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Abstract. Uncertainty quantification (UQ) has become critical for eval-
uating the reliability of artificial intelligence systems, especially in med-
ical image segmentation. This study addresses the interpretability of
instance-wise uncertainty values in deep learning models for focal lesion
segmentation in magnetic resonance imaging, specifically cortical lesion
(CL) segmentation in multiple sclerosis. CL segmentation presents sev-
eral challenges, including the complexity of manual segmentation, high
variability in annotation, data scarcity, and class imbalance, all of which
contribute to aleatoric and epistemic uncertainty. We explore how UQ
can be used not only to assess prediction reliability but also to provide
insights into model behavior, detect biases, and verify the accuracy of
UQ methods. Our research demonstrates the potential of instance-wise
uncertainty values to offer post hoc global model explanations, serv-
ing as a sanity check for the model. The implementation is available at
https://github.com/NataliiaMolch/interpret-lesion-unc.
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1 Introduction

Uncertainty quantification (UQ) is gaining popularity within the field of medical
image segmentation as a means to assess the reliability of artificial intelligence
systems by representing the "degree of untrustworthiness" of their predictions [1,
8, 3]. Higher uncertainty in a prediction indicates an increased likelihood of an
erroneous prediction. Consequently, a common UQ evaluation practice involves
assessing the correspondence between uncertainty and error, using methods such
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as uncertainty calibration measures [5], accuracy-confidence curves [7], or error
retention curves [11]. Uncertainty can thus be effectively used for assessing the
quality of predictions at inference time without the need for ground truth [5, 7].
UQ has also been applied in other downstream tasks, including active learning
and domain adaptation, among others [8, 3].

While UQ is actively used for various downstream tasks, little has been done
to analyze and interpret the uncertainty values themselves [2]. Additional analy-
ses providing insights into uncertainty would be highly valuable for: i) detecting
biases in deep learning (DL) model behavior; ii) performing a sanity check of
the UQ methods themselves; iii) extracting information captured by uncertainty
beyond errors.

In this work, we explore the interpretability of instance-wise uncertainty val-
ues in DL segmentation within the context of focal lesion segmentation from
magnetic resonance imaging (MRI). Specifically, we focus on UQ in CL segmen-
tation, a key task for differential diagnosis and prognosis in multiple sclerosis
(MS) [15].

Automating CL segmentation is complicated by poor data quality. The ground-
truth annotations are subject to errors and high intra- and inter-rater variability
due to small lesion sizes and confusion with white matter lesions adjacent to the
cortex (see examples in Figure 1). The data is sparse and limited to private
cohorts with varying data characteristics. Additionally, significant class imbal-
ance affects machine learning solutions. These factors hinder the development
of DL models, which face two main sources of uncertainty: data noise (aleatoric
uncertainty) and training data scarcity and/or domain shifts (epistemic uncer-
tainty) [3]. In this context, the interpretability of uncertainty provides post hoc
global model explanations, serving as a sanity check for both the model and the
uncertainty values themselves.

Fig. 1: Examples of several types of MS lesions visible on MP2RAGE scans,
appearing as hypointense regions.
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2 Materials and methods

2.1 Data

We use a dataset obtained at University of Basel, Switzerland and previously ex-
plored in other studies [6, 12]. Our cohort includes 117 patients diagnosed with
MS [15] at different stages of the disease: relapsing-remitting (62), primary-
progressive (39), and secondary-progressive (16). The male-to-female ratio is
0.77; the median Q2 (Q1-Q3) age: 51 (40-58) years, disease duration: 8.7 (1.7-
18.2) years, and the expanded disability status scale: 3 (2-6). All brain MRI
scans are obtained with a standardized acquisition protocol on a 3 Tesla whole-
body MR system (Magnetom Prisma, Siemens Healthineers), using a 64-channel
phased-array head and neck coil for radiofrequency reception. The protocol
includes the acquisition of 3D magnetization-prepared 2 rapid gradient-echo
(MP2RAGE) images (TR/TI1/TI2=5000/700/2500 ms; resolution = 1 × 1 × 1
mm3). Brains are extracted using the HD-BET masks from FLAIR scans regis-
tered to the MP2RAGE space. The annotations are formed by consensus of two
medical doctors with expertise in neuroimaging and include intracortical lesions
(in gray matter) and leukocortical lesions (intersecting with white matter). The
dataset was split into training, validation, and test sets in the proportion of
79:8:30 patients, corresponding to 859:69:302 CLs.

2.2 Cortical lesion segmentation model

There exist few machine learning models that tackle CL segmentation [6], and
they do so jointly with the identification of white matter lesions (WMLs) within
the same lesion class. Given the clinical importance of the CL biomarker for dif-
ferential diagnosis [15], we propose a model dedicated solely to CL segmentation.
We adopted a 3D shallow U-Net architecture based on a baseline model from
the UQ WMLs segmentation challenge (Shifts Challenge [10]). We modified this
model to improve segmentation performance and address specific challenges of
CLs, such as small sizes and data sparsity. Specifically, we adjusted data aug-
mentation strategy to minimize the distortion of small lesions; replaced the Dice
focal loss with focal loss with appropriate weighting; adopted a more effective
training strategy (warm-up epochs, a learning rate plateau scheduler, and early
stopping). The probability thresholds for all models were chosen on the 5-fold
cross validation (CV) and set to 0.55.

2.3 Uncertainty quantification

We focus on deep ensemble (DE) and Monte Carlo Dropout (MCDP), two UQ
methods widely explored for medical imaging tasks in general and in MS lesion
segmentation specifically [8, 7, 13]. DE involves training several similar net-
works with varied random initialization seeds, which affect random augmenta-
tion, weight initialization, training example sampling, and stochastic optimiza-
tion. This approach allows for obtaining different samples from the posterior
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distribution of model parameters. MCDP was initially designed as a way to per-
form variational inference by placing dropout layers between the neural network
layers and treating different dropout masks as random variables, inducing a dis-
tribution over the model’s weights. DE has been shown to provide better UQ
results in terms of the relationship with errors [3].

For both methods, the final prediction is formed as the mean average across
M sampled predictions, and uncertainty is quantified by assessing the spread of
these predictions. Commonly, for classification tasks, information-theory-based
measures like entropy and mutual information are used to quantify uncertainty.
For segmentation, classification measures can be used at the pixel/voxel scale.
Additionally, it is possible to quantify uncertainty associated with a set of voxel
predictions, such as for segmented instances/structures or even for the entire
prediction.

In this work, we aim to explore instance-scale uncertainty and its inter-
pretability. Thus, we focus on computing uncertainty for each predicted lesion.
Several approaches have been proposed: aggregation (e.g. averaging) of voxel-
wise uncertainty values [5, 13], graph neural networks [7], and disagreement in
structural predictions [11]. We chose a UQ metric based on structural disagree-
ment, which has been shown to better capture lesion detection errors compared
to aggregation-based measures [11, 12].

In a nutshell, given a predicted lesion L and corresponding lesions from the
mth sampled prediction Lm,m = 0, 1, 2, ...,M − 1, the lesion structural uncer-
tainty is defined as:

LSU = 1− 1

M

M−1∑
m=0

IoU(L,Lm).

The corresponding lesions are defined as the ones with maximum intersection
over union (IoU).

The number of ensemble members and MCDP samples is chosen to be M =
10, selected from 3, 5, 7, 10, based on joint uncertainty-robustness assessment
(proposed in [12]) for the DE model. We use a dropout probability of 0.1 for
MCDP, chosen among 0.01, 0.05, 0.1, 0.15, 0.2, and 0.25 as the maximum dropout
probability that does not yield a significant drop in model prediction quality
(quality-diversity trade-off).

2.4 Interpretability analysis for lesion uncertainties

The proposed interpretability analysis for lesion uncertainties consists of explain-
ing lesion uncertainty in terms of lesion-related features.

Lesion features - Each predicted lesion is characterized by the following
features: i) intensity, ii) texture, iii) shape, iv) location in the brain, and v)
segmentation quality. Radiomic features from the PyRadiomics Python Library
(v3.1.0) are used to characterize the intensity, texture, and shape (i-iii). The
location (iv) in the brain is characterized using the MNI atlas separated into
right (R) and left (L) hemispheres [4]. The location feature is computed as the
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distance between the center of a predicted lesion and the center of the brain
structure it belongs to; features corresponding to the rest of the brain structures
are zeroed. The belonging of a CL to the MNI brain structure is decided by
the maximum overlap. The lesion segmentation quality (v) is evaluated using
the adjusted intersection over union (IoUadj) measure [14], which is similar to
IoU but corrected for overlaps explained by other predicted instances. Recursive
features elimination with the decision trees is used for feature selection.

Uncertainty regression model - To explain the lesion-scale uncertainty
in terms of the aforementioned features, we use a linear regression model, Elas-
ticNet, which combine L1- and L2-regularization. Given that all the features
are normalized prior to model fitting, the coefficients of the linear model are
interpreted as feature importance. Model selection and feature importance are
computed 10 times with different random seeds to assess the standard error. A
five-fold CV procedure is used to tune the parameters of the pipeline compris-
ing feature selection and ElasticNet model (fraction of selected features, L1/L2

ratio, and intercept parameters) by optimizing the coefficient of determination
(R2). CV is performed on the training set with an evaluation on the test set.

3 Results

The CL detection of the DL models reaches a 0.55 F1-score (computed as in [7]),
which is a good performance considering the high inter-rater variability of CL
manual segmentation (Cohen κ ∈ [0.4, 0.6] depending on the study) [9].

The regression quality (R2) of the uncertainty interpretability model is shown
in Table 1 for different sets of features: only IoUadj (v), only radiomics and
location (i-iv), and all together (i-v). For both DE and MCDP uncertainty, the
R2 improves when using all features compared to other settings. For MCDP,
less variation in uncertainty can be predicted (worse quality fit) compared to
DE, regardless of the features used. For both DE and MCDP uncertainty, some
variability in uncertainty is unexplained in terms of chosen features.

The relative feature importance of different features is shown in Figure 2.
Overall, the model explaining the MCDP uncertainty selected more features than
DE. For DE uncertainty, the prediction quality explains most of the uncertainty,
indicating a strong relationship between uncertainty and error. For MCDP un-
certainty, the texture features have more importance than prediction quality
(greater values of linear model coefficients). Features selected for both UQ meth-
ods resemble, including a strong positive relationship of lesion uncertainty with
the presence of texture (SmallDependence...Emphasis, ShortRun...Emphasis); a
positive relationship with lesion elongated shape and negative with sphericity
(SufaceVolumeRatio, Maximum2DDiameterColumn, Shpericity, Flatness) and
lesion small sizes (SufaceVolumeRatio, LeastAxisLength); a negative relation-
ship with features indicating high intensities in a hypointense CL (90Percentile,
Energy, Maximum); a positive relationship with left brain lobes locations (Tem-
poral and Occipital L).
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CV Test
Only IoUadj No IoUadj All Only IoUadj No IoUadj All

DE 0.520±0.006 0.598±0.004 0.661±0.004 0.431±0.001 0.512±0.002 0.632±0.004

MCDP 0.393±0.006 0.589±0.014 0.604±0.013 0.261±0.003 0.425±0.013 0.494±0.004

Table 1: R2(↑) of a linear model explaining lesion uncertainty computed on CV
(averaged over 10 model fits) and on the test set (averaged across patients).
Features used to fit the linear models: only prediction quality (Only IoUadj); all
features except for the prediction quality (No IoUadj); all features (All).

(a) DE

(b) MCDP

Fig. 2: Coefficients of a linear regression model for explaining lesion uncertainty,
averaged over 10 model fits, with standard error. Positive values indicate higher
uncertainty, negative - lower.
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Fig. 3: Qualitative results: visualization of true positive CLs with different im-
portant feature activation. CLs are T1-hypointense regions in the center of each
image, marked with blue errors in doubtful cases. Long black arrows indicate
the direction of features growth (from low to high feature values), white arrow
indicates the direction of uncertainty growth.

4 Discussion

Explained uncertainty - The prediction quality explains a significant portion
of the variability in lesion uncertainty. However, the inclusion of lesion-related
features provides additional information, helping to predict even more variability.
This could be due to either the effect of errors in the ground truth or the fact
that uncertainty carries more information than just prediction quality.

The texture features selected as important and associated with higher uncer-
tainty are derived from gray level dependence matrices (GLDM) and gray level
run length matrices (GLRLM) methods of quantifying texture. Higher values
of GLDM SmallDependence...Emphasis and GLRLM RunLengthNonUniformity
indicate the presence of textural patterns and less homogeneous textures. Some
texture features are typically higher for smaller regions of interest. Both factors
complicate the visual identification of lesions (see Figure 3).

The selected shape features describe two different lesion profiles. Less spher-
ical, more spiculated, elongated (low Sphericity, high SurfaceVolumeRatio, and
high Maximum2DDiameter) lesion shapes are associated with higher uncertainty.
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SurfaceVolumeRatio also tends to be high for small lesions, which are harder to
detect visually during the annotation process. The elongation and irregularity
can be related to the burden of delineation due to the greater surface.

The location features are prioritized by the model explaining the MCDP
uncertainty, rather than DE uncertainty. Both uncertainty types have an asso-
ciation with lesions located on the periphery of the left occipital and temporal
lobes. For MCDP, the proximity to the centers of the right frontal, parietal, and
temporal lobes and putamen correlated with more confidence in predictions.

The intensity features indicating the presence of high-intensity voxels in a
lesion (90Percentile and Energy) are associated with lower uncertainty.

Clinical perspective - Clinical feedback on the visualized lesions (Figure
3) was provided by an expert neurologist. Lesions associated with higher un-
certainty (smaller sizes, heterogeneous intensity with texture blending into the
surrounding area) were candidates for lower confidence of raters and are more
likely to be overlooked during the manual annotation process. Among the lesions
with low sphericity feature, many likely represented subpial lesions. These lesions
have a distinct pathogenesis and shape, are less evident, and thus less prevalent
on 3T MRI. Subpial and inhomogeneously-shaped lesions, less common in MS,
are likely under-represented in the training data.

The association between higher intensities and lower uncertainty can be due
to the neighboring white matter, which has higher intensity on MP2RAGE.
CLs appear hypointense on MP2RAGE, thus neighboring white matter increases
contrast and visibility of lesions. Additionally, from a radiological perspective,
higher intensities within a lesion-gray-matter overlap help confirm that the lesion
is a true CL rather than a pure white matter lesion.

The characterization of CL locations is still poorly understood, hence the
right and left hemispheric differences shown in our analysis are difficult to jus-
tify. Lesions on the periphery of the temporal and occipital lobes being more
uncertain might indicate proximity to the cerebellum and brain stem, hence less
common locations with worse lesion-surrounding contrast. These lesions are also
likely under-represented in the training data.

Unexplained uncertainty - The R2 reaches 0.661, meaning that some
variability in lesion uncertainty is left unexplained. There are several potential
reasons. First, the fact of using a linear model to explain the non-linear relation-
ships between uncertainty and features. We repeated the analysis with a non-
linear random forest model, but this did not significantly improve the regression
quality or alter the importance of the features. Second, the lack of informative
features. We use lesion features that encompass characteristics of different na-
tures and approximate the clinical perspective. However, more features could be
added to describe the lesion surroundings or to introduce additional clinical con-
text, such as patient information or MS lesion subtypes. Finally, interpretability
also suffers from the noise in the UQ, related to the quality of the UQ itself. This
may explain the higher R2 of the DE uncertainty model compared to MCDP,
serving as a sanity check for the UQ.
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5 Conclusions

We explore the interpretability of instance-wise uncertainty within the context
of cortical lesion DL-based segmentation in MS. To explain lesion uncertainty,
we use an ElasticNet regression model with radiomics, location, and ground-
truth overlap features. Our results demonstrate how explaining the predicted
lesion uncertainty in terms of lesion-related features can: i) detect model biases
towards over- or underperforming on specific types of CLs; ii) validate the sanity
of UQ by assessing the unexplained variability in uncertainty; iii) facilitate the
visual qualitative assessment of the model, helping to select informative lesion
examples.

We observe that lesion-scale uncertainty cannot be solely explained by the
quality of CL segmentation. Given the clinical feedback, we conclude that the
features associated with higher uncertainty describe the lesions that are harder
to annotate for radiologists and are often less common. Thus, we hypothesize
that uncertainty would be better explained by the inter-rater variability or rater
confidence rather than the ground-truth overlap, as it is dominated by aleatoric
or label uncertainty [8]. Our future work should verify those hypotheses.

It is worth mentioning that the proposed analysis show correlations between
uncertainty, not causality. Thus, it can help hypothesize about the sources of
uncertainty, but they require additional validation and clinical feedback. Last
but not least, the proposed analysis does not need to be limited to instance
segmentation. It can be performed for structure- or patient-wise uncertainty
values for any semantic segmentation task, as well as for an image classification.
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