotation every time new classes need to be extracted. PICO (Participant, In-
tervention, Comparator, Outcome) information extraction can expedite conducting
systematic reviews to answer clinical questions. However, PICO frequently extends
to other entities such as Study type and design, trial context, and timeframe, re-
quiring manual re-annotation of existing corpora. In this paper, we adapt Snorkel’s
weak supervision methodology to extend clinical corpora to new entities without
extensive hand labelling. Specifically, we enrich the EBM-PICO corpus with new
entities through an example of “Study type and design” extraction. Using weak su-
pervision, we obtain programmatic labels on 4,081 EBM-PICO documents, achiev-
ing an F1-score of 85.02% on the test set.
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1. Introduction

Despite the existence of large annotated corpora like EBM-PICO, manual PICO analysis
remains essential. This analysis, which focuses on Participant, Intervention, Comparator,
and Outcome elements, often requires additional information such as study type, design,
context, and trial duration. These details are crucial for comprehensive evidence synthe-
sis, but static datasets like EBM-PICO lack labels for them [1]. Clinical corpora, labelled
by domain experts, serve specific purposes but are static and pose challenges in adapt-
ability to new tasks as when PICO extends to additional analysis. Weakly supervised
(WS) information extraction (IE) techniques offer promise by programmatically labeling
datasets using publicly-available sources like UMLS and NCBO BioPortal. Fries et al.
2021 and Dhrangadhariya et al. 2023 used weak supervision for biomedical and clinical
(PICO) entity extraction [2,3]. They, however, did not tackle the challenge of extend-
ing a corpus like EBM-PICO to new, relevant entities. Our work pioneers weak supervi-
sion for enhancing hand-labelled datasets like EBM-PICO with new clinical entities [4].
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Leveraging WS framework, we successfully label “Study type and design” across 4,081
EBM-PICO documents. Evaluation using a 191 manually labeled documents confirms
the efficacy of our approach, offering a pragmatic solution without relying on domain
experts. Our contribution expands the application of WS clinical IE, aiding faster SRs.

2. Methods

Figure 1 schematically represents our below-described approach.
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Figure 1. WS approach: 1. Define the training, validation, and test sets. 2. Define labelling sources S;. UMLS
vocabularies are reused as labelling sources and mapped to the“Study type and design” class labels. 3. LFs 4;
map the training set to class labels using S; resulting in an m X n label matrix A. 4-5) The A is used to train a
generative LM that could be used to label unlabelled training sets with probabilistic labels.

Dataset: EBM-PICO was used to demonstrate the effectiveness of our approach. It
comes pre-divided into training (n=4,933) and test (n=191) sets [4]. The training set was
further segmented into a validation set comprising 721 documents. Hand-labelled vali-
dation and test sets are necessary for hyperparamter tuning and evaluation, respectively.
To hand label these datasets, annotation guidelines for the “Study type and design” class
were developed. First, the test set was doubly-annotated to calculate pairwise F1 measure
as measure of inter-annotator agreement (IAA) [5]. The IAA was 78.33% and deeming
it as sufficient, the validation set was singly annotated. The training set was labelled with
“Study type and design” class using the weak supervision based programmatic labelling.

2.1. Weak Supervision

Weak supervision based programmatic labelling involves designing m labelling functions
(LF) A, each of which is a function that takes input text sequence X and a labelling
source s and produces an integer label sequence Y= (V1,525 +,9n) 33 € {1,0,—1}. We
used programmatic labelling to label EBM-PICO training set with the “Study type and
Design” class with the target labels y;. The label 1 represents “Study type and design” or
positive class label, O represents a negative class label, and —1 are abstains. The ground
truth Y is latent and estimated by aggregating outputs from multiple LFs, resulting in ¥,
which serves as probabilistic token labels for X. We used programmatic labelling using
the below-described methods to weakly label the EBM-PICO training set with “Study
type and Design” class.

Labelling Sources: A labelling source s can be a set of terms, expert-designed ReGeX,
heuristics, or a combination of these sources that encode some domain-specific knowl-
edge. We used the 2021AB-full release of the UMLS Metathesaurus English subset af-
ter excluding zoonotic and non-English vocabularies, resulting in a pool of 112 vocab-
ularies [6]. Labelling the “Study type and design” class entails using terms or concepts
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to represent this class by aligning the UMLS concepts onto the raw text EBM-PICO
training set. UMLS concepts are organized under 127 internally-defined semantic groups
Seroups = (Sgroupy »Sgroupy -+ Sgroup,); B = 127 like “disease”, “age group”, “geographi-
cal location” denoting whether a concept represents a disease name or a location. Se-
mantic groupings impart meaning to the concepts and allow the repurposing of UMLS
for programmatic labelling of related entities. Our task was to map these Sgyoups to the
“Study type and design” class as per their representational value, ultimately mapping the
concepts to the class labels.

Non-UMLS ontologies like Clinical Trial Ontology?, Randomized Controlled Trials
Ontology?, Ontology of Clinical Research*, and Clinical Trials Ontology> were used to
represent (+1) class labels. Handcrafted dictionaries were designed using key-phrases
from MeSH containing the generic term “trial”. The terms (e.g., “quasi-experimental
trial”, and “crossover trial”) in this dictionary were used to label positive class labels.

We examined the most common keyword patterns in “Study type and design” class
in the validation set. These class-specific keyword patterns were used as ReGeX hooks
along with the observed POS patterns to emit the positive class label. For e.g., the trial
design information “double-blind, non-inferiority” preceded the hook pattern “random-
ized controlled trial”. To identify such domain-specific patterns, a ReGeX was devel-
oped to identify the hook pattern “randomized controlled trial”” and was combined with
position and POS tags to identify preceding trial design information.

Source to Target mapping: The concepts in non-UMLS ontologies and the dictionaries
were mapped to target label +1. To map UMLS S, to target label +1, we conducted
a separate experiment using the validation set using the steps:

. Label the hand-labelled validation set using all the UMLS Sgoyps.

. Calculate recall for the target label 41°.

. Rank and sort S,,0.ps based on their calculated recall.

. Next, label the validation set using the Sy, that ranked 1 (S1) and calculate the

initial recall r and f1-score f1.

5. Then loop through the ranked S, starting at rank 2 and sequentially add labels
to the validation set (already labelled with Sg,,, rank 1) and calculate the new
recall r; and fl-score f1; with the combined labels.

6. After looping through all the Sgoyps, following heuristic was used to classify

Seroup into representing either the positive (+1), negative (0) or abstain (—1)

class. We consider a Sy, representative of the “Study type and design” class

(target label +1) if the change in the recall Ar is > 1 without impacting the f1-

score. Such S, are marked as +1 and the rest as abstain or negative.

R NOST \S

LFs: We categorize our LFs into three types depending on the labelling sources. An on-
tology or dictionary LF takes a set of terms (vocabularies, ontologies, efc.) each mapped
to one of y C {0,+1,—1} class labels using heuristics. A ReGeX LF used only regular
expressions representative of the positive token label +1 and abstained from the rest. A

’https://bioportal.bioontology.org/ontologies/CTO
3https://bioportal.bioontology.org/ontologies/RCTONT
“https://bioportal.bioontology.org/ontologies/OCRE/
Shttps://bioportal.bioontology.org/ontologies/CTONT/

The recall and the F1 score are binary metrics calculated for the “Study type and design” (positive) class.
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heuristic LF took a generic ReGeX pattern, specific POS (part-of-speech) tags, and token
positions to label tokens with the positive label 41 and abstained from the rest.

Labelling and Label aggregation: Consider S = (s1,s2,...,Sx) set of labelling sources
used by m LFs (A,; A = {A1,42,...,Ay}) to programmatically label the X, EBM-PICO
training tokens to the integer labels (—1,0, 1). The LFs map X, input tokens to the integer
label sequence Y, leading to a label matrix A™*". Majority voting (MV) and Snorkel’s
generative label model (LM) were tested to aggregate labels in A™*" [7].

2.2. Experiments

The experiments were carried out in seven tier and aimed to evaluate the impact of se-
quentially adding labelling sources on the label aggregation methods. The tiers 1-4 tested
the sequential addition of non-UMLS, dictionaries, and rule-based labelling sources to
UMLS LFs in sequence. Tier 5 examined whether up-weighting rules could improve per-
formance, while tiers 6 and 7 measured the effect of removing non-UMLS and dictio-
naries from tier 4. We evaluate performance using token-level macro F1, precision and
recall over three runs of experiment tiers with three random seeds.

3. Results and Discussion

Experiments MV LM
Tiers | LF tier P R F1 P R F1 (stdev)
UMLS 48.64 | 50.00 | 49.31 | 61.03 | 56.42 | 58.02 (4.4 x 1077)

+non UMLS 51.58 | 50.01 | 49.37 | 50.21 | 50.02 | 49.62(2.2x 10~%)
+ Dictionaries | 48.64 | 49.99 | 49.31 | 64.87 | 62.23 | 63.16(3.6x1072)
+ Rules 48.64 | 50.00 | 49.31 | 86.03 | 78.50 | 81.41(4.2x 1073)
+ Rules x 2 98.64 | 50.17 | 49.66 | 85.09 | 79.42 | 81.96 (7.4 x 1073)
- Dictionaries | 98.64 | 50.13 | 49.59 | 81.40 | 72.55 | 75.37 (1.5x 1073)
- non UMLS 96.22 | 5331 | 5556 | 89.96 | 81.41 | 85.02(1.7x 1072%)

~N O R W N =

Table 1. Macro-averaged recall, precision and F1 % for “Study type and design” extraction models. The best
F1 score is shown in bold. Standard deviation (stdev) is reported for average over three runs.

Using the described labelling sources and functions, we developed a total of 144
LFs: 112 UMLS LFs, 10 non-UMLS LFs, 2 dictionary LFs and 20 ReGeX LFs. The
results of the experiments are listed in Table 1. LF aggregation via MV fails to detect any
meaningful signals and performs at a level close to or even worse than random. For tier
7, however, removing non-UMLS LFs boosts the recall and therefore the F1 for MV. The
performance of UMLS alone for the LM tier 1 is poor. Incorporating non-UMLS sources
into the model results in a significant drop in F1 score by as much as 8.4% again pointing
towards the low representational value of this labelling source. If a labelling source like
non-UMLS sources, does not contain many of the terms that are representative of the en-
tity in question, this could cause the F1 score to decrease upon their addition. Our results
prove this claim by conducting the ablation experiments. The F1 score for the “Study
type and design” entity deprecated on adding non-UMLS LF, suggesting that these func-
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tions were not typical for the “Study type and design” entity. When non-UMLS labelling
sources were removed from tier 7, a shoot-up in F1 score by 3.61% from tier 4, where all
the labelling sources were used. The inclusion of dictionaries boosted the F1 by 13.52%,
yet it plateaued at 63.16% As expected, adding generic rules in tier 4 boosted the re-
call by 18.25% from tier 1. Up-weighting rule-based LFs in tier 5 led to a nominal F1
increase by 0.55%. In tier 6, removing handcrafted dictionaries decreases the previous
best recall by 6.87%, demonstrating performance contribution. In tier 7, removing the
non-UMLS labelling sources improves the overall F1 by 3.06%.The utility and represen-
tational value of dictionaries are evidenced by a decrease of 6.05% in the F1 upon their
removal in tier 6. While ReGeX and heuristics designed for the “Study type and design”
class may not be directly transferable to other entities, the methodology of developing
ReGeX using hook patterns and a small labeled validation set can be effectively extended
to other entity classes.

4. Conclusion

We adopted a weak supervision approach to enhance existing EBM-PICO dataset by
incorporating additional categories, like “Study type and design” without relying on
manual annotation. This is achieved through the application of weak supervision tech-
niques using Snorkel. Our approach achieved exceptional performance, with an F1 score
of 85.05% on the hand-labelled EBM-PICO test set, highlighting the potential of this
method for rapidly generating large amounts of annotated data compared to traditional
supervised approaches. The resources to reproduce this work are available on GitHub.
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