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A B S T R A C T

Purpose: To evaluate the single and combined diagnostic performances of CT and MRI radiomics for diagnosis of 
acute pancreatitis (AP).
Materials and methods: We prospectively enrolled 78 patients (mean age 55.7 ± 17 years, 48.7 % male) diagnosed 
with AP between 2020 and 2022. Patients underwent contrast-enhanced CT (CECT) within 48–72 h of symptoms 
and MRI ≤ 24 h after CECT. The entire pancreas was manually segmented tridimensionally by two operators on 
portal venous phase (PVP) CECT images, T2-weighted imaging (WI) MR sequence and non-enhanced and PVP 
T1-WI MR sequences. A matched control group (n = 77) with normal pancreas was used. Dataset was randomly 
split into training and test, and various machine learning algorithms were compared. Receiver operating curve 
analysis was performed.
Results: The T2WI model exhibited significantly better diagnostic performance than CECT and non-enhanced and 
venous T1WI, with sensitivity, specificity and AUC of 73.3 % (95 % CI: 71.5–74.7), 80.1 % (78.2–83.2), and 
0.834 (0.819–0.844) for T2WI (p = 0.001), 74.4 % (71.5–76.4), 58.7 % (56.3–61.1), and 0.654 (0.630–0.677) for 
non-enhanced T1WI, 62.1 % (60.1–64.2), 78.7 % (77.1–81), and 0.787 (0.771–0.810) for venous T1WI, and 
66.4 % (64.8–50.9), 48.4 % (46–50.9), and 0.610 (0.586–0.626) for CECT, respectively.
The combination of T2WI with CECT enhanced diagnostic performance compared to T2WI, achieving sensitivity, 
specificity and AUC of 81.4 % (80–80.3), 78.1 % (75.9–80.2), and 0.911 (0.902–0.920) (p = 0.001).
Conclusion: The MRI radiomics outperformed the CT radiomics model to detect diagnosis of AP and the com-
bination of MRI with CECT showed better performance than single models. The translation of radiomics into 
clinical practice may improve detection of AP, particularly MRI radiomics.

1. Introduction

Acute pancreatitis (AP) is an acute inflammatory condition of the 
pancreas resulting from inappropriate intracellular activation of pro-
teolytic pancreatic enzymes, which leads to autodigestive injury of the 
pancreatic gland [1]. The incidence of this condition has increased over 
the years and ranges from 20 to 80 per 100 000 per year, varying widely 
across countries [2]. The two main etiologies of AP are gallstones and 

alcohol, accounting for 60 %–80 % of all cases [3]. According to the 
revised Atlanta classification, the diagnosis of AP requires two of the 
following three findings: (a) abdominal pain consistent with AP 
(epigastric pain radiating to the back); (b) serum lipase or amylase levels 
elevated to at least three times the upper limit of normal; and (c) 
characteristic findings on contrast-enhanced computed tomography 
(CECT), magnetic resonance imaging (MRI), or transabdominal ultra-
sonography [4].

Abbreviations: AP, Acute pancreatitis; CECT, contrast-enhanced CT; WI, Weighted imaging; ROC, Receiver operating characteristic; AUC, Area under the curve; 
US, Ultrasound; CTSI, Computed tomography severity index; GFR, Glomerular filtration rate; DWI, Diffusion-weighted imaging; VOI, Volume of interest.
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The severity of AP is highly variable, ranging from mild to severe. 
Mild AP generally does not require invasive treatment and is associated 
with low mortality [5]. Although most patients develop mild pancrea-
titis, approximately 15–20 % develop severe AP, which is associated 
with multi-organ failure and requires aggressive treatment and pro-
longed hospital stay, with mortality rates of up to 30 % [6]. The different 
clinical outcomes of patients with AP have led to the development of 
several scoring systems to predict the severity of AP and ultimately to 
improve patients’ clinical outcomes and guide treatments. As rapid, 
overall available, reproducible, and nearly complete non-invasive tool, 
CECT is today the most performed imaging modality to confirm or 
exclude AP. Therefore, the Balthazar computed tomography severity 
index (CTSI) is the most widely adopted grading system and correlates 
well with AP severity and length of hospital stay [7]. From a radiological 
perspective, while severe pancreatitis can be accurately assessed on 
cross-sectional images, mild forms of AP may be difficult to detect on 
CECT, with CECT falsely negative in up to 27 % of cases, particularly in 
the early stages of the disease [8]. The assessment of pancreatitis relies 
on visual evaluation of the morphological characteristics of the 
pancreas, including interstitial edema, parenchymal necrosis, 
peri-pancreatic fat stranding, and collections. These findings, however, 
may not be sufficiently sensitive for accurately diagnosing mild cases of 
AP.

The application of advanced imaging techniques, such as radiomics, 
may enhance diagnostic accuracy in both mild and severe AP. The 
analysis of quantitative data extracted from medical images through 
radiomics can potentially complement radiologists’ visual interpretation 
and may offer the opportunity to obtain additional information that is 
undetectable by the human eye. Radiomics is defined as the extraction of 
quantitative features from medical images that are translated into 
higher-dimensional mineable data for improved decision support [9]. 
Although these models are mainly used for diagnosing cancer, they are 
also suitable for non-oncological research [10,11]. Additionally, 
delta-radiomics allows for noninvasive, longitudinal monitoring of pa-
tients without affecting their routine imaging procedures [12]. In the 
field of pancreatic imaging, a retrospective study in 2020 showed that a 
radiomics model based on MRI performed well in predicting the severity 
of AP [13]. A retrospective study conducted in 2023 showed that a 
radiomics model based on contrast-enhanced CT images could accu-
rately predict AP severity [14]. In the literature, different phases of CT 
and MRI sequences have been employed individually for radiomics 
analysis of AP [15]. However, to date, no study has evaluated the 
combined performances of CT and MRI sequences in the assessment of 
AP.

This study aimed to investigate the diagnostic performance of 
multimodal radiomics analysis using CT and MRI for the diagnosis of AP.

2. Materials and methods

2.1. Study design and patient selection

This is a prospective, non-randomized, single-institution, institu-
tional review board-approved study (CER-VD, study ID n◦2020–02153).

All in-patients with AP between December 2020 and November 2022 
were considered for inclusion in this prospective study. According to the 
revised Atlanta classification, AP was defined as the presence of two or 
more of the following three findings: abdominal pain, serum amylase or 
lipase levels ≥ 3 times the upper limit of normal (>210 U/l et > 180 U/l, 
respectively) and/or characteristic findings on imaging [4]. Written 
informed consent was obtained from all participants prior to study 
inclusion.

Exclusion criteria were as follows: (a) previous diagnosis of chronic 
pancreatitis; (b) renal failure with estimated glomerular filtration rate 
less than 30 ml/min/1.73 m2); (c) history of allergic reactions to any 
contrast media; (d) proven or suspected pregnancy; (e) age under 18 
years; (f) general exclusion criteria for MRI (patients with non-MRI 

compatible metallic or electronic implants, devices or metallic foreign 
bodies, non-MRI compatible cardiac pacemaker, claustrophobia), and 
(g) inability to cognitively and/or linguistically understand the patient 
consent sheet.

According to the clinical routine, each patient underwent clinical 
assessment, laboratory workup at admission and at 48 h after admission 
in order to assess the Ranson score [16]. An abdominal CECT was per-
formed within 48–72 h after admission to assess the severity of AP. In 
addition, a contrast-enhanced pancreatic MRI was performed within 
24 h after CECT.

Demographic characteristics, clinical data, laboratory and imaging 
findings, including etiology of AP, severity index (CTSI), pancreatic 
necrosis, systemic complications and length of hospital stay, were 
recorded on a dedicated database. The severity of the AP was rated as 
the CTSI determined by the consensus of two readers with 2 and 30 years 
of clinical experience,

respectively. The CTSI was calculated based on a combination of 
pancreatic inflammation, and degree of pancreatic necrosis as observed 
on CT, according to the scoring system developed by Balthazar et al. [7].

A control group of subjects without history or diagnosis of pancreatic 
disease was used to assess the radiomics features of normal pancreatic 
parenchyma. A list of patients with normal pancreatic findings who 
underwent abdominal intravenously injected MRI and CECT within a 
delay of 6 months between November 2019 and October 2022 was 
retrospectively identified from the local imaging database. The absence 
of pancreatic abnormality, including inflammatory and post- 
inflammatory changes, as well as focal and diffuse pancreatic disease, 
was verified across all four imaging modalities by a radiologist (C.T) 
with 3 years of experience. MRI and CT of the control group were 
matched by age and sex with those of the prospective study population. 
The exclusion criteria for the control group were the same as those for 
the study population Fig. 1.

2.2. Image acquisition

CT was performed using a 256-detector row Revolution CT scanner 
(GE Healthcare, Waukesha, WI, USA) with intravenous iodinated 
contrast medium administration. MRI was performed on a 3 T MR 
scanner (MAGNETOM Vida, Siemens Healthcare, Erlangen, Germany) 
with extracellular contrast agent (Dotarem®, Guerbet AG, Zurich, 
Switzerland). Details of the imaging parameters are provided in the 
Supplementary Material.

2.3. Pancreas segmentation

Segmentations were performed in consensus by two radiologists (C. 
T.& M.J) with 10 and 3 years of experience, respectively. Three- 
dimensional volumes of interest (VOI) of the whole pancreas on CECT 
and MRI were manually delineated for both populations (patients with 
AP and healthy control subjects). Observers were aware of the general 
study objective but unaware of the patient’s outcome. The VOI included 
the entire pancreatic parenchyma, avoiding vessels, necrotic collections, 
and the Intrapancreatic part of the common bile duct. Radiomics fea-
tures were extracted from the whole pancreas on CECT images at portal 
venous phase on 1.25-mm slices and on MRI on axial T2WI HASTE, on 
axial non-enhanced T1WI and on axial T1WI at portal venous phase in 
both populations (Figs. 2 and 3). A commercially available software 
(Mint Lesion™; Mint Medical GmbH, Heidelberg, Germany) was used to 
segment the pancreas.

2.4. Radiomics feature extraction and predictive modelling

Coded patient images were uploaded to the QuantImage v2 platform 
(https://medgift.github.io/quantimage-v2-info/), on which radiomics 
analysis and predictive modelling were performed [17]. First, 107 
radiomics features characterizing the shape, intensity distribution, and 
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texture of the pancreatic parenchyma were computed for each imaging 
modality and sequence type using the in-built pyradiomics feature 
extractor [18]. To ensure comparability of image intensities across pa-
tients, MR images were standardized to an intensity mean of 0 and a 
standard deviation of 1 prior to feature extraction by z-score standard-
ization, using the entire image as a reference. Image intensities were 
shifted to positive values, and fixed bin widths (0.3 for all MR sequence 
types and 20 for CT) were used for texture computation.

We developed seven separate models: four models using features 
derived from one single imaging acquisition (CECT, T2WI MRI, non- 
enhanced T1WI MRI and PVP T1WI MRI models), and three models 
combining features from the four different image acquisitions (MRI 3 
sequences, CECT + T2WI MRI, CECT + MRI 3 sequences). See Fig. 2.

The dataset was split into training (80 %) and test (20 %) sets and the 
feature values were standardized based on individual means and stan-
dard deviations from the training set. For each model, the set of most 
relevant features was chosen on the training set, first by removing 
redundant features (Pearson correlation >0.8) and second by selecting 

the 20 features with the highest univariate predictive score for AP.
The optimal model and classification algorithm were selected by 

grid-search with 5-fold stratified cross-validation on the training set. Its 
generalization performance was evaluated on the test set in terms of the 
area under the ROC curve (AUC). All models were constructed using the 
Scikit-learn library used by QuantImage v2 [19]. Feature importance 
was assessed using the permutation importance index [20].

2.5. Statistical analysis

Confidence intervals (CIs) for average model performance were ob-
tained by bootstrapping (n = 20) from a set of k performance estimates, 
resulting in n realizations of these k performance estimates. From these, 
n mean performance estimates were computed. The 95 % CI corresponds 
to values between the 2.5th and 97.5th percentiles of the bootstrap 
distribution of the mean performance estimates. For cross-validation 
performance, bootstrapping was applied to k = 5 performance esti-
mates resulting from 5-fold cross-validation. For test performance, a set 

Fig. 1. Flowchart of patient selection.

Fig. 2. Example of a single slide of the 3D segmentation of the pancreas performed on contrast-enhanced CT (a), T2 weighted imaging (b), non-enhanced T1 
weighted imaging, (c) and portal venous phase T1 weighted imaging (d) allowing radiomics data extraction.
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of k = 100 model performance estimates were obtained by repeated 
evaluation of the prediction model on bootstrapped versions of the test 
dataset.

Differences between model performances were assessed by pairwise 
permutation tests between the models’ performance estimates, applying 
a value of p < 0.05 as significance threshold. Due to the large number of 
possible permutations, the exact permutation test was approximated by 
a solution strategy using bootstrapping with 10000 draws.

3. Results

3.1. Patient population

The final study population included 78 patients (mean age 55.7 ± 17 
years, 48.7 % male). The control group population included 77 patients 
(mean age 51 ± 12 years, 51.9 % male). Table 1 summarizes the patient 
demographics and etiology of pancreatitis.

3.2. Comparison of non-enhanced and venous T1WI-MRI, CECT, and 
T2WI-MRI

Model metrics, including model type, number of features used, AUC, 
accuracy, precision, sensitivity, and specificity for models derived from 
T2WI-MRI, non-enhanced and venous T1WI-MRI, CECT, and combined 
models, are reported in Table 2.

The non-enhanced T1WI model showed a sensitivity, specificity, and 

AUC of 74.4 % (71.5–76.4), 58.7 % (56.3–61.1), and 0.654 
(0.630–0.677), respectively. Venous T1WI model showed a slightly 
better performance in distinguishing AP from non-AP, with a sensitivity, 
specificity, and AUC of 62.1 % (60.1–64.2), 78.7 % (77.1–81), and 
0.787 (0.771–0.810), respectively (p = 0.076).

The performance of the CECT model was lower than that of the non- 
enhanced T1WI, venous T1WI, and T2WI models, with a sensitivity, 
specificity, and AUC of 66.4 % (64.8–50.9), 48.4 % (46–50.9), and 
0.610 (0.586–0.626) (p = 0.007, p = 0.001, and p = 0.001, 
respectively).

The T2WI model exhibited significantly better diagnostic perfor-
mance compared to non-enhanced and venous T1WI and CECT, with a 
sensitivity of 73.3 % (95 % CI: 71.5–74.7), specificity of 80.1 % 
(78.2–83.2), and an AUC of 0.834 (0.819–0.844) (p = 0.001 for all three 
comparisons). While the combined MRI model using all three MR se-
quences showed a slightly higher performance than T2WI alone, the 
difference was not statistically significant, with a sensitivity of 81.5 % 
(95 % CI: 79.7–83.6), specificity of 80.7 % (79.1–82.3), and an AUC of 
0.841 (0.856–0.844) (p = 0.533).

The combination of T2WI with CECT significantly enhanced diag-
nostic performance compared to the T2WI model alone, achieving a 
sensitivity of 81.4 % (80–80.3), specificity of 78.1 % (75.9–80.2), and 
an AUC of 0.911 (0.902–0.920) (p = 0.001). Similarly, combining all 
three MRI sequences with CECT resulted in a significantly higher diag-
nostic performance compared to the T2WI model alone, with a sensi-
tivity of 79.1 % (77.2–80.7), specificity of 92.5 % (90.9–93.4), and an 
AUC of 0.915 (0.906–0.922) (p = 0.001). However, there was no sta-
tistically significant difference when compared to the T2WI with CECT 
combination (p = 0.644).

The feature list and importances are reported in Supplementary 
Material for all seven models.

4. Discussion

Our results show that radiomics models based on CT and MRI can 
effectively contribute to the diagnosis of AP. In particular, the T2WI-MRI 
model exhibited the best diagnostic performance as single modality 
compared to non-enhanced and portal venous T1WI-MRI and to CECT. 
This superior diagnostic performance is likely due to T2WI’s ability in 
detecting parenchymal oedema within the pancreatic gland, a key in-
dicator of AP. Additionally, radiomics models extract quantitative data 
from these images, revealing subtle patterns and features that remain 
undetectable to the human eye, thus improving diagnostic accuracy. In 
fact, pancreatic oedema is characterized by signal hyperintensity on 
T2WI and may be associated with surrounding peripancreatic inflam-
mation, which is better depicted on T2WI sequences compared to T1WI 
sequences, although this was not included in the current segmentation. 
A key finding from our study is that the multi-modality radiomics model, 
which combines MRI with CECT texture analysis, significantly improved 
diagnostic performance for the diagnosis of AP. This highlights that 
integrating different imaging sequences and modalities offers a more 
comprehensive assessment, ultimately enhancing the ability to detect 
and diagnose AP with greater precision.

To our knowledge, this is the first multi-modality radiomics aimed at 
diagnosing AP, making direct comparisons with existing literature 
challenging. However, our findings align with previous radiomics 
research focused on single modality. For instance, Zhao et al. showed 
that a radiomics model based on portal venous phase CT images was 
effective in the early prediction of AP [14]. Similarly, another study 
utilizing MRI at late arterial-phase suggested that radiomics could be 
employed to predict the recurrence of AP [21]. Furthermore, a 
meta-analysis of multiple pancreatic diseases ranging from pancreatic 
tumors to autoimmune pancreatitis found that radiomics hold promising 
diagnostic and prognostic potential for diagnosis of diffuse and focal 
pancreatic diseases, including AP. Yet, only four of the twenty-four 
studies in the analysis specifically addressed AP, and the overall levels 

Fig. 3. This axial T2 weighted-imaging MRI image shows mild pancreatic 
oedema (T2-hyperintensity) (arrowhead) and surrounding peripancreatic 
inflammation (arrow). The radiomics model confirms the diagnosis of acute 
pancreatitis.

Table 1 
General characteristics of the study population.

Patients with acute pancreatitis Healthy control subjects

Total patients, n 78 Total patients, n 77
Age (years), mean ± SD 55.77 ± 17 Age (years), mean ± SD 51.04 ± 12
Male, n (%) 38 (48.7) Male, n (%) 40 (51.9)
Etiology of acute pancreatitis, n (%)
Biliary stone 34 (43)  
Alcohol 12 (15)  
Post-ERCP 11 (14)  
Drugs 3 (4)  
Hypertriglyceridemia 1 (1)  
Iatrogenic 1 (1)  
Unknown 16 (20)  
Computed tomography severity index, n  
CTSI 0–3: mild 62  
CTSI 4–6: moderate 15  
CTSI 7–10: severe 1  
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of evidence were limited [15].
Previous study evidenced that textural analysis shows an overall 

better performance compared to standard image evaluation of AP per-
formed by radiologists [22]. Our findings are consistent with the exist-
ing literature, showing improved specificity and a comparable area 
under the curve (AUC) to radiologists’ diagnostic performance, although 
a slightly lower sensitivity [23]. Although imaging plays an important 
role in confirming or excluding the diagnosis of AP, especially in unclear 
clinical situations, early-stage and mild forms of pancreatitis can be 
challenging to identify on CECT and MRI. In fact, CECT has been re-
ported to have false-negative results in up to 27 % of cases during the 
first days of illness or in cases of mild pancreatitis, primarily due to its 
low sensitivity in detecting parenchymal subtle changes and 
peri-pancreatic inflammation [8]. Given the challenging management of 
AP, especially in the severe forms associated with high mortality, the 
prompt identification of early cases of AP may improve patient out-
comes and guide clinical decision-making. The application of radiomics 
analysis to CECT, which is routinely performed for patients with sus-
pected AP, may provide additional information at minimal cost, without 
the need for further imaging or laboratory tests. Given its non-invasive 
nature, radiomics analysis holds promise for aiding in the early detec-
tion of AP. Therefore, we recommend incorporating this technique into 
clinical practice, as it can significantly enhance diagnostic precision and 
improve patient outcomes.

Our study has several limitations. First, although our study is pro-
spective, it was conducted at a single center, which may introduce pa-
tient selection bias. Our findings should be independently validated 
using external datasets. Additionally, future research is needed to assess 
the diagnostic performance of radiomics models in larger and more 
diverse patient populations. Another limitation is manual segmentation 
of the pancreatic gland, performed in consensus by two radiologists, 
which ensured high inter-rater reliability, but made the task time- 
consuming and dependent on expert knowledge of pancreatic imaging. 
To improve efficiency, particularly in the emergency setting, future 
studies should explore automatic segmentation techniques. Another 
limitation of this study is the exclusive use of the venous phase for 
segmentation, as the arterial phase was not available in all patients due 
to variability in imaging protocols. While the arterial phase typically 
offers superior contrast for pancreatic tissue, the venous phase was 
consistently available and sufficient for the analysis. Future studies 
could explore the inclusion of the arterial phase to potentially enhance 
tissue characterization. Lastly, while all MRI examinations in our study 
were obtained at a single institution using standardized protocols and 
equipment from one vendor, two patients had CT scans performed 
externally. Variations in image acquisition and reconstruction algo-
rithms may introduce variability in the extracted radiomics data, 
potentially impacting the model’s performance. However, these data 

reflect real-world clinical practice, where patients with suspected acute 
pancreatitis may undergo imaging at different institutions.

The findings of this study encourage investigating the role of radio-
mics analysis in the early diagnosis of AP within 24 h after the initiation 
of symptoms. Additionally, since prognosis is often difficult to predict, 
based on radiologists’ assessments or clinical scoring systems alone, 
textural analysis could be employed to predict patient prognosis, leading 
to early identification of patients at the highest risk of developing clin-
ically severe AP, who may require intensive therapy. Furthermore, 
integrating radiomics models with other biomarkers or clinical data 
could pave the way for personalized prediction models, enhancing the 
ability to identify severe cases of pancreatitis at admission or in the early 
stages of the disease.

5. Conclusion

The MRI radiomics model outperformed the CT radiomics model to 
predict the diagnosis of AP and the combination of MRI with CECT 
showed a better performance than the single radiomics models. Inte-
gration of radiomics models into routine clinical and radiological 
workflows has the potential to improve the detection of AP, especially in 
early-stage and mild forms of pancreatitis. Future research should 
explore their application in predicting the severity and complications of 
AP to further aid clinical decision making.
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Table 2 
Model metrics on test datasets for different models tested. The mean and 95 % CI were reported for the area under the curve (AUC), accuracy, precision, sensitivity, and 
specificity. Abbreviations: CECT: contrast-enhanced CT, WI: Weighted imaging.

Model Algorithm type N◦ of 
features

AUC Accuracy Precision Sensitivity Specificity

CECT Logistic Regression 10 0.610 
(0.586–0.626)

0.580 
(0.563–0.596)

0.599 
(0.585–0.614)

0.664 
(0.648–0.687)

0.484 
(0.460–0.509)

T2WI Support Vector 
Classifier

9 0.834 
(0.819–0.844)

0.765 
(0.750–0.778)

0.816 
(0.800–0.834)

0.733 
(0.715–0.747)

0.801 
(0.782–0.823)

T1WI non-enhanced Decision Tree 
Classifier

9 0.654 
(0.630–0.677)

0.666 
(0.645–0.679)

0.647 
(0.631–0.663)

0.744 
(0.715–0.764)

0.587 
(0.563–0.616)

T1WI portal venous Support Vector 
Classifier

8 0.680 
(0.667–0.702)

0.699 
(0.687–0.713)

0.774 
(0.759–0.793)

0.621 
(0.601–0.642)

0.787 
(0.771–0.810)

MRI 3 sequences Logistic Regression 19 0.841 
(0.826–0.856)

0.811 
(0.795–0.827)

0.812 
(0.797–0.828)

0.815 
(0.797–0.836)

0.807 
(0.791–0.823)

CECT+T2WI Decision Tree 
Classifier

16 0.911 
(0.902–0.920)

0.799 
(0.786–0.812)

0.814 
(0.800–0.829)

0.814 
(0.800–0.833)

0.781 
(0.759–0.802)

CECT+MRI3 
sequences

Support Vector 
Classifier

25 0.915 
(0.906–0.922)

0.853 
(0.841–0.863)

0.926 
(0.911–0.934)

0.791 
(0.772–0.807)

0.925 
(0.909–0.934)
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