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• The proposed retention curve analysis enables a comparison of various
uncertainty measures at three anatomical scales: voxel, lesion, and
patient

• The proposed lesion- and patient-scale uncertainty quantification mea-
sures suggest an advantage in identifying model errors in white matter
lesion detection and segmentation

• The proposed patient-scale uncertainty has a stronger correlation with
Dice similarity score compared to state-of-the-art aggregation measures

• The results are validated on a multi-center dataset with additional
generalizability analysis on a cohort of patients with white matter hy-
perintensity
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Abstract

This paper explores uncertainty quantification (UQ) as an indicator of the
trustworthiness of automated deep-learning (DL) tools in the context of white
matter lesion (WML) segmentation from magnetic resonance imaging (MRI)
scans of multiple sclerosis (MS) patients. Our study focuses on two princi-
pal aspects of uncertainty in structured output segmentation tasks. First,
we postulate that a reliable uncertainty measure should indicate predictions
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likely to be incorrect with high uncertainty values. Second, we investigate
the merit of quantifying uncertainty at different anatomical scales (voxel,
lesion, or patient). We hypothesize that uncertainty at each scale is related
to specific types of errors. Our study aims to confirm this relationship by
conducting separate analyses for in-domain and out-of-domain settings. Our
primary methodological contributions are (i) the development of novel mea-
sures for quantifying uncertainty at lesion and patient scales, derived from
structural prediction discrepancies, and (ii) the extension of an error retention
curve analysis framework to facilitate the evaluation of UQ performance at
both lesion and patient scales. The results from a multi-centric MRI dataset
of 444 patients demonstrate that our proposed measures more effectively
capture model errors at the lesion and patient scales compared to measures
that average voxel-scale uncertainty values. We provide the UQ protocols
code at https://github.com/Medical-Image-Analysis-Laboratory/MS_
WML_uncs.

Keywords:
Multiple sclerosis, white matter lesion segmentation, magnetic resonance
imaging, deep learning, uncertainty quantification, instancescale
uncertainty, patientscale uncertainty
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1. Introduction

Multiple sclerosis (MS) is a chronic, progressive autoimmune disorder
of the central nervous system affecting approximately 2.8 million people
worldwide (Walton et al., 2020). The primary characteristics of MS are
demyelination, axonal damage, and inflammation due to the breakdown of
the blood-brain barrier Reich et al. (2018); Thompson et al. (2018). The di-
agnostic criteria for MS include both neurological symptoms observation and
magnetic resonance imaging (MRI) examination for the presence of lesions
disseminated in time and space (Thompson et al., 2018; Hemond and Bakshi,
2018; Wattjes et al., 2021). White matter lesions (WMLs) are a hallmark of
MS, indicating the regions of inflammation in the brain, typically assessed
through FLAIR or T1-weighted modalities (Gramsch et al., 2015; Hemond
and Bakshi, 2018). On FLAIR scans, WMLs are visible as hyperintense re-
gions with periventricular area, brainstem, and spinal cord being prevalent
lesion sites. The size, shape, and count of WMLs vary markedly across pa-
tients. While crucial for diagnosis and monitoring, the manual annotation of
new and enlarged lesions is a time-consuming and skill-demanding process.

The task of automated WML segmentation has propelled the develop-
ment of novel image processing techniques for many years (Kaur et al., 2020;
Lladó et al., 2012). More recently, algorithms have been boosted by the
success of deep learning (DL) in computer vision. DL methods quickly be-
came state-of-the-art for WML segmentation, providing better performance
at faster processing times at faster processing times (Zeng et al., 2020; Spag-
nolo et al., 2023). Various DL models were explored in application to WML
segmentation, with U-Net architecture being the most common model at
faster processing times (Spagnolo et al., 2023).

The potential clinical application of DL methods raises safety concerns.
These include the black-box nature of such approaches and their susceptibil-
ity to variations in test data, known as domain shifts (Reyes et al., 2020).
Additionally, common factors such as limited data availability, imperfect an-
notations, and ground-truth ambiguity due to inter-rater variability further
challenge the reliability of DL model predictions, potentially hindering their
seamless integration into clinical practice (Begoli et al., 2019). The field of
uncertainty quantification (UQ) offers a possibility to tackle this issue by esti-
mating the “degree of untrustworthiness” of model predictions (Begoli et al.,
2019), focusing on two main uncertainty sources (Gawlikowski et al., 2023):
i) data noise, captured by data uncertainty, and ii) training data scarcity or
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domain shifts, captured by model uncertainty. In the context of high-risk
AI applications, the information about the trustworthiness of model predic-
tions is important not only from an engineering perspective, but also for the
end-users, e.g. clinicians (Graziani et al., 2022).

Consequently, UQ is gaining popularity within the field of medical image
analysis not only as a way to assess prediction trustworthiness. However,
the usage of uncertainty extends beyond quality control to accommodate
such applications as improving prediction quality, domain adaptation, active
learning, and other applications (Gawlikowski et al., 2023; Faghani et al.,
2023; Zou et al., 2023; Lambert et al., 2022c). In medical image segmenta-
tion tasks, uncertainty is usually assessed by treating semantic segmentation
as pixel or voxel classification, computing uncertainty for each pixel or voxel
prediction. Given the structure of a segmentation model output, it is also
possible to explore uncertainty values associated with some region of predic-
tion. Several works explore uncertainty associated with a segmented region
of interest, e.g. structure- or lesion-wise (Roy et al., 2019; Wang et al., 2019;
Rottmann et al., 2019; Nair et al., 2020; Lambert et al., 2022b), or for a
whole prediction on a patient (Jungo et al., 2020; Whitbread and Jenkinson,
2022).

1.1. Related works on uncertainty quantification in multiple sclerosis

Prior research on UQ for WML segmentation explored different tech-
niques, including single-network deterministic methods (McKinley et al.,
2020; Lambert et al., 2022b), Monte Carlo Dropout (MCDP) (Nair et al.,
2020), batch ensembles (Lambert et al., 2022b). Our previous study (Ma-
linin et al., 2022) investigated the deep ensembles (Lakshminarayanan et al.,
2017) and compared them with the MCDP method (Gal and Ghahramani,
2015), showing the advantage of the first one. The utility of a specific UQ
method depends on a particular application and available resources (Lam-
bert et al., 2022c; Gawlikowski et al., 2023; Faghani et al., 2023; Zou et al.,
2023). Deep ensembles were subsequently shown to have a higher quality
of uncertainty estimates compared to other methods, while being compu-
tationally less effective compared to single-shot models or batch ensembles
(Lambert et al., 2022c; Gawlikowski et al., 2023; Faghani et al., 2023; Zou
et al., 2023). The deep ensemble is a deterministic method as the inference
of each member is; thus, the reliability of this UQ method can be studied
without a concern about the repeatability of the results.
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Using ensemble methods or sampling UQ methods, based on obtaining
samples from the posterior distribution, allows for the exploration of vari-
ous uncertainty measures. Several measures of voxel-scale uncertainty have
been explored, including variance, entropy, mutual information (Nair et al.,
2020; Lambert et al., 2022a). Our previous study expanded this list by ex-
ploring a common negated confidence and more advanced measures of model
uncertainty, such as reverse mutual information and expected pairwise Kull-
back–Leibler divergence (Malinin et al., 2022; Molchanova et al., 2023). Sev-
eral studies with different UQ methods and measures used, observe that voxel
scale uncertainty tends to be the highest at the borders of WMLs, especially
larger ones (McKinley et al., 2020; Nair et al., 2020; Malinin et al., 2022;
Lambert et al., 2022a; Molchanova et al., 2023), resembling partial-volume
(Fartaria et al., 2018, 2019) or inter-rater disagreement maps.

In MS, some works explored uncertainty associated with a segmented
region of interest, i.e. at the lesion scale (Nair et al., 2020; Lambert et al.,
2022a; Molchanova et al., 2023). The pioneering study (Nair et al., 2020) sug-
gested computing a log-sum of voxel-scale uncertainties across a predicted le-
sion region, using different voxel-scale uncertainty maps. Analogously, mean
average voxel uncertainty values across the lesion region were explored (Lam-
bert et al., 2022a). Lambert et al. (2022a) showed the advantages of struc-
tural UQ based on graph neural networks over voxel aggregation methods.
Our prior research (Lambert et al., 2022a) demonstrated that lesion-scale un-
certainty, computed through disagreement in structural predictions, is more
effective at identifying false-positive lesions than aggregating voxel-scale un-
certainties. Although we explored advanced measures such as expected KL
divergence and reverse mutual information (Malinin and Gales, 2021), they
did not exhibit any significant advantage over the more commonly employed
entropy and mutual information in medical image analysis. In the context of
MS lesion segmentation, the patient-scale uncertainty remains less explored.

Besides these various measures, prior works proposed different ways to
compare uncertainty measures. Ideally, a high uncertainty score should high-
light the predictions that are most likely to be wrong. Hence, we expect a
reliable uncertainty measure to reflect the increased likelihood of an erroneous
prediction and thus correlate with model mistakes. For classification tasks, a
calibration of uncertainty is measured to assess its quality, similarly the un-
certainty quality can be compared at the voxel scale. At the lesion-/ patient-
scales the calibration metrics are not explicitly defined. When investigating
lesion-scale measures, Nair et al. (2020) looked into uncertainty-based pre-
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diction filtering as a means to correlate uncertainty and false positive errors,
and Lambert et al. (2022a) used accuracy-confidence curves. Our previous
work redefines an error retention curve analysis to quantify the relationship
between uncertainty and lesion detection errors (Molchanova et al., 2023).
Prior to that the error retention curve analysis has been explored to compare
classification or segmentation pixel-/voxel-scale uncertainty measures for var-
ious tasks as a way to quantify its relationship with an error / quality metric
of a choice (Malinin, 2019; Malinin and Gales, 2021; Mehta et al., 2022).
This is a necessary analysis for various practical clinical implementations,
including a signaling uncertainty-based system to warn medical specialists
about the potential errors in automatic predictions, automatic uncertainty-
based filtering of errors, or active learning where the hardest, i.e. most likely
erroneous examples need to be selected.

Various studies on UQ for WML segmentation use similar U-net-like deep
learning models (Ronneberger et al., 2015; Çiçek et al., 2016; Nair et al.,
2020; Malinin et al., 2022; Lambert et al., 2022a), which have been widely
explored in application to the MS lesion segmentation task (Commowick
et al., 2018a; Kaur et al., 2020; La Rosa et al., 2020; Spagnolo et al., 2023).
While there is an agreement about the DL model, studies were conducted on
various datasets, predominantly private ones. There had not been a public
benchmark dataset for the UQ methods evaluation within the context of
WML segmentation before the Shifts 2.0 Challenge (Malinin et al., 2022).

1.2. Our contributions

This study extends our previous work (Molchanova et al., 2023) and in-
troduces advancements in uncertainty quantification (UQ) methods, focusing
on MRI segmentation across voxel, lesion, and patient scales. We introduce
a novel patient-scale uncertainty measure that leverages ensemble member
disagreement to more accurately identify segmentation errors. To compare
patient-scale measures, we redefine the error retention curve analysis, en-
abling a better understanding of their performance in detecting poor segmen-
tation quality. Our quantitative evaluation is conducted in both in-domain
and out-of-domain settings using a total of 404 scans to mirror the diversity
of MRI data coming from several studies, medical centers, and scanners. Ad-
ditionally, this research provides a comparison of uncertainty measures across
different anatomical scales, highlighting their capacity to detect voxel mis-
classification, lesion false discovery, and general segmentation inaccuracies,
considering clinically relevant applications. The proposed UQ framework is
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specifically tailored for WML segmentation on FLAIR MRI scans. Through
additional evaluation, we confirm the generalizability of a similar task of
white matter hyperintensity segmentation on 2D FLAIR MRI scans.

Our contributions include:

• Proposing the error retention curves analysis for instance-detection
tasks, enabling an evaluation of lesion-scale UQ methods in their ability
to capture lesion false detection errors.

• Proposing a patient-scale uncertainty measure, a novel approach for
WML segmentation evaluation, enhancing the understanding of overall
segmentation failure.

• Proposing the extension of the error retention curves analysis for patient-
scale to compare the ability of different uncertainty measures to capture
overall segmentation quality.
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2. Materials and methods

2.1. Data

The initial study creating the data was designed as a part of the Shifts 2.0
Challenge (Malinin et al., 2022) specifically for the exploration of uncertainty
quantification across shifted domains. This configuration comprises three
publicly available datasets and a single private one. Data is separated into
in-domain (Train, Val, Testin) and out-of-domain (Testout) subsets. This
enables UQ evaluation both with and without the domain shift. Data split
into in- and out-of-domain sets is designed to maximize the drop of model
performance in lesion segmentation in the out-of-domain test. From a clinical
perspective, the domain shift is provided by the difference in medical center,
scanner, annotators, and MS stages (Table 1). The Testin and Testout show a
prominent difference in lesion distributions likely brought by the differences
of MS stages distributions (see Figure 1).

We extend this existing public benchmark by including a large in-house
dataset (Testprivate, 162 patients) collected in the Basel University Hospital,
Switzerland (Granziera, 2018). While Testprivate should be treated as an out-
of-domain, the lesion profiles overlap with both Testin and Testout (see Figure
1).

For the additional assessment of generalizability and repeatability, we
add an evaluation on a similar task of white matter hyperintensity (WMH)
segmentation. We use a publicly available test set from the WMH Segmenta-
tion Challenge (Kuijf et al., 2022) comprising 110 subjects. On MRI FLAIR
scans, WMH has a similar WML MS visual representation, but not localiza-
tion (Gramsch et al., 2015). WMHs come from a different pathology related
to vascular abnormalities rather than MS (Erten-Lyons et al., 2013). The
WMH Segmentation Challenge dataset contains 2D FLAIR scans with 3mm
thickness, compared to 0.8-2.2 mm slice thickness in the rest of the datasets.
The lack of information in the z-axis contributes to the domain shift in addi-
tion to differences in study, medical center, underlying pathology, annotation
protocol, among others. Additionally, this cohort exhibits higher lesion loads
and larger lesion sizes (see Figure 1).

For WML and WMH segmentation, this study uses FLAIR MRI scans
and their manual WML annotations. FLAIR scans from Testprivate and
TestWMH underwent a common pre-processing pipeline similar to the Shifts
2.0 Challenge pre-processing, including skull stripping (Isensee et al., 2019),
bias field correction (Tustison et al., 2010), and interpolation to 1mm isovoxel

8



space. Information about data sources, metadata, and data splits is provided
in Table 1. Figure 1 illustrates some differences between domains brought
by variations in MS stage distributions and scanner changes, affecting the le-
sion characterization and intensity features, respectively. Other factors, such
as changes in study design, lesion annotators, scanner operators, may also
contribute to the domain shift.

Domain In-domain Out-of-domain MS
Out-of-domain

WMH

Source
Carass et al. (2017),
Commowick et al. (2018b)

Lesjak et al.
(2017),
Bonnier

et al. (2014)

Granziera
(2018)

Kuijf et al.
(2022)

Medical center
location

Rennes, Bordeaux and Lyon
(France), Best (Netherlands)

Ljubljana
(Slovenia),
Lausanne
(Switzer-

land)

Basel
(Switzer-

land)

Utrecht and
Amsterdam

(Netherlands),
Singapore

Scanners

Siemens (Aera 1.5T, Verio
3.0T), GE Disc 3.0T,
Philips (Ingenia 3.0T,

Medical 3.0T)

Siemens
Magnetom
Trio 3.0T

Siemens
Magnetom
Prisma 3.0T

3T Philips
Achieva, Siemens
TrioTim 3.0T,
Philips Achieva
3.0T, Ingenuity
3.0T, GE Signa
(1.5T, 3.0T)

M:F ratio range 0.21-0.4 0.23-0.70 0.68 -

MS stages RR, PP, SP CIS, RR, SP,
PP

RR, PP, SP -

# raters 2 / 7 consensus / 3 consensus consensus
Inter-rater
agreement

(Dice score)
0.63 and 0.71 0.78 and - - -

Set name Train Val Testin Testout Testprivate TestWMH
# scans 33 7 33 99 162 110

# lesions per
scan, Q2 (IQR)

34 (20-50) 26 (19-61) 30 (15-47) 39 (20-77) 63 (25-88) 60 (37-83)

Total lesion
volume per

scan, Q2 (IQR)
[mL]

12.5 (3.1-27.8) 15.5 (4.0-24.7) 7.2 (3.7-11.3) 2.7 (1.3-7.3) 7.4 (2.4-14.3) 9.4 (3.3-20.3)

Table 1: Data splits and meta information. MS stages are clinically isolated syndrome
(CIS), relapsing remitting (RR), primary progressive (PP), and secondary progressive
(SP). Computed statistics are median (Q2) and interquartile range (IQR). Computed
statistics are median (Q2) and interquartile range (IQR).

2.2. Uncertainty quantification

This work implements deep ensembles (Lakshminarayanan et al., 2017)
for UQ by training multiple networks with identical architecture but differ-
ent random seed initializations. The random seed controls several factors, for
instance, weights initialization, training sample selection, random augmen-
tations, and stochastic optimization algorithms. Although each ensemble
member has distinct model weights, they all stem from the same posterior
distribution. This causes varied predictions among ensemble members for
the same input example. The spread or variation in these predictions serves
as an uncertainty estimate.
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Figure 1: Illustration of the domain shift between the in-domain datasets (Train, Val,
Testin) and the out-of-domain dataset (Testout, Testprivate, and TestWMH) brought by the
differences in the MS stages and medical centers. On the left, the plot of the total lesion
volume in milliliters versus the number of lesions per scan for in-domain (orange) and out-
of-domain (gray and black) sets reveals the difference in the lesion load (as a proxy to an
MS stage) between different domains. On the right, typical examples from the Testin and
Testout sets illustrate the difference in the lesion load, as well as the intensity differences
brought by the change of the medical center (i.e. scanner, technicians, annotators, and
other parameters contributing to the domain shift) and MS stages (i.e. smaller lesion load
and size).

2.2.1. Uncertainty quantification at different anatomical scales

In an image segmentation task, a class prediction is not a single value but
an image-size map. Thus, the disagreement between the ensemble members
can be quantified not only for each voxel of the prediction but also for a
subset of its elements. For WML segmentation, the model prediction is a
3D probability map. We can quantify the uncertainty associated with the
decision taken in each voxel, thus obtaining another 3D map with voxel-scale
uncertainty values. We can also quantify uncertainty associated with a set
of predictions within a region of a particular lesion, thus obtaining an uncer-
tainty score for each predicted lesion. Similarly, we can quantify uncertainty
for the whole patient. We implement several uncertainty measures at each
anatomical scale (voxel, lesion, or patient). The exact mathematical formu-
lation for the previous existing and proposed UQ measures are summarized
in Table 2 and described hereafter.

Voxel-scale uncertainty measures. Perceiving segmentation as a classification
of each voxel of an image, one could use uncertainty measures available for
classification tasks to quantify uncertainty for per-voxel predictions. The
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common uncertainty measures in this case will be negated confidence and
information theory measures such as entropy of expected, expected entropy,
or mutual information which respectively depict different total, data, and
model uncertainty.

Lesion-scale uncertainty measures. Given a WML segmentation task, we can
compute a single uncertainty score for each predicted connected component,
i.e. lesion. Differently from previous measures that aggregate voxel-scale
uncertainties (Nair et al., 2020; Lambert et al., 2022b). Our previous work
(Molchanova et al., 2023) proposes a novel lesion-scale uncertainty defined
directly through the disagreement between the lesion structural predictions
of ensemble members. We hypothesize that looking at the disagreement in
structural predictions, i.e. predicted lesion regions, might be more beneficial
for the discovery of false positive lesions.

To define our proposed measure, we consider the ensemble of M models,
where each member model is parametrized by weights θm, m ∈ {0, 1, . . . ,M−
1}. The ensemble probability prediction is obtained by computing a mean
average across members. Then, the binary lesion segmentation mask is ob-
tained by applying a threshold α to the softmax ensemble prediction, where
α is chosen based on the Dice similarity coefficient maximized on the val-
idation dataset. Analogously, by applying the threshold α to the softmax
predictions of each of the ensemble models, we can obtain the binary lesion
segmentation masks predicted by each model m in the ensemble. Let L be a
predicted lesion that is a connected component from the binary segmentation
map obtained from the ensemble model; and Lm is the corresponding lesion
predicted by the model m, determined as the connected component on the
binary segmentation map predicted by the m-th member with maximum in-
tersection over union (IoU) with L. If the softmax probability threshold is
optimized for each member model separately based on the highest Dice score,
the resulting thresholds will be different from α and will be member-specific:
αm, m ∈ {0, 1, . . . ,M−1}, instead of α. Then, the binary segmentation maps
obtained with αm will lead to different corresponding lesion regions, called
Lm,+. Then, the proposed measure, lesion structural uncertainty (LSU), is
defined as follows:

LSU = 1− 1

M

M−1∑
m=0

IoU(L,Lm), (1)

and
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LSU+ = 1− 1

M

M−1∑
m=0

IoU(L,Lm,+). (2)

Patient-scale uncertainty measures. Patient-scale uncertainty offers the most
compact way of uncertainty representation considering the clinical practice,
that is presenting a single uncertainty score per patient. Analogously to
the lesion scale, the patient-scale uncertainty can be computed by averaging
voxel or lesion uncertainties. Using similar reasoning as for the lesion scale,
we propose a patient-scale measure analogous to LSU (Equation 1), where
instead of the lesion region L the total segmented lesion region is used. To
define these measures, let S be a set of voxels predicted as lesion class by
the ensemble model, Sm - set of voxels predicted as lesion class by the m-th
member model in the ensemble, and Sm,+ is the same, but obtained with
the member-specific threshold αm. Then, the proposed patient structural
uncertainty measures are defined as:

PSU = 1− 1

M

M−1∑
m=0

IoU(S, Sm), (3)

and

PSU+ = 1− 1

M

M−1∑
m=0

IoU(S, Sm,+). (4)

2.3. Quantitative evaluation of uncertainty measures

Uncertainty has a relation to errors made by a model: ideally, a higher
uncertainty expresses an increased likelihood of erroneous prediction. For
each of the anatomical scales: voxel, lesion, and patient, the “error” definition
can vary. For example, a voxel-scale error can be simply defined as a voxel
misclassification, a lesion-scale error can be defined as a lesion misdetection,
and a patient-scale error can be a summary of voxel errors. In this work,
we want to compare voxel-, lesion-, and patient-scale uncertainty measures
in terms of their ability to capture errors of different kinds. For this, we
use an error retention curve analysis (Malinin, 2019; Malinin et al., 2022;
Mehta et al., 2022), previously introduced only for voxel-scale uncertainty,
and extended for lesion and patient scales in this work.
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2.3.1. Error and quality metrics

We start by defining errors on the voxel and lesion scale as well as quality
metrics used in this work for model performance characterization and error
retention curve analysis.

Voxel-scale errors. Similarly to a classification task, the errors at the voxel
scale will include false positives and negatives (FP and FN, respectively).
Based on FP, FN, true positives (TP), and true negatives (TN), one derives
metrics like true positive rate (TPR) and positive predictive value (PPV),
which measure correctly classified voxels against ground truth or predicted
lesions, respectively. To evaluate both error types, we use the F1 score, also
known as the Dice similarity score (DSC) in image processing. However, it
is well known that the DSC metric suffers from a bias to the occurrence rate
of the positive class, i.e. lesion load, jeopardizing the comparison of results.
We thus additionally utilize the normalized DSC (nDSC) (Raina et al., 2023)
for the model evaluation. In a nutshell, nDSC scales the precision at a fixed
recall rate to tackle the lesion load bias.

Lesion-scale errors. Analogously, true positive, false positive, and false neg-
ative lesions (TPL, FPL, FNL) can be defined if the criteria for lesion
(mis)detection are given. While some studies accept minimal overlap for
detection (Nair et al., 2020; Carass et al., 2017; La Rosa et al., 2020), we
apply a 25% intersection over the union threshold for a predicted lesion to
be considered a TPL. For the FNL definition, we consider a zero overlap
with the prediction. A FNL is a ground truth lesion that has no overlap with
predictions. Metrics derived from TPL, FPL, and FNL include Lesion TPR,
PPV, and F1, further referred to as LTPR, LPPV, LF1. The differences at
the voxel scale include: i) uncertainty cannot be quantified for FNLs, as they
are not predicted lesions; ii) it is not possible to define a true negative lesion.
The metrics definitions can be found in Appendix A.

2.3.2. Error retention curve analysis

The error retention curve (RCs) (Malinin, 2019; Malinin et al., 2022;
Mehta et al., 2022) assess the correspondence between a chosen uncertainty
measure and an error or a quality metric. By quantifying this correspondence
for various uncertainty measures we can choose a measure that is better at
pointing out errors in model predictions. This is relevant for clinical appli-
cations, where uncertainty constitutes a signaling system requiring human
verification.
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Figure 2: An illustration of a Dice score retention curve (DSC-RC) for assessing the corre-
spondence between voxel uncertainty (MEASURE1 and MEASURE2) and segmentation
quality measured by DSC. DSC0 - quality of the predicted segmentation before voxel re-
placement. IDEAL and RANDOM RCs are built for the ideal and random uncertainty
and are the upper and lower bounds of the uncertainty-robustness performance.

Compared to the uncertainty calibration analysis (Gawlikowski et al.,
2023), error RCs only consider the ranking of uncertainty values within a
particular scan, thus, avoiding uncertainty values scaling present in the cal-
ibration metrics. Additionally, they allow for the choice of a quality metric
w.r.t. to which the uncertainty measure is compared. Thus, allowing for ex-
tending their definition to different scales, e.g. lesion or patient. Moreover,
compared to calibration metrics, the RC analysis allows us to estimate the
upper and lower bounds of the uncertainty-robustness performance.

Voxel-scale DSC-RC. Similarly to our previous investigation (Molchanova
et al., 2023), we use voxel-scale RCs to quantify the average across patients
correspondence between per-voxel uncertainty and DSC, i.e. per-voxel mis-
classification errors of different kinds: either FP or FN. For one patient, a
voxel-scale DSC-RC is built by sequentially replacing a fraction τ of the most
uncertain voxel predictions within the brain mask with the ground truth and
re-computing the DSC. If one measure has a better ability to capture model
errors than another measure, then the most uncertain voxels will be faster
replaced with the ground truth and the DSC-RC will grow faster. Thus,
the area under the DSC retention curve (DSC-RC), further referred to as
DSC-AUC can be used to compare different uncertainty measures in their
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ability to capture model segmentation errors. It is possible to estimate lower
and upper bounds of performance by building random and ideal RCs. For
a random RC, we assign random uncertainty values to each voxel of predic-
tions. For the ideal one, a zero uncertainty is assigned to true positive and
negative (TP and TN) voxels while false positive and negative (FP and FN)
voxels have an uncertainty of 1. To build the RCs, we use τ = 2.5 · 10−3. An
illustrative explanation of a voxel-scale RC can be found in Figure 2.

Lesion-scale LPPV-RC (proposed). In our previous investigation (Molchanova
et al., 2023) we proposed an extension of the error RC analysis to the lesion
scale through LF1-RC. LF1-RC assesses the correspondence between lesion-
scale uncertainty and errors in lesion detection within a patient. As defined
in Section 2.3.1, the LF1 is reflective of both FNL and FPL. However, uncer-
tainty cannot be defined for FNLs as they are not predicted, but ground-truth
lesions. Thus, LF1-RCs are more suitable for the comparison of different
models or uncertainty quantification methods, for which the number of FNL
can vary. However, for the comparison of lesion-scale uncertainty measures,
where the number of FNLs does not change, the LPPV-RC analysis is suffi-
cient. Thus, we propose the LPPV-RC assesses the correspondence between
lesion-scale uncertainty and lesion false positive errors within a patient. In-
tuitively, this analysis helps to understand which uncertainty measure is the
best at pointing to false positive lesions.

Building a LPPV-RC for a patient starts with computing the number
of TPL and FPL, i.e. #TPL and #FPL, and uncertainty values for each of
these lesions. Further, the most uncertain lesions are sequentially replaced
with TPL, and LPPV is recomputed. Analogously to the voxel scale, if a
lesion-scale uncertainty measure has a better ability to capture FPL than
another measure, then FPL will be replaced faster, and the curve will grow
faster. Thus, the area under the LPPV-RC, that is LPPV-AUC, can be
used to compare different measures in their ability to capture FPL detection
errors. As each patient has a different number of predicted lesions, to obtain
an average across the dataset LPPV-AUC, we first need to interpolate all
LPPV-RCs to a similar set of retention fractions. For this, we use a piecewise
linear interpolation and a set of retention fractions similar to the voxel scale.
Additionally, similarly to the voxel scale, the ideal and random RCs are built.
The ideal curve is built by considering all TPLs having an uncertainty of 0
and all FPLs having an uncertainty of 1. The random curve is built by using
random uncertainties for each of the lesions.

15



Patient-scale DSC-RC (proposed). In this work, we propose a way to extend
an error RCs analysis to the patient scale to assess the correspondence be-
tween patient-scale uncertainty measures and overall prediction quality in a
patient. We use DSC as a measure of overall segmentation quality. Then, a
patient-scale DSC-RC is built by sequentially excluding the most uncertain
patients, that is replacing their DSC with 1.0, and recomputing the average
across the dataset DSC. Similarly to the voxel and lesion scales, the area
under the patient-scale DSC-RC is used to compare the ability of different
patient-scale uncertainty measures to capture patients with a greater num-
ber of erroneous predictions. In analogy to the voxel and lesion scales, we
want to assess the upper and lower bounds of the performance with ideal
and random patient-scale DSC-RCs. To build a random curve we assign ran-
dom uncertainties to each of the patients. To build the ideal curve, we use a
negated DSC score as an uncertainty measure, as we want ideal uncertainty
to point to the most erroneous examples in terms of DSC.

Statistical testing. For the voxel and lesion scales, the error retention curves
analysis, namely DSC-RC and LPPV-RC, are computed per patient. There-
fore, when comparing different uncertainty measures across each other, one
can assess the differences in AUC distributions across measures, e.g. statis-
tics. For the patient scale, DSC-RC is computed per dataset (by iterative
replacement of the most uncertain patients). Nevertheless, it is possible
to estimate the bootstrap confidence intervals by treating the patient-scale
DSC-RC as a statistic itself. Thus, to conduct the measures ranking for
the patient-scale uncertainty measures, we compare the mean patient-scale
DSC-AUC, paying attention to the corresponding confidence intervals.

2.3.3. Patient-scale uncertainty as a proxy for segmentation quality

In addition to the information brought by the error RC, we would like to
study if a patient-scale uncertainty can serve as a proxy to the model segmen-
tation quality, measured by DSC. For this, we compute Spearman’s correla-
tion coefficient ρ between the DSC and uncertainty values. The Spearman’s
correlation is computed for different test sets separately, and then jointly.
The joint correlation coefficient should show if the uncertainty measure can
be used as a proxy for the segmentation quality regardless of the domain
shift. This might be particularly useful for the scenario where the domain
shift is unknown.
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2.4. WML segmentaiton model

For this study, we consider two models based on a 3D U-Net architec-
ture. Similar 3D-U-net-based models have been previously used for WML
segmentation and compared to other approaches (Kaur et al., 2020; Zeng
et al., 2020; La Rosa et al., 2020; Spagnolo et al., 2023). Furthermore, our
choice is supported by the fact that the same model has been extensively used
previously for UQ exploration within the same WML segmentation task in
MS (McKinley et al., 2020; Nair et al., 2020; Malinin et al., 2022; Lambert
et al., 2022b,a). The first model is the baseline model from the Shifts 2.0
Challenge (Malinin et al., 2022) dedicated to UQ for WML segmentation.
The second model is a self-configuring nnU-Net architecture (Isensee et al.,
2019). Both models are ensembles with 5 members, where each member is
a 3D U-Net model (Ronneberger et al., 2015; Çiçek et al., 2016). There are
several crucial differences between the Shifts Baseline (SB) U-Net and the
nnU-Net models: i) architecture, i.e SB has the depth reduced by one and,
thus, less trainable parameters; ii) loss function, i.e. Focal-Dice loss for SB
and cross-entropy and Dice loss for nnU-Net; iii) deep supervision is utilized
by nnU-Net, compared to SB; iv) input, SB’s input are patches of the size
96 × 96 × 96 cropped from the brain using a sequence of transforms, while
nnU-Net uses patches 112×160×128 cropped around the whole brain. Both
models represent public benchmarks, and their training and inference code
is available online 3. For the SB model, the only difference, compared to the
original model, is an addition of 2 more ensemble members, obtained using
the original training code. For the nnU-Net model, we used a “3d fullres”
configuration, we ensured the consistency of training and validation exam-
ples across folds (for the model to be comparable to SB) and limited the
number of training epochs to 200 (due to the validation loss stagnation, to
prevent overfitting). Since the Shifts dataset does not contain lesions less
than 10 voxels, we process the outputs of each of the models to remove all
the connected components with less than 10 voxels.

3The original code including model implementation and weights, training and in-
ference code can be found at the Shifts Challenge GitGub: https://github.com/

Shifts-Project/shifts/tree/main/mswml. nnU-Net model code is publicly available
at https://github.com/MIC-DKFZ/nnUNet. Model weights can be found on our GitHub:
https://github.com/Medical-Image-Analysis-Laboratory/MS_WML_uncs.

17

https://github.com/Shifts-Project/shifts/tree/main/mswml
https://github.com/Shifts-Project/shifts/tree/main/mswml
https://github.com/MIC-DKFZ/nnUNet
https://github.com/Medical-Image-Analysis-Laboratory/MS_WML_uncs


(a) Voxel-scale uncertainty measures computed for each pixel i ∈ B of an input scan x (B is a
set of voxels defining the brain region), y - targets, c ∈ {0, 1, . . . , C − 1} is the class (C = 2 for binary
segmentation), P (yi = c|x,θm) is a softmax probability predicted by the m-th member in the ensemble

of M models, and P̂ (yi = c|x) = 1
M

M−1∑
m=0

P (yi = c|x,θm) is the probability predicted by ensemble.

Negated confidence

NCi = − argmax
c=0,..,C−1

1
M

M−1∑
m=0

P (yi = c|x, θm)

Entropy of expected

EoEi = −
C−1∑
c=0

P̂ (yi = c|x)logP̂ (yi = c|x)

Expected entropy

ExEi = − 1
M

M−1∑
m=0

C−1∑
c=0

P (yi = c|x, θm) logP (yi = c|x, θm)

Mutual information
MIi = EoEi − ExEi

(b) Lesion-scale uncertainty measures computed for each predicted lesion L, that is a connected
component on the predicted binary segmentation map. The last is obtained by applying a threshold α

to the softmax ensemble prediction P̂ (y = 1|x) = 1
M

M−1∑
m=0

P (y = 1|x,θm), where α is chosen based

on the Dice similarity coefficient maximized on the validation dataset. Lm is the corresponding lesion
predicted by the mth member model, determined as the connected component on the binary segmentation
map predicted by the mth member (threshold α applied to P (y = 1|x,θm),m ∈ {0, 1, . . . ,M − 1}) with
maximum intersection over union (IoU) with L. If the softmax probability threshold is optimized based on
the highest Dice score for each member model separately, the resulting thresholds will be different from α
and will be member-specific: αm,m ∈ {0, 1, . . . ,M−1} instead of α. Then, the binary segmentation maps
obtained by applying αm to P (y = 1|x,θm),m ∈ {0, 1, . . . ,M − 1} will lead to different corresponding
lesion regions, called Lm,+.

Voxel uncertainties aggregation via mean average

EoEL = 1
|L|

∑
i∈L

EoEi,

Analogously, ExEL, NCL,MIL are defined.

Proposed lesion structural uncertainty (LSU)

LSU = 1 − 1
M

M−1∑
m=0

IoU(L,Lm)

and

LSU+ = 1 − 1
M

M−1∑
m=0

IoU(L,Lm,+)

(c) Patient-scale uncertainty measures computed for patient. S is a set of voxels predicted as lesions
by the ensemble model, Sm is a set of voxels predicted as lesions by the model m, and Sm,+ is the same,
but obtained with the member-specific threshold αm,m = 0, 1, ...,M − 1. W - set of lesions predicted by
the ensemble model.

Voxel uncertainties aggregation via mean average

EoEB = 1
|B|

∑
i∈B

EoEi,

Analogously, ExEB , NCB ,MIB are defined.

Proposed lesion uncertainties aggregation via mean average

LSU = 1
|W |

∑
l∈W

LSUl,

Analogously, LSU+ is defined.

Proposed patient structural uncertainty (PSU)

PSU = 1 − 1
M

M−1∑
m=0

IoU(S, Sm)

and

PSU+ = 1 − 1
M

M−1∑
m=0

IoU(S, Sm,+)

Table 2: Definitions of uncertainty measures at three anatomical scales: voxel, lesion, and
patient.
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3. Results

3.1. Model performance

The evaluation of the ensemble model performance in terms of average
segmentation and lesion detection quality is presented in Table 3 for training,
validation, and testing sets. Regardless of the model, SB or nnU-Net, the in-
domain performance reaches its upper bound determined by the inter-rater
agreement reported in. There is a considerable drop in performance (around
10% depending on the metric) between in- and out-of-domain sets both in
terms of segmentation (DSC and nDSC) and lesion detection (LF1). The
performance on Testprivate and TestWMH datasets lies in between Testin and
Testout with regards to segmentation and lesion detection quality. Between
the two models, nnU-Net shows higher performance in terms of segmentation
and lesion detection.

Set DSC nDSC LF1 LPPV
SB nnU-Net SB nnU-Net SB nnU-Net SB nnU-Net

Train
0.756
[0.737,
0.774]

0.906
[0.892,
0.917]

0.725
[0.699,
0.749]

0.856
[0.826,
0.883]

0.547
[0.493,
0.596]

0.845
[0.787,
0.876]

0.689
[0.627,
0.735]

0.971
[0.957,
0.981]

Val
0.720
[0.602,
0.783]

0.776
[0.701,
0.821]

0.684
[0.625,
0.740]

0.736
[0.669,
0.783]

0.444
[0.345,
0.547]

0.643
[0.555,
0.707]

0.533
[0.425,
0.608]

0.762
[0.624,
0.871]

Testin

0.633
[0.582,
0.673]

0.707
[0.671,
0.739]

0.689
[0.662,
0.717]

0.741
[0.715,
0.768]

0.487
[0.439,
0.528]

0.701
[0.666,
0.733]

0.610
[0.552,
0.660]

0.762
[0.721,
0.797]

Testout

0.488
[0.457,
0.515]

0.571
[0.538,
0.600]

0.533
[0.501,
0.560]

0.603
[0.570,
0.630]

0.333
[0.308,
0.361]

0.502
[0.477,
0.525]

0.623
[0.586,
0.659]

0.828
[0.799,
0.852]

Testprivate

0.601
[0.578,
0.621]

0.646
[0.626,
0.665]

0.628
[0.608,
0.645]

0.653
[0.635,
0.670]

0.416
[0.396,
0.437]

0.562
[0.543,
0.581]

0.581
[0.556,
0.605]

0.799
[0.779,
0.817]

TestWMH

0.591
[0.564,
0.616]

0.648
[0.623,
0.671]

0.599
[0.580,
0.617]

0.651
[0.632,
0.668]

0.373
[0.353,
0.391]

0.555
[0.534,
0.574]

0.488
[0.456,
0.518]

0.696
[0.665,
0.724]

Table 3: Mean average model performance in segmentation (DSC and nDSC) and lesion
detection (LF1 and LPPV). 90% confidence intervals were computed using bootstrapping.
SB - Shifts 2.0 Challenge baseline model.

3.2. Quantitative evaluation of uncertainty measures

3.2.1. Error retention curve analysis

The RCs for the assessment of uncertainty measures on each of the
anatomical scales (voxel, lesion, and patient) are presented in Figure 3. The
voxel-scale DSC-RCs and lesion-scale LPPV-RCs were obtained by averag-
ing across the respective datasets. The mean areas under the error retention
curves and the results of the statistical testing are presented in Table 4.

Regardless of the test set, all voxel-scale uncertainty measures outper-
form random uncertainty and are closer to the ideal uncertainty in terms
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of mean DSC-AUC, indicating their ability to capture errors in segmenta-
tion. However, the marginal difference between DSC-AUCs of different mea-
sures is relatively small. On the in-domain Testin, there is no agreement be-
tween two models in terms of the measures with the highest mean DSC-AUC:
while total and data uncertainty (NCi, EoEi, ExEi) have higher DSC-AUC
for the SB model, model uncertainty (MIi) has a higher DSC-AUC for the
nnU-Net model. On the out-of-domain Testout and Testprivate datasets, the
entropy-based total and data uncertainty measures (EoEi and ExEi) tend to
have an advantage compared to other measures, contributing to their overall
advantage in the whole evaluation. Nevertheless, the aggregation of data
uncertainty ExEi for the lesion-/ patient- uncertainty computation usually
yields the worst results in terms of lesion-scale LPPV-AUC / patient-scale
DSC-AUC. This means that a good performance of an uncertainty measure
in capturing voxel misclassifications, when aggregated, does not necessarily
lead to an optimal uncertainty measure for detecting lesion false positive or
overall segmentation failure.

Regardless of the test set, at the lesion scale, there is a greater marginal
difference between different measures, particularly for the SB model. For
the SB model, the proposed measure LSU+ has an advantage in the mean
LPPV-AUC over other measures, indicating a better ability to capture lesion
false positive errors. While LSU and LSU+ have similar LPPV-AUCs, there
is usually some difference in their performances, benefiting the LSU+ mea-
sure. Among the measures based on the aggregation of voxel uncertainties,
aggregated total uncertainty EoEL, generally provides slightly higher mean
LPPV-AUC. Despite the differences between the mean LPPV-AUCs among
lesion-scale measures, the 90% confidence interval overlap suggests that these
differences are limited.

At the patient scale, the marginal differences between various measures
are prominent compared to the voxel and lesion scales, especially on the
out-of-domain sets. The results are aligned for both in- and out-of-domain
test sets and for both models, SB and nnU-Net. The proposed PSU and
PSU+ measures have comparable and the highest patient-scale DSC-AUCs,
suggesting their superior ability to capture overall segmentation failure. The
aggregation of the best in terms of LPPV-AUC lesion scale uncertainty (i.e.
LSU and LSU+) yields lower patient DSC-AUC. Averaging voxel uncertain-
ties across the brain generally provides worse-than-random performance in
the error retention curve analysis. The last means that an average across-
subject voxel-scale uncertainty is not informative of an overall segmentation
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performance on a particular subject measured by DSC or has an inverse
relationship with errors.

Figure 3: Error retention curves for the assessment of uncertainty measures at the voxel,
lesion, and patient anatomical scales across the in-domain Testin (left column) and the
out-of-domain Testout (center column) and Testprivate (left column) sets for the nnU-Net
model. Different rows correspond to different anatomical scales indicated with icons on
the left. The voxel-scale DSC-RCs and lesion-scale LPPV-RCs were obtained by averaging
across the respective datasets. At each of the scales, the ideal (black dashed) line indicates
the upper bound of an uncertainty measure performance in its ability to capture model
errors; the random (gray dashed) indicates no relationship between an uncertainty measure
and error; a worse-than-random performance indicates an inverse relationship. Analogous
results for the SB model are shown in Appendix B.1.
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Measure Testin Testout Testprivate

SB nnU-Net SB nnU-Net SB nnU-Net
Voxel-scale DSC-AUC (↑)

Ideal
99.93 [99.91,
99.94]

99.94 [99.92,
99.95]

99.90 [99.88,
99.91]

99.93 [99.92,
99.92]

99.93 [99.91,
99.94]

99.93 [99.91,
99.94]

NCi
99.17 [98.99,
99.31]

99.17 [98.29,
99.49]

96.74 [96.23,
97.12]

97.59 [97.02,
0.9797]

98.56 [98.36,
98.70]

99.02 [98.82,
99.16]

EoEi
99.16 [98.99,
99.31]

99.11 [98.10,
99.46]

97.02 [96.56,
97.37]

97.72 [97.22,
98.05]

98.65 [98.46,
98.79]

99.02 [98.82,
99.17]

ExEi
99.16 [98.99,
99.31]

99.11 [98.09,
99.46]

97.02 [96.56,
97.38]

99.71 [97.21,
98.05]

98.65 [98.46,
98.80]

99.02 [98.82,
99.16]

MIi
99.05 [98.85,
99.21]

99.27 [98.74,
99.50]

96.69 [96.19,
97.08]

97.28 [96.70,
97.68]

98.46 [98.25,
98.62]

98.86 [98.63,
99.01]

Random
80.91 [76.77,
83.36]

84.87 [82.79,
86.69]

76.20 [74.88,
77.36]

80.00 [78.72,
81.21]

80.18 [78.99,
81.19]

82.79 [81.85,
83.62]

Lesion-scale LPPV-AUC (↑)

Ideal
87.88 [82.60,
90.91]

95.72 [93.89,
96.88]

87.07 [83.40,
89.46]

96.47 [93.13,
97.66]

86.41 [84.54,
87.93]

96.36 [95.51,
96.96]

LSU
83.54 [75.80,
87.04]

91.54 [89.57,
93.15]

83.28 [79.63,
85.91]

94.06 [90.87,
95.41]

82.63 [80.74,
84.28]

93.29 [92.15,
94.21]

LSU+ 83.90 [78.83,
87.31]

91.51 [89.53,
93.12]

83.89 [80.27,
86.45]

93.97 [90.80,
95.33]

82.70 [80.83,
84.37]

93.29 [92.15,
94.20]

NCL
83.33 [78.34,
86.77]

91.71 [89.46,
93.92]

83.24 [79.60,
85.86]

94.06 [90.84,
95.39]

82.34 [80.38,
84.04]

93.14 [92.05,
94.05]

EoEL
83.38 [78.41,
86.83]

91.81 [89.61,
93.93]

83.26 [79.63,
85.88]

94.07 [90.86,
95.40]

82.28 [80.30,
83.99]

93.22 [92.11,
94.11]

ExEL
81.73 [76.70,
85.24]

91.70 [89.50,
93.27]

81.55 [77.88,
84.17]

93.41 [90.32,
94.77]

78.74 [76.80,
80.56]

91.99 [90.77,
93.00]

MIL
82.63 [77.70,
86.03]

91.37 [89.22,
92.98]

82.31 [78.64,
85.00]

94.06 [90.86,
95.40]

81.62 [79.69,
83.34]

93.05 [91.89,
93.96]

Random
76.69 [71.57,
80.48]

86.65 [83.96,
88.94]

76.35 [72.71,
79.19]

90.59 [87.65,
92.10]

73.97 [71.91,
75.81]

88.61 [87.18,
89.88]

Patient-scale DSC-AUC (↑)

Ideal
85.74 [84.16,
87.52]

88.72 [87.22,
90.36]

79.21 [77.96,
80.52]

83.55 [82.30,
84.95]

84.48 [83.72,
85.26]

86.23 [85.56,
86.91]

PSU
84.99 [83.16,
86.81]

87.90 [86.25,
89.73]

78.40 [77.11,
79.73]

82.68 [81.26,
84.18]

83.63 [82.79,
84.47]

85.73 [85.02,
86.46]

PSU+ 84.82 [82.97,
86.68]

87.84 [86.17,
89.70]

78.39 [77.10,
79.70]

82.70 [81.28,
84.20]

83.60 [82.75,
84.44]

85.75 [85.04,
86.47]

LSU
83.77 [81.99,
85.42]

86.80 [84.69,
88.64]

75.48 [74.55,
77.26]

79.90 [77.66,
81.22]

79.91 [80.02,
82.28]

83.55 [82.54,
84.44]

LSU+ 83.13 [81.04,
84.88]

86.87 [84.80,
88.97]

75.28 [74.36,
77.08]

79.76 [75.73,
81.16]

79.91 [80.02,
82.28]

83.52 [82.51,
84.42]

NCB
80.70 [78.27,
82.42]

84.13 [82.40,
85.57]

74.82 [72.96,
76.57]

79.90 [77.85,
81.73]

79.79 [75.81,
78.79]

82.00 [80.84,
82.97]

EoEB
80.19 [76.20,
82.86]

84.71 [82.40,
86.80]

71.60 [69.62,
73.32]

75.04 [72.69,
76.72]

77.43 [75.81,
78.79]

79.98 [78.49,
81.19]

ExEB
80.19 [76.20,
82.87]

84.64 [82.34,
86.72]

71.57 [69.53,
73.31]

75.44 [72.69,
76.72]

77.37 [75.74,
78.73]

79.83 [78.33,
81.04]

MIB
80.28 [76.25,
83.02]

85.07 [82.69,
87.20]

71.70 [69.76,
73.39]

75.18 [72.93,
77.00]

77.60 [75.97,
78.97]

80.20 [78.72,
81.42]

Random
81.87 [79.09,
83.84]

85.73 [83.58,
87.62]

74.10 [72.53,
75.53]

78.03 [76.20,
79.60]

80.08 [78.85,
81.14]

82.26 [81.14,
83.23]

Table 4: Mean average areas under error retention curves and 90% bootstrap confidence
intervals for the assessment of the uncertainty measures at the voxel, lesion, and patient
anatomical scales across the in-domain Testin (left column) and the out-of-domain Testout
(center column) and Testprivate (right column) sets. Results are presented for the Shifts
Challenge Baseline (SB) and nnU-Net models. Highest AUC values for each dataset,
model, and anatomical scale are highlighted in bold, lowest - in italic; ideal and random
values are in gray colour and indicate the upper and lower bounds of performance, respec-
tively.

3.2.2. Patient-scale uncertainty as a proxy to the segmentation quality

Extending the analysis of the relationship between the patient-scale un-
certainty measures and the segmentation quality measures by DSC, Table
5 presents corresponding Spearman’s correlation coefficients. Figure 4 con-
tains plots DSC and patient uncertainty for the measures with the highest
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(proposed PSU (+)), median (proposed LSU (+)), and worse-than-random (
NCB and EoEB) patient-scale DSC-AUC values. For the SB model and the
rest of the measures, the same analysis and trends can be found in Appendix
B.2. The results show the highest correlation between the patient uncertainty
and DSC is provided by the proposed PSU (+) measures, with ρ around 0.8
across different test sets. For the aggregation of the lesion-scale uncertainty,
the correlation with the segmentation quality drops at least twice. For the
measures based on the voxel-scale uncertainty aggregation, the correlation is
either weak, e.g. NCB, or positive. There is a positive correlation between
EoEB, ExEB, and MIB, suggesting that high uncertainty can point to ex-
amples with high DSC. The absolute value of this correlation is around 0.5,
which is higher than for LSU (+), yet lower than for the proposed PSU (+).

Figure 4: The relationship between DSC and patient-scale uncertainty is assessed for
Testin (orange), Testout (gray), Testprivate (light gray), and TestWMH (black) separately
and jointly for the nnU-Net model. The presented uncertainty measures were chosen based
on the results of the error RC analysis (Figure 3 and Table 4) to illustrate the relationship
between DSC and uncertainty brought by measures with the highest (proposed PSU (+)),

median (proposed LSU (+)), and worse-than-random (NCB and EoEB) DSC-AUC values.
Results for other measures and for the SB model can be found in Appendix B.2.
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Measures Testin Testout Testprivate TestWMH

SB nnU-Net SB nnU-Net SB nnU-Net SB nnU-Net

PSU -0.81 -0.74 -0.81 -0.84 -0.86 -0.87 -0.83 -0.46
PSU+ -0.72 -0.72 -0.80 -0.84 -0.86 -0.86 -0.83 -0.43

LSU -0.41 -0.41 -0.22 -0.37 -0.25 -0.36 -0.49 -0.11

LSU
+

-0.29 -0.43 -0.22 -0.34 -0.42 -0.49 -0.11 -0.11

NCB 0.36 0.42 0.11 0.30 0.30 0.14 -0.09 0.07

EoEB 0.23 0.18 0.55 0.56 0.54 0.54 0.53 0.31

ExEB 0.23 0.21 0.55 0.68 0.56 0.57 0.57 0.31

MIB 0.20 0.07 0.53 0.63 0.49 0.47 0.33 0.24

Table 5: Spearman’s correlation coefficients quantifying the relationship between different
patient-scale uncertainty values and segmentation quality measured by DSC for different
test sets and their combinations. The highest negative correlation values are highlighted
in bold.

3.2.3. Generaliability of the analysis on white matter hyperintensity

Beyond MS patients, the multi-scale error retention curve and DSC-
uncertainty correlation analyses were replicated on a large publicly available
cohort of subjects with WMH (TestWMH). The full analysis is available in
Appendix B.3.

The observed performance of the proposed patient-scale measures dis-
cussed in the previous sections is replicated for this new task of WMH seg-
mentation. The results in Figure 4 and Table 5 confirm that the proposed
measures PSU (+) have a stronger relationship segmentation quality com-
pared to the aggregation measures.

3.3. Qualitative evaluation of the uncertianty maps

Our results show that uncertainty quantification mainly at the lesion
and patient scales can well depict model error predictions, however, vari-
ous anatomical scales provide information about different types of errors. In
Figure 5 the uncertainty maps and values are shown for four different sub-
jects, corresponding to different scenarios with respect to the quality of lesion
segmentation.

Voxel-scale maps provide refined information about the misclassifica-
tions in each voxel. Moreover, voxel-scale uncertainty is always high at the
borders of lesions. Hypothetically, this is a reflection of the inter-rater vari-
ability or the noise in the ground truth, which are also known to be higher at
the borders of lesions. The noise in the data-generation process increases the
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likelihood of mistakes at the borders of lesions. Nevertheless, the voxel-scale
uncertainty can be high in the center of the lesion, signaling that the model
is uncertain in the whole lesion region, not only at the borders. Sometimes
high uncertainty regions can be related to the FNLs.

Lesion-scale maps provide a visually more intuitive way to assess the
correctness of the predicted lesion regions compared to the voxel-scale maps.
Particularly, lesion-scale maps can be used to highlight FPLs. Nonetheless,
high lesion uncertainty may be an indicator of wrong delineation rather than
detection. Let us note that, compared to the voxel-scale, the lesion-scale
maps lose all the information about the FNLs.

Patient-scale values inform about the overall quality of the segmentation
without indicating the particular reasons for the segmentation failure. As for
the chosen examples (C) and (D), high patient uncertainty reveals the fact
of the algorithm failure, however for (C) the problem is in the atypical large
lesion and for (D) it is a wrong preprocessing, i.e. the absence of skull-
stripping.
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Figure 5: Examples of uncertainty maps at the voxel and lesion scales and patient uncer-
tainty values. The two left columns illustrate axial slices of a FLAIR scan with the ground
truth (in yellow) and predicted (in pink) WML masks; the middle column - voxel-scale
uncertainty maps computed with the EoEi measure; the fourth column - lesion-scale un-
certainty maps computed with the proposed LSU+; the fifth column - the patient-scale
uncertainty value computed with the proposed PSU+. The choice of measures is based
on the results of the error retention curves analysis. (A), (B), (C), and (D) represent
different scenarios with gradually decreasing DSC. Cases (A) and (B) represent good and
mediocre model performance, respectively. Patient (C) has an atypical large lesion, which
the algorithm fails as expected. Patient (D) was not correctly preprocessed (the skull is
not removed) which led to the algorithm’s low performance and high patient uncertainty.
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4. Discussion

Our research offers a detailed framework for the assessment of uncertainty
quantification for a clinically relevant task of white matter lesion segmenta-
tion in multiple sclerosis. The specificity of the segmentation task allowed
for the exploration of UQ at different anatomical scales: voxel, lesion, and
patient. We introduced novel structure-based UQ measures at the lesion and
patient scales. For each of these scales, we performed a comparative study
between different uncertainty measures (among the state-of-the-art and the
proposed) to determine the measures that can point to specific model er-
rors: voxel misclassification, lesion false discovery, or overall low quality of
segmentation. For this, we use the error retention curves analysis previously
introduced for the pixel or voxel scales (Malinin, 2019; Malinin et al., 2022;
Mehta et al., 2022) and extended it to the structural scales in this and our
previous work (Molchanova et al., 2023). Our proposed uncertainty mea-
sures (LSU (+) on the lesion scale and PSU (+) on the patient scale from the
equations 1-4) quantify the disagreement in the structural predictions be-
tween the ensemble model and its members, demonstrating enhanced error
detection over state-of-the-art aggregation-based metrics on both in- and out-
of-domain datasets. Furthermore, PSU (+) is shown to be a reliable indicator
of overall segmentation quality both in- and out-of-domain.

This study compares a variety of voxel-scale measurements adopted from
classification tasks, noting their similar capabilities in capturing voxel mis-
classification errors. A more pronounced difference between these measures
is observed after aggregation at other anatomical scales. Particularly, at the
lesion scale, higher areas under the respective RCs are observed for the total
uncertainty measures, compared to the measure of model uncertainty, and
even more data uncertainty. However, voxel uncertainty aggregation at the
patient scale yielded results akin to random uncertainty judging by the error
RC analysis. Closer examination of the correlation between patient scale un-
certainty measures and the DSC revealed a positive relationship, suggesting
that a higher average voxel uncertainty correlates with improved DSC. A
high positive correlation of the aggregation-based measures ( EoEB, ExEB,
and MIB) and the total lesion volume in a subject (see Appendix B.4) also
goes against common knowledge about the bias in better segmenting sub-
jects with higher lesion loads (Raina et al., 2023). Similar behavior of the
measures based on an aggregation of voxel uncertainties has been previously
observed for the task of brain tumor segmentation (Jungo et al., 2020), but
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not for the task of brain structures segmentation Roy et al. (2019), where the
segmented objects are the same and of similar sizes in each of the images.
This supports our hypothesis that voxel-scale uncertainty aggregation is un-
suitable for tasks affected by this bias. In such cases, structural disagreement
metrics present a viable alternative to aggregation-based methods, showing
a strong connection to different error types.

Limitations and future work. The fact that lesion and patient uncertainty
measures depend on the choice of the threshold at the model’s output, nec-
essary for the instances or segmented region definition, remains a matter of
ongoing debate. We proposed to address the issue by introducing two analogs
of the same measure corresponding to different strategies of the threshold
choice, i.e. LSU versus LSU+ and PSU versus PSU+. Nevertheless, a more
detailed investigation of this aspect might be needed. For instance, exploring
model calibration as a way to circumvent threshold tuning or investigating
measures of uncertainty where this dependence is mitigated.

This paper is focused on the WML segmentation task. While this is a
relevant task in clinical practice, there are several medical image segmenta-
tion tasks that could adopt the proposed multi-scale approach for UQ. This
includes, for instance, nuclei segmentation on histopathology images (Ku-
mar et al., 2019), bone metastases segmentation on the full-body MRI or
CT (Colombo et al., 2021; Afnouch et al., 2023), vascularized lymph nodes
on CT or MRI (Hassani et al., 2020), or white matter lesions in MRI from
non-MS patients (Malova et al., 2021). However, finding the multi-center
data and benchmarks needed for UQ methods validation under the domain
shift in these new tasks remains challenging.
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Appendix A. Definitions of quality metrics

Let #TP ,#FP ,#FN be the number of true positive (TP), false positive
(FP), and false negative (FN) voxels, respectively.

True positive rate:

TPR =
#TP

#TP +#FN

.

Positive predictive value:

PPV =
#TP

#TP +#FP

.

Dice similarity score or F1-score:

DSC = F1 =
TPR · PPV

TPR + PPV
=

2 ·#TP

2 ·#TP +#FP +#FN

.

Normalized Dice similarity score Raina et al. (2023):

nDSC =
2 ·#TP

2 ·#TP + κ ·#FP +#FN

, κ = h(r−1 − 1).

where h represents the ratio between the positive and the negative classes
while 0 < r < 1 denotes a reference value that is set to the mean fraction
of the positive class, i.e. a lesion class in our case, across a large number of
subjects.

Analogous, lesion-scale metrics can be defined by replacing #TP , #FP ,
#FN with a number of TP, FP, and FN lesion (TPL, FPL, FNL). As men-
tioned before, the definition of lesion types can vary. This work uses 25%
overlap to distinguish TPL and FPL among the predicted lesions. FNL is
defined as the ground truth lesions that have no overlap with predictions.

Appendix B. Additional results

Appendix B.1. Error retention curve analysis for the Shifts 2.0 Challenge
Baseline (SB) model

Error retention curves for the SB model are shown in Figure B.6.
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Appendix B.2. Patient-scale uncertainty as a proxy for segmentation quality

Figure B.7 extend the error retention curves analysis of the patient-scale
uncertainty measures revealing more information about the relationship be-
tween the uncertainty measures and the segmentation quality measures by
DSC.

Appendix B.3. Generalizability analysis for white matter hyperintensity (WMH)

Areas under error retention curves for different anatomical scales are
shown in Table B.6.

Appendix B.4. Uncertainty relationship with lesion size and load

Lesion-scale analysis of the relationship between the predicted lesion vol-
umes and uncertainty are shown in violin plots in Figures 9 a) and b) for
SB and nnU-Net models, respectively. For all the lesion-scale uncertainty
measures, lesions with smaller sizes tend to be more uncertain. For the nnU-
Net model, the difference in medians of proposed LSU (+) uncertainty across
different lesion volumes is less prominent compared to other measures.

Patient-scale analysis of the relationship between the ground-truth total
lesion volume and patient-scale uncertainty measure is given in Figure 10 a)
and b) for SB and nnU-Net models, respectively. Different measures have
a different degree of associations with the ground-truth total lesion volume
(TLV):

• PSU (+) values are negatively associated with the TLV, meaning that
a patient with low uncertainty is more likely to have a high TLV;

• Average LSU (+) and NCB show a mild negative association with the
TLV;

• The rest of the aggregated voxel-scale measures (EoEB, ExEB and
MIB) have a strong positive association with the TLV: higher uncer-
tainty for subjects with the higher TLV. This should explain a poor
relationship with the overall segmentation quality, which tends to be
higher for the patients with higher lesion loads.
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Figure B.6: Error retention curves for the assessment of uncertainty measures at the
voxel, lesion, and patient (rows one, two, and three, respectively) anatomical scales across
the in-domain Testin (left column) and the out-of-domain Testout (center column) and
Testprivate (left column) sets for the SB model. Different rows correspond to different
anatomical scales indicated with icons on the left. The voxel-scale DSC-RCs and lesion-
scale LPPV-RCs were obtained by averaging across the respective datasets. At each of the
scales, the ideal (black dashed) line indicates the upper bound of an uncertainty measure
performance in its ability to capture model errors; the random (gray dashed) indicates no
relationship between an uncertainty measure and error; a worse-than-random performance
indicates an inverse relationship.
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(a) SB model

(b) nnU-Net model

Figure B.7: The relationship between the total ground truth lesion volume in milliliters
(logarithmic y-axis) and various patient uncertainty measures (x-axis). ρ (in the legend)
is a Spearman’s correlation coefficient.
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Measure SB nnU-Net

Voxel-scale DSC-AUC (↑)
Ideal 99.81 [99.76, 99.83] 99.85 [99.80, 99.88]
NCi 98.41 [98.11, 98.62] 99.40 [99.23, 99.50]
EoEi 98.35 [98.05, 98.59] 99.40 [99.23, 99.51]
ExEi 98.35 [98.05, 98.59] 99.39 [99.22, 99.50]
MIi 98.16 [97.84, 98.41] 99.10 [98.97, 99.46]

Random 76.11 [74.06, 77.85] 80.15 [78.28, 81.70]

Lesion-scale LPPV-AUC (↑)
Ideal 79.17 [75.94, 81.82] 91.98 [89.95, 93.48]
LSU 73.32 [70.13, 76.12] 86.64 [84.37, 88.43]
LSU+ 73.03 [69.87, 75.83] 86.64 [84.35, 88.44]

NCL 72.90 [69.76, 75.67] 86.81 [84.51, 88.61]

EoEL 72.94 [69.80, 75.71] 86.80 [84.52, 88.59]

ExEL 68.77 [65.72, 71.59] 85.27 [82.89, 87.17]

MIL 72.98 [69.79, 75.70] 86.70 [84.44, 88.50]

Random 66.38 [63.38, 69.08] 82.00 [79.72, 83.91]

Patient-scale DSC-AUC (↑)
Ideal 84.17 [82.99, 85.32] 86.69 [85.62, 87.69]
PSU 83.51 [82.18, 84.75] 85.92 [84.62, 87.05]
PSU+ 83.47 [82.14, 84.72] 85.86 [84.56, 86.98]

LSU 81.09 [79.82, 82.29] 84.60 [83.49, 85.70]

LSU
+

80.59 [79.29, 81.80] 84.69 [83.59, 85.77]

NCB 80.06 [78.34, 81.53] 82.88 [81.19, 84.25]

EoEB 77.16 [75.83, 78.44] 80.66 [79.41, 81.84]

ExEB 76.93 [75.59, 78.22] 80.28 [79.00, 81.47]

MIB 78.27 [76.90, 79.56] 81.76 [80.49, 82.93]
Random 78.82 [77.10, 80.39] 81.76 [80.06, 83.20]

Table B.6: Mean average areas under error retention curves and 90% bootstrap confidence
intervals for the assessment of the uncertainty measures at the voxel, lesion, and patient
anatomical scales across the WMH Challenge dataset (TestWMH). Results are presented
for the Shifts Challenge Baseline (SB) and nnU-Net models. Highest AUC values for each
dataset, model, and anatomical scale are highlighted in bold, lowest - in italic; ideal and
random values are in gray color and indicate the upper and lower bounds of performance,
respectively.
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(a) SB model

(b) nnU-Net model

Figure B.8: The distributions of lesion uncertainty across 3 groups of predicted lesions
in all the test sets jointly (Testin, Testout, Testprivate, TestWMH) defined through their
volume percentiles: Low (0%-33%), Medium (33%-67%), High (67%-100%).
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(a) SB model

(b) nnU-Net model

Figure B.9: The relationship between the total ground truth lesion volume in milliliters
(logarithmic y-axis) and various patient uncertainty measures (x-axis). ρ (in the legend)
is a Spearman’s correlation coefficient.
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Spagnolo, F., Depeursinge, A., Schädelin, S., Akbulut, A., Müller, H.,
Barakovic, M., Melie-Garcia, L., Bach Cuadra, M., Granziera, C.,
2023. How far ms lesion detection and segmentation are integrated
into the clinical workflow? a systematic review. NeuroImage: Clinical
39, 103491. URL: https://www.sciencedirect.com/science/article/
pii/S2213158223001821, doi:https://doi.org/10.1016/j.nicl.2023.
103491.

Thompson, A.J., Banwell, B., Barkhof, F., Carroll, W.M., Coetzee, T., Comi,
G., Correale, J., Fazekas, F., Filippi, M., Freedman, M.S., Fujihara, K.,
Galetta, S., Hartung, H.P., Kappos, L., Lublin, F., Marrie, R.A., Miller,
A., Miller, D.H., Montalbán, X., Mowry, E.M., Sørensen, P.S., Tintoré, M.,
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boulsee, A., Vrenken, H., Yousry, T., Barkhof, F., Rovira, A., Wattjes,
M.P., Ciccarelli, O., de Stefano, N., Enzinger, C., Fazekas, F., Filippi,
M., Frederiksen, J., Gasperini, C., Hacohen, Y., Kappos, L., Mankad, K.,
Montalban, X., Palace, J., Rocca, M.A., Sastre-Garriga, J., Tintore, M.,
Vrenken, H., Yousry, T., Barkhof, F., Rovira, A., Li, D.K.B., Traboulsee,
A., Newsome, S.D., Banwell, B., Oh, J., Reich, D.S., Reich, D.S., Oh, J.,
2021. 2021 MAGNIMS–CMSC–NAIMS consensus recommendations on
the use of MRI in patients with multiple sclerosis. The Lancet Neurology
20, 653–670. URL: https://doi.org/10.1016/S1474-4422(21)00095-8,
doi:10.1016/S1474-4422(21)00095-8. publisher: Elsevier.

Whitbread, L., Jenkinson, M., 2022. Uncertainty categories in medi-
cal image segmentation: A study of source-related diversity, in: Un-
certainty for Safe Utilization of Machine Learning in Medical Imaging.
Springer Nature Switzerland, pp. 26–35. URL: https://doi.org/10.

1007%2F978-3-031-16749-2_3, doi:10.1007/978-3-031-16749-2_3.

45

http://dx.doi.org/10.1109/tmi.2010.2046908
https://doi.org/10.1177/1352458520970841
https://doi.org/10.1177/1352458520970841
http://dx.doi.org/10.1177/1352458520970841
http://arxiv.org/abs/https://doi.org/10.1177/1352458520970841
https://www.frontiersin.org/articles/10.3389/fncom.2019.00056
https://www.frontiersin.org/articles/10.3389/fncom.2019.00056
http://dx.doi.org/10.3389/fncom.2019.00056
https://doi.org/10.1016/S1474-4422(21)00095-8
http://dx.doi.org/10.1016/S1474-4422(21)00095-8
https://doi.org/10.1007%2F978-3-031-16749-2_3
https://doi.org/10.1007%2F978-3-031-16749-2_3
http://dx.doi.org/10.1007/978-3-031-16749-2_3


Zeng, C., Gu, L., Liu, Z., Zhao, S., 2020. Review of deep learning approaches
for the segmentation of multiple sclerosis lesions on brain mri. Frontiers in
Neuroinformatics 14. URL: https://www.frontiersin.org/articles/
10.3389/fninf.2020.610967, doi:10.3389/fninf.2020.610967.

Zou, K., Chen, Z., Yuan, X., Shen, X., Wang, M., Fu, H., 2023. A
review of uncertainty estimation and its application in medical imag-
ing. Meta-Radiology 1, 100003. URL: https://www.sciencedirect.

com/science/article/pii/S2950162823000036, doi:https://doi.org/
10.1016/j.metrad.2023.100003.
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