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Abstract. Multiple Sclerosis (MS) is a complex neurodegenerative dis-
ease characterized by heterogeneous progression patterns. Traditional
clinical measures like the Expanded Disability Status Scale (EDSS) in-
adequately capture the full spectrum of disease progression, highlighting
the need for advanced Disease Progression Modeling (DPM) approaches.
This study harnesses cutting-edge neuroimaging and deep learning tech-
niques to investigate deviations in subcortical volumes in MS patients.
We analyze T1-weighted and Fluid-attenuated inversion recovery (FLAIR)
Magnetic Resonance Imaging (MRI) data using advanced DL segmenta-
tion models, SynthSeg+ and SynthSeg-WMH, which address the chal-
lenges of conventional methods in the presence of white matter lesions.
By comparing subcortical volumes of 326 MS patients to a normative
model from 37,407 healthy individuals, we identify significant deviations
that enhance our understanding of MS progression. This study highlights
the potential of integrating DL with normative modeling to refine MS
progression characterization, automate informative MRI contrasts, and
contribute to data-driven DPM in neurodegenerative diseases.

1 Introduction

Multiple Sclerosis (MS) is a chronic autoimmune neurodegenerative disease af-
fecting approximately 2.3 million people globally [14]. MS presents significant
challenges due to its heterogeneous manifestations and unclear etiology [21]. Tra-
ditionally, MS is clinically characterized by the pseudo-quantitative Expanded
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Disability Status Scale (EDSS), which pseudo-quantitatively measures the level
of disability [42] and, to a limited extent, tracks cognitive impairment over
time [4,41]. However, this approach represents an insufficient proxy for essential
Disease Progression Modeling (DPM), unable to characterize the set of underly-
ing mechanisms such as neuroinflammation and degenerative processes recently
known as Smouldering MS [19,34].

Magnetic Resonance Imaging (MRI) plays a crucial role in the clinical assess-
ment of MS patients, for diagnosis, prognosis, and Disease Modifying Therapies
(DMT) assessment [42]. Structural MRI provides information on focal lesion
dissemination in the brain and spinal cord, as well as brain structure character-
ization [43]. While cross-sectional analysis of Fluid-Attenuated Inversion Recov-
ery (FLAIR) and T1-weighted (T1w) contrasts are routinely acquired in clinical
settings for lesion identification [28], lesion-derived biomarkers have shown con-
troversial or limited relationships with disease phenotypes and progression. This
highlights the need for more robust approaches to capture disease progression
over time, particularly for DPM.

In contrast, brain structure evolution assessment provides atrophy-related
imaging biomarkers of well-proven neurodegeneration, which is more acute in
MS patients [17, 22]. Studies employing global and regional atrophy imaging
biomarkers have associated deviations from control measures for MS patients
with cognitive impairment [5,13], depression [3], and physical disability [23,32].

The literature shows how subcortical structures are implicated in the patho-
physiology of MS due to their involvement in key neurological functions often
compromised in the disease, compared with cortical regions, which are more
difficult to analyze in conventional MRI sequences [33]. Findings across several
studies have revealed that gray matter atrophy in MS is more pronounced, par-
ticularly in subcortical regions such as the thalamus [2] and the putamen [27],
compared to the rates of atrophy in healthy controls [43]. This regional Grey
Matter (GM) analysis enables deeper studies about MS mechanisms and al-
lows further disease progression modeling [5]. Recent models to characterize the
longitudinal trajectory of brain region volumes for MS patients have been pub-
lished [10, 26], emphasizing the importance of longitudinal data projection in
understanding disease progression.

However, these approaches face several challenges: they are difficult to imple-
ment in clinical practice, may be limited by small sample sizes, and struggle to
account for the heterogeneity of MS evolution. Furthermore, they do not provide
a direct comparison to healthy population norms. To address these limitations,
we propose to measure the deviance of each patient at each time-point concern-
ing a longitudinal trajectory model based on thousands of healthy subjects. This
approach has been successfully applied to other neurological diseases through the
normative modeling framework [25,39], allowing for a more robust and clinically
applicable method of characterizing individual disease trajectories.

Practically, manual segmentation of main brain structures for thousands of
subjects is unfeasible. Models often rely on automatic segmentation provided by
tools such as FreeSurfer [15] or more recently DL approaches [9], which provide
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acceptable segmentations for quality T1w images of healthy subjects. However,
these tools tend to be more uncertain on volume estimations for MS patients who
present white matter lesions (WML), where more reliable information is usually
contained within the FLAIR contrast (see Fig.1) [35]. Recent advancements in
DL-based segmentation algorithms have improved on this issue. SynthSeg [7]
allows for obtaining reliable volumetric measures when employing FLAIR [36],
and its new version, SynthSeg-WMH [29], can handle the presence of WML.
These developments could accelerate the use of regional atrophy-related imaging
biomarkers leveraging normative modeling fed by regions segmented through DL
models, empowering speed and reliability.

Fig. 1. The a) column shows an axial slice of a T1-weighted (T1) image and a
Fluid-Attenuated Inversion Recovery (FLAIR) image, respectively. The b) column con-
tains the corresponding SynthSeg+ [7] segmentation, while the c) column depicts the
SynthSeg-WMH [29] segmentation. Note the White Matter Lesions (WML) in violet.

To explore this potential and address the limitations of previous approaches,
we present a pilot study investigating deviations in brain morphometry with
three key innovations: 1) utilizing a normative healthy brain model rather than
MS-specific models [26], 2) comparing segmentations based on both T1w and
FLAIR images, which is rarely done in MS studies [36], and 3) employing a
tissue segmentation algorithm that jointly segment subcortical structures and
white matter lesions (WML) rather than first finding lesions and lesion-filling
the input images. Our approach leverages the most advanced deep learning (DL)
tools for domain agnostic segmentation of subcortical volumes from MR images
(FLAIR and T1w) and utilizes the CentileBrain normative model, based on
37,407 healthy individuals [18]. This methodological combination allows for a
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more comprehensive and potentially more accurate assessment of brain mor-
phometry in MS patients compared to traditional T1w-only approaches that do
not account for WML or utilize normative modeling.

2 Materials and Methods

2.1 Materials

We analyzed a heterogeneous dataset comprising 326 MS patients from five
sources: three in-house datasets (Lausanne University Hospital (CHUV), Lou-
vain Neuroinflammation Imaging Lab (NIL), and Imaging Axonal Damage &
Repair in Multiple Sclerosis (INsIDER) [20]) and two public datasets (MICCAI-
MSSEG2016 challenge [8] and OpenMSLong [30]). All patients underwent Fluid
Attenuated Inversion Recovery (FLAIR) MRI scanning and T1w contrasts (i.e.,
Magnetization Prepared RApid Gradient Echo - MPRAGE- or MP2RAGE).
Imaging protocols varied across datasets, with magnetic field strengths ranging
from 1.5T to 3T. For OpenMSLong, Anonymous Dataset 1, and Anonymous
Dataset3, two time points were available for some subjects, resulting in a total
of 460 3D-FLAIR and T1w MRI scans (Table 1).

Table 1. Summary of available datasets

Dataset N (Female) Age Avg. (Min.-Max.) Long. (N) Sequence (FLAIR/T1w) Voxel Size(mm)
3D FLAIR 0.47−1x0.47−1x0.9−1.25MSSEG2016 53 (38) 45.15 (24-66) No 3D T1 0.47-1.08x0.47-1.08x0.6-1.25
3D FLAIR 0.47x0.47x0.8OpenMSLong 20 (15) 34.1 (19-50) Yes (20) 2D T1 0.42x0.42x3.3

3D FLAIR 1x1x1CHUV 41 (25) 34.51 (20-60) Yes (36) MP2RAGE 1x1x1.2

3D FLAIR 0.69x0.66x0.66NIL 47 (26) 40.64 (22.58-72.03) No MPRAGE 0.71x0.66x0.66

3D FLAIR 1x1x1INsIDER 165 (98) 46.44 (18.27-76.51) Yes (78) MP2RAGE 1x1x1

2.2 Methods

In this study, we developed a processing framework for the automatic segmenta-
tion of subcortical regions in MS patients using T1w and FLAIR contrasts and
the evaluation of deviations from the expected volumes from a large-scale healthy
brain model. As depicted in Fig.2, each MRI contrast independently feeds into
two different SynthSeg models. These models are used to obtain the surrogate
ground truth for each patient (i), contrast (c), subcortical region (r), algorithm
(a), and sex (s) denoted as yicras. The CentileBrain model [18] employs patient-
specific age and sex covariates to estimate the subcortical volume of a healthy
subject of such age and sex, represented as ŷirs. Finally, yicra and ŷirs are used
to extract evaluation metrics to assess the deviation from normative values.
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Fig. 2. Pipeline: Each available MRI contrast, Xic (where i represents an MS patient
and c the contrast, either T1w or FLAIR), independently feeds both SynthSeg mod-
els (a): SynthSeg+ [7] and SynthSeg-WMH [29]. These models provide the surrogate
ground truth per patient, contrast, subcortical region, algorithm and sex (s) Yicras. In
parallel, the CentileBrain model [18] estimates the subcortical volume for a healthy
subject depending on age and sex, Ŷirs, using per-patient age and sex covariates.

Subcortical Volumes Segmentation - Automatic segmentation of subcortical struc-
tures is particularly challenging in MS patients due to the presence of focal and
sparse MS lesions. Tools such as the FreeSurfer suite [15] tend to be less reliable
as they depend more on T1w images, which are less informative than FLAIR
sequences for depicting MS lesions [35, 36]. In this work, we employ segmen-
tation methods designed with a resolution and contrast-agnostic approach [7].
We perform the segmentation of all subcortical regions using both T1w im-
ages and FLAIR sequences, as well as the DL algorithms SynthSeg+ [7] and
SynthSeg-WMH [29], referred to as yicra. SynthSeg+ is a more robust version of
the previously released SynthSeg [6], which accounts for image quality beyond
resolution and contrast agnosticism. SynthSeg-WMH is a branch of the former,
intended for more reliable segmentation in the presence of WML. Note that the
most robust version of SynthSeg+ is optional and was enabled for this study;
no extra parameter setting is needed for any of the DL segmentation algorithms.

Subcortical Volumes Site Harmonization - Beyond the mentioned confounders,
age and sex, multi-site MRI studies face the challenge of variability in imaging
protocols, which can introduce site-related biases in the data. To address this, we
used ComBat-GAM harmonization [16], an advanced technique that combines
the ComBat method with Generalized Additive Models (GAMs). ComBat-GAM
effectively harmonizes neuroimaging data by accounting for age and sex, in ad-
dition to mitigating site effects, making it suitable for studies involving large,
heterogeneous datasets. By applying ComBat-GAM, we ensure that the sub-
cortical volume estimates, yicras, derived from our segmentation methods are
comparable across different sites, thereby enhancing the reliability of our nor-
mative models and subsequent analyses.

Normative modeling - A brain normative model is a statistical framework that
characterizes the healthy range of brain structure across a large population by
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leveraging longitudinal data [31,39], allowing for the disentanglement of normal
changes from deviations linked to neurological diseases. The power of a normative
model resides in the sample size used for training, which helps to characterize
biological variability across the lifespan better, accounting for confounders of
brain changes beyond age, such as sex, and robust model selection. Recently, the
CentileBrain [18] model trained with 37,407 healthy individuals (53.3% females,
age range 3-90) from 81 datasets has been released. The CentileBrain employs
Multivariate Factorial Polynomial Regression (MFPR) [38] algorithm which per-
forms robustly on healthy subjects, generating sex-specific normative models for
the volume estimation of subcortical regions in both right and left brain hemi-
spheres: Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, and
Accumbens. The same regions are given by both DL segmentation models, mak-
ing CentileBrain ideal for our purposes since subcortical degeneration has been
found to be more significant in MS patients [5, 43].

Evaluation - Our evaluation process consisted of several steps first to assess
which surrogate truths yicras coincide with expected findings as well as those
given from the normative deviation, and to quantify the deviation of MS patients
from the normative brain volume trajectories. Notably, while SynthSeg-WMH is
theoretically more suitable for MS lesion-rich environments, its recent develop-
ment necessitates comparison with its more validated counterpart, SynthSeg+,
to rigorously assess performance and reliability in this specific context.

1. Preliminary comparison with literature values: To ensure our vol-
ume estimations are within a reasonable range, we conducted a preliminary com-
parison with values reported in the literature. We compared our average subcor-
tical volume estimations from both T1w and FLAIR-based segmentations (using
both SynthSeg models) against values from studies that performed a brief review
of automatic segmentation on T1w images from several classic segmentation soft-
ware tools, as described in [37]. This comparison serves as an initial validation
step, acknowledging that exact matches are not expected due to methodolog-
ical differences, particularly with our novel FLAIR-based approach. Potential
biases and implications of this comparison will be addressed in the discussion
section. For each subcortical region, hemisphere, contrast, and algorithm, the
Kolmogorov-Smirnov (K-S) test was used to compute p-values that quantify the
similarity between our segmented volume distributions and the reference values
provided in the literature for MS patients. A higher p-value indicates a closer
match to the literature-reported mean values. These p-values were then used to
identify and highlight the best matching segmentation approaches, ensuring the
accuracy and reliability of our methods.

2. Subcortical Volume Longitudinal Trajectory Analysis: MFPR was
applied to analyze the age-related trajectories of the harmonized subcortical vol-
umes, yicras, stratified by sex and the tissue segmentation model employed. For a
more comprehensive understanding of these trajectories, the Root Mean Square
Error (RMSE) between the real volumes (yicras) and the estimated healthy vol-
umes (ŷirs) was calculated across all patients for each region: RMSEcras =
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1
n

∑n
i=1(yicras − ŷirs)2, where n is the number of scans. This RMSEcras pro-

vides an estimation of the average deviation of the MS cohort from the normative
model predictions, stratified by sex, contrast, DL model, and subcortical region.

3. Individual Deviation Scores and Longitudinal Deviation: For each
patient and each region, we computed a Z-score to quantify the individual de-
viation from the normative value: Z-scoreicras = yicras−ŷirs√

σ2
rs+σ2

icras

. Note that the

uncertainty normalization term, σ2
rs, which assumes normality, is approximated

using the reported RMSE model (see supplement in [18]) as in [11,12,24]. Finally,
from the set of individual scores, we approximated the longitudinal deviation tra-
jectory. We plotted the Z-scores against age for each region and hemisphere to
visualize the longitudinal trajectories of deviations. Regression lines were fitted
to these plots to identify trends in deviations across the lifespan.

3 Results

On the Robustness and Reliability of Subcortical Segmentations: Figure 3 shows
the average volume per region and hemisphere for each of the contrast (FLAIR
and T1w) and segmentation model (SynthSeg+ and SyntheSeg-WMH ) combi-
nations, along with comparisons to reference values for each subcortical volume
in the literature [37] (depicted as horizontal lines in Fig.3). Comparing the four
combinations, we found that for both hemispheres of the caudate, pallidum, and
putamen, the four options for volume extraction did not present significant differ-
ences (ANOVA, p > 0.05). In contrast, for the amygdala, accumbens, hippocam-
pus, and thalamus, differences were primarily due to the DL model used, except
for the thalamus, where differences were also observed between using FLAIR
or T1w (e.g. average left-thalamus volume employing FLAIR and SynthSeg+

is 7492.2 ± 112.1 vs 6248 ± 101.4 when employing T1w and SynthSeh-WMH ).
Regarding the comparison with reference values extracted from the literature
using the K-S test, it was observed that in regions where significant differences
existed between the segmentation pipelines, the extraction model was consistent
between hemispheres. Segmentations using SynthSeg-WMH were closer to the
reference values (e.g., 600 ± 100 for left accumbens), with no significant differ-
ences between the contrasts used, except for the thalamus volume. The thalamus
volume showed greater similarity to the reference value when segmented using
the FLAIR sequence and SynthSeg+ (p− val = 0.548).

Subcortical Volume Longitudinal Trajectory - In Figure 4, for the sake of clarity
and conciseness, we present only the results for the FLAIR contrast, as there
were no significant differences for most regions except the thalamus.

All regions exhibit the expected atrophy trend, independent of sex and the
segmentation model used, except for the pallidum region in males. For both
hemispheres of the accumbens, amygdala, and thalamus, SynthSeg+ produced
significantly larger volumes (p < 0.05, paired t-test) compared to SynthSeg-
WMH, as well as for the right hemisphere of the pallidum, which contrasts
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Fig. 3. Average Estimation and Comparison with Literature-Reported Subcortical Vol-
umes: Boxplots show the distribution of the subcortical volumes given by each model
and contrast. Horizontal lines represent the literature average values for each subcorti-
cal region along with their corresponding confidence intervals [37]. Red-bordered box-
plots highlight the distributions that are closest to the reference values, distinguished
by the highest p-value (shown in the upper-right corners) of the four comparisons from
the univariate Kolmogorov-Smirnov test.

with its trend in the left hemisphere. Conversely, the RMSE with respect to
the normative model estimation for these regions behaves differently: for the left
thalamus, with similar tendency in the right thalamus, it reaches 2038.95±112.1
for males when using SynthSeg-WMH with T1w, compared to just 1304± 109.2
for SynthSeg+. Meanwhile, the accumbens shows an RMSE of 166.96± 10.1 for
FLAIR in males when using SynthSeg+, which is almost fifty percent less than
its counterpart using T1w and SynthSeg-WMH, similarly to the amygdala.

Volumetric Deviations from Normative Trajectories - Figure 5 illustrates the
longitudinal trajectories of subcortical volumes for MS patients compared to
the expected trajectories for healthy subjects. We observed a consistent trend
across sexes, showing an increasing deviation with age in the thalamus of both
hemispheres independently of the segmentation algorithm used. Although not
significant, a similar trend was found for the putamen. Overall, SynthSeg+ and
SynthSeg-WMH show significant differences in deviation when stratified by sex.
In general, and consistent with the trends for subcortical volume segmentation,
SynthSeg+ shows more extreme values.

4 Conclusions

This pilot study explores the feasibility of normative models in identifying and
quantifying brain atrophy in MS patients using state-of-the-art DL algorithms
for subcortical structure segmentation, offering initial insights into disease pro-
gression. Preliminary results demonstrate that DL models can estimate subcor-
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Fig. 4. Multivariate Factorial Polynomial Regression (MFPR) [38] of each subcortical
volume against the age in 326 MS patients, stratified by sex and the DL model used
for segmentation employing FLAIR contrast.
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Fig. 5. Deviation, Z-score, of each MS patient’s subcortical volume from the normative
value for their age and sex employing the FLAIR contrast. The Z-score trajectory
is shown as its regression against age. Red dashed lines at ±1.96 identify the 95%
confidence interval. |Z-score| > 1.96 are considered extreme deviants.
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tical volumes for MS patients. While these results are not equally relevant for all
structures, it’s important to note that reference values are based on corrected
automatic segmentations, often derived from T1w sequences. This could poten-
tially bias results in favor of T1w-based methods [37], although our findings
suggest this bias varies by region. The DL algorithms, in conjunction with har-
monization techniques, provide results within credible ranges for all regions, as
well as expectable rates of change [5,10] as shown in Figures 4 and 5. Although
direct comparisons are challenging, our findings align with literature on compar-
ative studies for hippocampus [23], putamen [27], pallidum, and thalamus [2].
Limitations were observed in regions like the amygdala, known for its segmen-
tation difficulties [40]. Notably, the amygdala is the only region not presenting
a typical atrophy pattern (see Fig.4). Future work will incorporate lesion load
analysis at specific localizations to assess its impact on volumetric measures.
This will involve comparing manual lesion segmentations (not yet available for
all datasets) with automatic segmentations to explore full process automation.
This study confirms that FLAIR sequences can be highly relevant for adequate
characterization of certain subcortical structures, such as caudate, hippocampus,
and accumbens [1], paving the way for future inclusion of additional subcortical
regions (currently only available through SynthSeg+). Automatic segmentation,
even in the presence of WML, proves reliable, especially when using SynthSeg-
WMH. This is evidenced by the RMSE with respect to the normative model,
where SynthSeg-WMH provides estimates of expected deviations in MS patients
with age, as well as their deviation from normativity.

In conclusion, while substantial work remains to confirm these initial findings
and establish their clinical relevance, our preliminary study suggests potential
subcortical volume deviations in MS patients. It primarily serves to highlight
the need for further research and methodological validation. By addressing the
limitations of current segmentation techniques and expanding upon this norma-
tive modeling approach, future studies can work towards more accurate DPM,
improved patient stratification, and ultimately, more personalized and effective
treatments for individuals with MS.
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