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Abstract
This paper presents an agent-based model that reproduces the results of previous work on coopetition in supply chains by Scherrer et
al., titled Towards a Symbiotic Mutualism Through External Horizontal Supply Chain Integration[1]. The model simulates
interactions between competing companies, defined as exchanges of market shares. The original results were successfully reproduced,
and an enhanced version of the model was implemented. Additionally, a steady state analysis is provided that highlights how temporary
steady states can be achieved between competing companies through collaboration.
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1. Introduction
Coopetition in supply chains is an emerging concept where
competing companies collaborate for mutual benefit. The
paper by Scherrer et al. [1] explores this concept by adapt-
ing the well-known prey-predator model also known as
the Lotka-Volterra model [8, 9] to economic competition
and coopetition in order to analyze how coopetition influ-
ences market dynamics. By modifying the Lotka-Volterra
equations to suit the supply chain coopetition context, the
study introduces a cooperation factor that represents how
collaborating companies benefit by gaining market shares
from the rest of the market. The findings from Scherrer
et al. [1] include a vector field analysis that demonstrates
the influence of cooperation rates on the stability and co-
existence of competing firms, providing insights into the
complex interplay between competition and cooperation in
the market.

This work aims to reproduce the results presented by
Scherrer et al. [1] through a simulation-based approach. An
agent-based model (ABM) is implemented to explore the
cooperative behavior between companies and the market,
with the goal of gaining deeper insights into coopetition
dynamics. This serves as a first step to investigate the sub-
ject in further details, which can be facilitated by an ABM
approach more easily than by extending the Lotka-Volterra
mathematical model.

Supply chains consist of a set of entities with local objec-
tives and operate under various constraints. Agent-Based
Models (ABMs) are well-suited for modeling these indepen-
dent entities, as they provide a realistic representation of
the supply chain network structure and can detect emerging
behaviors due to their flexibility.

Consequently, many studies have investigated supply
chain modelling and simulation using ABM approaches, ad-
dressing topics such as supply chain reactivity, risk manage-
ment, configuration, and other aspects of supply chain man-
agement. For instance, the paper by Akanle and Zhang [2]
presents an agent-based model that optimizes supply chain
configurations by dynamically adapting to time-dependent
demand changes through an iterative bidding system and
clustering of resource combinations. Um et al. [3] developed
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Figure 1: Interaction model including bilateral flows of market
shares [1]

an agent-based system using JADE [4] to enhance supply
chain interactions, introducing a new negotiation algorithm
that outperforms KASBAH [5], emphasizing trade-offs and
multi-criteria decision-making in dynamic environments
to achieve optimal outcomes for both sellers and buyers.
Mizgier et al. [6] addressed the collective dynamics of a
supply chain using a system of suppliers, manufacturers
and retailers. Recent challenges for supply chain has also
been studied using ABMs, such as the paper by Towfique
Rahman et al. [7], in which, the authors addressed the pro-
duction strategies to face the supply chain disruptions and
meet the demands during COVID-19 pandemic, where the
face-masks supply chain was considered in the study.

This paper is organized as follows: Section 2 presents the
structure and behavior of the agent-based model. Section
3 describes the simulation experiments conducted, along
with the results and steady states analysis. Key results from
the experiments are discussed in Section 4 followed by a
discussion on the original model in Section 5. Finally, an
outlook on future work is provided in Section 6

2. The agent-based model
In their work, Scherrer et al. [1] modified the Lotka and
Volterra [8, 9] model to represent the interactions between
companies under a coopetition setting. Figure 1 illustrates
the interactions of competitors with each other and with
the rest of the market,where equations (1) and (2) hold:

• 𝑆𝑖: The market shares of company 𝑖

• 𝑐𝑖𝑗 :The bilateral interaction rate between companies
𝑖 and 𝑗, where 𝑐𝑖𝑗 > 0 (𝑖 ̸= 𝑗) means company 𝑖
takes market shares from 𝑗.

• 𝑏:cooperation rate.
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• 𝑏𝑖:The benefit of company i from the cooperation.
• 𝑒𝑖:The efficiency of cooperation for company 𝑖, 𝑒𝑖 ∈
[0, 1].

𝑏𝑖 = 𝑒𝑖 · 𝑏, 𝑖 ∈ 1, 2 (1)

3∑︁
𝑖=1

𝑆𝑖 = 1 (2)

To represent the coopetition settings adopted in the orig-
inal work, we implement an agent-based model where each
company is represented by an agent that interacts with
other agents. Three agents were used, one for each com-
pany (company 1 and 2) and a third to represent the rest of
the market. The latter is treated as a company that gains
and loses market shares that we refer to it in the rest of the
paper as company 3.

Each interaction between the agents results in an ex-
change of market shares according to the interaction matrix
𝐶 , where (𝑐𝑖𝑗 < 0) indicates that company 𝑖 loses market
shares to company 𝑗. This model retains the same charac-
teristics as the mathematical model presented in the paper
by Scherrer et al. [1] and is designed with a focus on explor-
ing market dynamics starting from an initial distribution of
market shares. The study of how companies evolve from
zero market shares to these initial conditions is beyond the
scope of our work and also the model we aim to reproduce.
Our primary goal is to analyze the effects of coopetition on
market dynamics from the given starting point.

To adopt the same aspects as presented in the mathemat-
ical model we consider the following:

• The interaction coefficients 𝑐𝑖𝑗 represent how many
market shares are derived/ lost by company 𝑖 from/
to company 𝑗.

• The cooperation rate 𝑏 represents how much market
shares company 1 and 2 derive from the rest of the
market (company 3) through the cooperation.

• The sum of all market shares is always 100.
• We introduce the collaboration frequency 𝑅 ∈ [0, 1]

which represents how frequently company 1 and 2
collaborate, this parameter allows for the simulation
of different scenarios.

The behavior of agents in the model is illustrated by Algo-
rithm 1

3. Simulation experiments and
results

The interactions in the original work [1] (the base model)
are given by the matrix 𝐶1:

𝐶1 =

⎛⎝ 0 1 −2
−1 0 −2
2 2 0

⎞⎠
Matrix 𝐶1 implies that company 1 always takes market

shares from company 2 and company 1 and 2 always lose
market shares outside the collaboration to company 3. This
leads every time to the dominance of company 1 over 2.
Therefore, in matrix 𝐶2 we adjusted the coefficient 𝑐21 to
−1 to allowCompany 2 to derive the same amount of market
shares from Company 1 as Company 1 does from Company 2.

Algorithm 1 Agent-Based Model Process
1: Inputs:
2: Initialize model parameters 𝑆𝑖, 𝐶 , 𝑏, 𝑒𝑖,𝑅
3: Outputs:
4: The final market shares distribution among the compa-

nies.
5: Behavior:
6: while There is more than one agent with 𝑆𝑖 > 0 do
7: Exchange 𝑐𝑖𝑗 market shares between two randomly

selected companies 𝑖 and 𝑗 (𝑖 ̸= 𝑗)
8: if All agents have 𝑆𝑖 > 0 then
9: Calculate the probability of collaboration 𝑃 .

10: if 𝑃 ≥ 𝑅 then
11: Take 𝑏 market shares from the rest of the market

(company 3).
12: Compute benefit 𝑏𝑖 for agent 𝑖 ∈ 1, 2 using

equation (1).
13: end if
14: end if
15: end while

This adjustment aims to represent full competition between
these two companies, which we consider more representa-
tive of competitive interactions. Nevertheless, it represents
an alternative to the one presented in the original study.

𝐶2 =

⎛⎝ 0 −1 −2
−1 0 −2
2 2 0

⎞⎠
The model was implemented using the NetLogo (v6.4.0)

[10] framework and an experiment that consists of multiple
simulation runs was conducted using both model interaction
matrices (𝐶1, 𝐶2). Each simulation ends when one company
dominates the whole market (100% of market shares), and
the following measures are recorded:

• The market shares of all companies at the end of
each simulation.

• The duration of the simulation in steps, where a step
refers to one cycle (competition + collaboration) in
the simulation.

• The lifespan of the rest of the market (company 3) is
measured in steps.

The experiment involved varying the following variables
and simulating all possible combinations:

• Market shares of Company 1: Values ranged from 5
to 50 with increments of 5.

• Market shares of Company 2: Values ranged from 5
to 45 with increments of 5.

• Collaboration frequency: Values ranged from 0.1 to
1 with increments of 0.1.

• Cooperation Rate (b): Values ranged from 1 to the
total market shares of company 3 with increments
of 1.

• For each unique combination of parameters, the sim-
ulation is repeated:

– 20 Times in the case of matrix𝐶1, which gives
a total number of simulation runs of 1,710,000.

– 10 Times in the case of matrix𝐶2, which gives
a total number of simulation runs of 855,000.
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Table 1
Number of times each company takes over the market

Company Market dominance (Times) Ratio

Company 1 1,565,528 91.55%
Company 2 0 0%
Company 3 144,472 8.45%

Table 2
Average steps with respect to the collaboration frequency

Collaboration frequency (𝑅) Percentage of company 3 dominations Average steps

10% 36.08% 52.38
20% 17.24% 53.84%

Note that we kept the same value in the paper for the
efficiency coefficient 𝑒𝑖 = 0.5. This parameter refers in the
simulation model to the percentage of market shares that
company 𝑖 takes from the total market shares derived from
the rest of the market through collaboration. The coefficient
value is kept constant in all the simulations as we believe
that this factor will only determine the winner between
company 1 or 2 and not the company 3, moreover, the goal
of the study is to analyse the effects on the rest of the market
and not between the collaborating companies.

3.1. Adaptation of the Base Model Using
Matrix 𝐶1

Through the simulations we observed that only two po-
tential states were obtained, where always one company
of the three that dominates the other two, giving a final
distribution of one of the following: company 3 dominates
(0, 0, 100%) or company 1 dominates (100%, 0, 0), which
aligns with the results reported in the paper [1] (see Table
1). Additionally, we observed that Company 2 was never
dominant in the market, which confirms our observations
regarding the unidirectional flow of market shares between
companies in matrix 𝐶1.

The trivial states in which either company 1 wins or the
rest of the market wins, were always the outcome. This is
mainly due to the simulation model itself being based on
pure competition and collaboration, and relies in its core
on the distribution of wealth between agents. In addition,
the collaboration frequency between partners affects the
longevity of the market competition (Figure 2: 1) and the
lifespan of company 3 (Figure 2: 2). In Figure 2, unlike
plot 2, where the behavior is expected with the lifespan
of company 3 decreasing as the cooperation rate increases,
in plot 1, we observe that there are two regions: the first
is when the collaboration frequency is under 20%, and the
second is when the collaboration frequency is higher than
20%. For the first half (𝑅 ≤ 0.2), when the collaboration
frequency is 10%, the average number of steps is lower than
in the case of 20%.

To understand this behavior, we repeated the first experi-
ment, but we limited the collaboration frequency to 0.1 and
0.2 only, each combination of parameters has been simu-
lated 100 times which gives in total 1,710,000 simulation
runs (Table 2).

The results from Table 2 illustrate that Company
3 dominates the market more significantly at a 10%
collaboration frequency compared to a 20% collaboration

Figure 2: The effect of the collaboration frequency on the lifespan
of the market competition, plot 1: lifespan of the competition,
plot 2: lifespan of company 3

frequency. We observed that when Company 3 wins, the
average duration of the competition is shorter, at 44.24
steps, compared to 53.34 steps when it loses. This is
because the simulation stops when Company 3 wins after
the depletion of the market shares of the other remaining
companies 1 and 2, while simulation continues when
Company 3 loses, allowing other companies to compete
for market dominance. In general, whether Company 3
wins or loses, its lifespan tends to be shorter than that
of other companies. When it wins, it wins quickly, and
when it loses, it loses quickly. This pattern might explain
why the duration of the simulation is shorter with a 10%
collaboration frequency than with a 20% collaboration
frequency. Additionally, plot 2 (Figure 2) supports the
hypothesis that as the collaborative effort increases, the
average market lifespan of Company 3 decreases in a
pseudo-exponential decay, while the competition between
the remaining companies decreases quasi-linearly. In cases
where the collaboration frequency exceeds 20%, Company 3
tends to dominate less and loses quickly to the competition
due to strong collaboration (more frequent collaboration).
This results in a shorter average lifespan for Company 3,
leading to a decrease in the average simulation time.

The cooperation rate 𝑏, represented here by the number of
market shares the collaboration derives from the rest of the
market, also plays a critical role. In Figure 3, we observe that
as 𝑏 increases, the average lifespan of the competition decays
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Table 3
Cooperation rate with respect to average steps

Cooperation rate Percentage of times company 3 dominates Average steps

1 99.9% 48.16
2 79.5% 73.28

Figure 3: The effect of the cooperation rate on the lifespan of the
rest of the market, plot1: average lifespan of competition, plot2:
average lifespan of the rest of the market (company 3)

pseudo-logarithmically. However, there is an interesting
trend between values 1 and 2, where the duration increases
from 1 to 2 before beginning to decay after peaking at 2. The
correlation between the cooperation rate and the life span
of company 3 measured by Kendall correlation coefficient is
given by: −0.98, this means that there is a strong negative
correlation between these parameters. To learn more about
the 𝑏 = 1 and 𝑏 = 2 cases, we conducted the same initial
experiment while limiting the cooperation rate to 1 and
2 and varied all other parameters. Each combination of
parameters is simulated 100 times.

The results in Table 3 indicate that at a cooperation rate of
1, Company 3 consistently dominates the market compared
to a cooperation rate of 2. Consequently, the average dura-
tion of the simulation is equal to the average lifespan of Com-
pany 3 (the rest of the market), which explains the increase
in the average simulation time in the case of 𝑏 = 2. This is
illustrated in Figure 3 (𝑏 = 1), where the average duration
of the simulation and the average lifespan of Company 3
are nearly identical. The results show similar behavior to
the case of varying collaboration frequency. Specifically,
in cases where 𝑏 = 1 and 𝑏 = 2, have a strong effect on
market dynamics. These experiments suggest that there
are thresholds for collaboration and cooperation rates that
significantly influence the outcome of the competition.

To investigate the relationship between the collaboration
and cooperation rates, we recorded from the initial experi-
ment the minimum values of the cooperation rates at which
company 1 dominates the market. Additionally, we recorded
the maximum values of the cooperation rate at which com-
pany 3 consistently dominates the market as illustrated in
Figure 4 where:

• Plot 1: Represents the maximum values of b where
company 3 always won the competition.

• Plot 2: Represents the minimum values of b where

company 3 always lost the competition.
• The scatter plot: Represents combination of param-

eters (100 point per collaboration frequency) that
lead both company 3 and company 1 to dominate the
market. The frequency is defined for each unique
combination of parameters by the number of times
company 3 dominates over the total number of sim-
ulations. The darker the hue the more frequently
company 3 dominates the market.

We observe in Figure 4 that there is a critical cooper-
ation rate threshold, depending on the collaboration fre-
quency, which determines whether Company 3 dominates
or not. In scenarios where Company 3 consistently domi-
nates, the maximal values’ threshold line decreases in an
approximately pseudo-exponential decay. Similarly, the
threshold minimal values, where Company 3 always loses,
follow a similar trend. These two lines are close to each
other and overlap in some cases, suggesting that there are
distinct regions where Company 3 either always dominates
the market or always loses. This trend illustrates also that
the more often companies collaborate the less market shares
are required to derive from the rest of the market in each col-
laboration to dominate the market. However, the winning
and losing outcomes for company 3 can occur on both sides
of these lines. In other words, combinations of parameters
below the threshold can lead to company 3 losing, and sim-
ilarly, some combinations above the threshold can lead to
company 3 winning. This suggests that the decisive factor
for determining whether company 3 wins or loses is the
combination of all parameters, including the initial market
shares of companies 1 and 2. To illustrate these results, we
scattered randomly selected combinations that lead to both
sides of the competition to win (either company 1 or the
rest of the market), we observe that there are two directions
to analyze the data:

• 1- Increasing collaboration: As the collaboration
increases the frequency of company 3 winning de-
creases above the threshold line (Plot 1), we notice
also that there is less domination by the rest of the
market.

• 2- Increasing cooperation rate: We observe that be-
low the threshold (Plot 1) company 3 dominates the
market more frequently compared to combinations
with cooperation rates greater than the threshold.

Therefore, the final observation is that there exist parame-
ter combinations that consistently lead to company 3 losing,
others that consistently lead to company 3 winning, and
combinations where the outcome can vary.

Now that we understand that it’s not solely the collabo-
ration and cooperation rates that determine the dynamics
of the market, we investigate the relationship between the
initial market shares distribution and Company 3’s winning
frequency with respect to the cooperation rate and collabora-
tion frequency. Because the relationship between Company
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1 and Company 2 is asymmetrical—meaning that Company
1 always takes market shares from Company 2—we calcu-
late the gap between their initial market shares, defined
as Company 1’s initial market shares minus Company 2’s
initial market shares, to see if this influences market dom-
ination. We define also the frequency by the number of
times company 3 dominates the market over the number of
simulations of the same unique parameter combination. Fig-
ure 5 illustrates the relationship between the initial market
shares’ distribution and the frequency by which Company 3

wins the competition across different intervals of 𝑏 rates. We
observe that certain 𝑏 values, such as [10, 20], [20, 50] and
[50, 95], exhibit a relatively stable evolution. In contrast,
cooperation rates 1 and 2 show a relatively overall increas-
ing winning frequency for Company 3 as the gap between
the market shares increases. Specifically, when Company
2 has more market shares than Company 1 (gap < 0), the
frequency of Company 3 winning is higher compared to
when Company 2 has fewer market shares than Company 1
(gap ≥ 0).

Figure 4: Relationship between cooperation rate and collaboration frequency, plot1: Threshold where company 1 dominates,
plot2: threshold where the rest of the market dominates

Figure 5: Effects of the initial market shares distribution and
cooperation rates on the dynamics of the market

The collaboration frequency has also an effect on the
company 3 domination with respect to the initial market
shares distribution, Figure 6 illustrates this relationship with
the most interesting collaboration frequencies: 10%, 20%,
50% and 100%.

We observe in Figure 6 that the scale ranges from -40
to +45 market shares. For negative gap values, specifically
between -40 and -25, there is a decrease in the winning

Figure 6: Effects of the initial market shares distribution and
collaboration frequency on the dynamics of the market

frequency for Company 3. The frequency then starts to
increase moderately throughout the remaining negative
values. However, for positive gap values, the winning fre-
quency increases quickly, with a particularly significant
rise at the highest positive values of 40 and 45. This trend
is evident for collaboration frequency of 10% and 20% al-
though the overall frequency is lower for the 20% compared
to the 10% collaboration frequency. Given that Company 2
always loses market shares to Company 1, these observa-
tions suggest that when Company 1 has significantly more
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market shares than Company 2, Company 1 depletes Com-
pany 2 quickly. Additionally, since Company 1 always loses
market shares to Company 3, this puts Company 3 in a
winning situation. Thus, as soon as Company 2 is depleted
and collaboration stops, Company 3 dominates Company 1.
This might explain the increase in winning frequency for
Company 3 at high positive gap values. The collaboration
frequency acts as attenuating factors for this effect. Overall,
we observe that the winning frequency for Company 3 is
lower at a collaboration frequency of 50% compared to rates
of 20% and 10%. For the case of 100% collaboration, the
winning frequency for Company 3 exhibits specific patterns
across different gap values. Initially, the frequency is very
low for gap values ranging from -40 to -10. Then, there is
a sudden increase in frequency within the range of [−5, 5].
Following this, the frequency shows a relatively constant
evolution until around 30, with some fluctuations. Beyond
30, there is another notable increase in the frequency. This
latter behavior can be attributed to the dynamics between
Company 1, Company 2, and Company 3, influenced by
their initial market share gaps. When Company 2 initially
holds significantly more market shares than Company 1
and collaborates heavily with Company 1, they can domi-
nate the market, despite Company 2 always losing market
shares to Company 1. Conversely, when the gap values are
similar or favor Company 1 (meaning Company 1 depletes
Company 2 quickly due to its larger or equal market shares),
Company 3 benefits. After collaboration ceases, Company
3 capitalizes on its advantageous position against Company
1, increasing its winning frequency.

3.1.1. Steady states analysis

To assess the stability of market competition, we define a
steady state where the distribution of market shares among
competitors shows minimal change or slight variations over
a specified time interval. This is characterized by a slope 𝛼
between the bounds of an interval to be less than 𝜖, where 𝜖
is a significantly small positive number (𝛼 ∈ [−𝜖, 𝜖]). To an-
alyze the presence of steady states in our simulations’ results,
we smoothened the market shares distributions using a mov-
ing average applied over equal intervals of 𝑇 = 10𝑠𝑡𝑒𝑝𝑠.
Subsequently, we calculated the slope for each segment of
the resulting data to identify any discernible trends.

We define a steady state as a state where the slope values
of all market shares of competitors 𝛼 ∈ [−0.05, 0.05] over
an interval 𝑇 of 10 steps. And we define also, a short-term
steady state as a state that spans on one 𝑇 interval, and
a long-term one that spans across multiple consecutive 𝑇
intervals.

Out of 85,500 unique simulations, a total of 128 cases
exhibited steady states. Among these cases, we identified
two distinct categories:

• The slope 𝛼 = 0.
• The slope 𝛼 ∈ [−0.05, 0.05] and 𝛼 ̸= 0.

For the first category two combinations of parameters
exhibit steady states (see Table 4).

Figures 7 and 8 illustrate the smoothened market shares
evolution, and the steady states that are highlighted at their
start and end by the vertical lines.

For the second category, where 𝛼 ∈ [−0.05, 0.05], a
total of 126 cases were recorded. Table 5 illustrates the
characteristics of the parameter combinations in these cases.
It is evident from Table 5 that steady states occur in scenarios

Figure 7: Steady sates case 𝐶1 n° 1, plot 1: market shares of com-
pany 1, plot 2: market shares of company 2, plot 3: market shares
of the rest of the market, vertical lines: steady state bounds.

Figure 8: Steady sates case 𝐶1 n° 2, plot 1: market shares of
company 1, plot 2: market shares of company 2, plot 3: market
shares of the rest of the market, horizontal lines: slopes, vertical
red lines: steady state bounds

where company 1 dominates the market as well as in those
where it does not.

In Figure 9, the evolution of market shares in a case from
the second category is depicted. The red lines indicate the
start and end of steady states. It is evident that multiple
steady states can exist, influenced by the parameter 𝑇 used.
For lower values of 𝑇 , more steady states may be identified,
whereas higher values of 𝑇 tend to exhibit fewer steady
states. By adjusting this parameter along with the moving
average interval, it may become possible to identify larger
steady states, as marked by the yellow lines.

To learn more about how much the duration of steady
states represent in a simulation, we calculated for each sim-
ulation that exhibited steady states, the ratio of the total
duration of steady states to the total duration of the simula-
tion.

ratio =

∑︀
steady states durations

total steps of the simulation
(3)

Table 6 illustrates the characteristics of the distribution
of the steady states’ ratios in the simulation. The results
of this analysis highlighted that a limited number of cases
exhibited a steady state, and the steady state duration in
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Table 4
Combination of parameters with slope 𝛼 = 0, case 𝐶1

Case n° Company 1 initial
market shares

Company 2 initial
market shares

𝑒𝑖 𝑏 Collaboration-frequency Total steps Steady state at step

1 30 20 0.5 4 0.4 175 120
2 50 35 0.5 2 0.7 156 110

Table 5
Parameter characteristics for steady states with 𝛼 ̸= 0, using 𝐶1

Parameter Min Max

Company 1 initial market shares 5 50
Company 2 initial market shares 5 45

The rest of the market final market shares (company 3) 0 100
Cooperation rate (b) 1 62

Collaboration frequency 10% 100%

Figure 9: plot 1: market shares of company 1, plot 2: market
shares of company 2, plot 3: market shares of the rest of the
market. red vertical line steady states’ bounds, yellow vertical
line represent bounds of a possible steady state.

these cases is short compared to the life span of the com-
petition. We observe that the distribution of ratios is right
skewed meaning that cases with higher number of steady
states are rare. These findings underscore the dynamics of
coopetition, where certain companies may hold advantages
over others, few short-term steady states can be achieved.
In such coopetitive environments, competitive pressures
and collaborative dynamics intertwine, creating conditions
where temporary equilibria can emerge, albeit transiently.

3.2. Modified Base Model: Analysis with
Matrix 𝐶2

The introduction of the ability of company 2 to derive mar-
ket shares from company 1 allowed company 2 to dominate
the market approximately the same number of times as com-
pany 1 and this was due to the equal competition from both
sides (Figure 10).

Figure 11 illustrates the relationship between the collab-
oration frequency and the average lifespan of Company 3
(plot 2), as well as the overall competition duration (plot 1).
We note that as the collaboration frequency increases, the
average lifespan of Company 3 decreases. Conversely, the
average duration of the simulation increases. This can be
explained by the fact that at higher collaboration frequen-
cies, the rest of the market tends to lose more, compared
to lower collaboration frequencies (see Figure 12). Know-

Figure 10: Percentage of times of market dominance by compa-
nies (855,000 simulation runs using 𝐶2)

ing that the average duration is shorter when Company 3
wins, a higher collaboration frequency results in fewer low-
duration simulations due to the frequent losses of Company
3. Consequently, because there are fewer short-duration
simulations, the overall average duration becomes higher.
Additionally, because Companies 1 and 2 are in equiva-
lent competition, the determining factor for the end of the
simulation is largely the random sequence of interactions
between these two companies.

The same behavior can be seen in the effect of cooperation
rate on the duration of the competition and the lifespan
of the rest of the market (see Figure 13), which could be
due to the same cause as in the collaboration frequency
case (see Figure 14). We also observe in Figure 13 that the
lifespan of company 3 follows the same trend as in the case
of interaction matrix 𝐶1 with the same interesting values
𝑏 = 1 and 𝑏 = 2.

To investigate the relationship between the collaboration
and cooperation rates, as in the previous case with matrix
𝐶1, we recorded from the initial experiment (with 𝐶2) the
minimum values of the cooperation rates at which either
company 1 or company 2 consistently dominates the market.
Additionally, we recorded the maximum values of the co-
operation rate at which company 3 consistently dominates
the market as illustrated in Figure 15 where:
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Table 6
Steady states proportion distribution case 𝐶1

Minimum Maximum Mean Median Mode

Ratio 9.43% 18.87% 9.98% 9.43% 9.43%

Figure 11: The effect of the collab-frequency on the duration of
the competition (𝐶2),plot 1: the duration of the competition, plot
2: the lifespan of the company 3

Figure 12: Number of wins of company 3 with respect to the
collab-frequency (𝐶2)

• Plot 1: represents the maximum value of 𝑏 where
company 3 always won the competition.

• Plot 2: Represents the minimum values of 𝑏 where
company 3 always lost the competition.

• The scatter plot: Represents combination (100
point per collaboration frequency) of parameters
that lead both company 3 and company 1 or 2 to
dominate the market. The frequency is defined for
each unique combination of parameters by the num-
ber of times company 3 dominates over the total
number of simulations. The darker the hue the more
frequently company 3 dominates the market.

As in the case of the interaction matrix 𝐶1 we observe the
same trend in thresholds, except in this case we have less
parameter combinations in which company 3 won more, in
higher values of collaboration frequency. We also see that
in the collaboration rate 0.1 there is a significant difference

Figure 13: The effect of the cooperation rate on the duration
of the competition (𝐶2), plot 1: the duration of the competition,
plot 2: the lifespan of company 3

Figure 14: Number of wins of company 3 with respect to the
cooperation rate (𝐶2)

compared to the case 𝐶1.
As for the effect of the initial market shares distribution,

we conducted the same simulation as in the case of𝐶1 where
we simulated the effect of the gap between company 1 and
2 initial market shares distribution.

The effect of the gap is relatively similar across all classes
of cooperation rates, with much lower frequency of com-
pany 3 dominations (see Figure 16). Whereas for the effect
of the gap on the frequency with respect to the different
values of the collaboration frequency (Figure 17). We ob-
served that the overall frequency is lower than the case of
𝐶1, and the different values of cooperation frequency have
relatively the same trend with lower overall frequency. We
notice also that the collaboration frequency of 0.1 the com-
pany 3 winning frequency tend to achieve its peek values
at the extremes of gap values, this might suggest that the
significant difference between the companies’ market shares
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Figure 15: Relationship between cooperation rate and collaboration frequency (𝐶2)

Figure 16: : Effects of the initial market shares distribution and
cooperation rates on the dynamics of the market (𝐶2)

might give slightly advantage for company 3 over company
1 and 2.

3.2.1. Steady states analysis

We conducted the same analysis as in the case of interaction
matrix 𝐶1, the results in the case of 𝐶2 exhibited more
steady states compared to the first case (427 steady state
out of 85,500 unique simulation). This might suggest that
equal competition between company 1 and 2 might lead to
more frequent steady states. We distinguish between two
categories:

• The slope 𝛼 = 0.
• The slope 𝛼 ∈ [−0.05, 0.05] and 𝛼 ̸= 0.

In 17 out of 427 simulations, the slope was 𝛼 = 0. This
indicates a higher occurrence within this category compared

Figure 17: Effects of the initial market shares distribution and
collab-frequency on the dynamics of the market (𝐶2)

to the case of interaction matrix 𝐶1 which had only two
cases (see example Figure 18).

For the second category (e.g Figure 19), where 𝛼 ̸= 0,
a total of 410 cases were recorded. Table 7 illustrates the
characteristics of the parameter combinations in these cases.
Similar to the case of matrix 𝐶1 the steady states occur in
scenarios where either company 1 or 2 dominate the market
as well as in those where they do not.

The analysis of steady states conducted for cases 𝐶1 and
𝐶2 revealed that 𝐶2 demonstrates steady states more fre-
quently than 𝐶1. This suggests that in scenarios of balanced
competition among companies, steady states occur more
often compared to situations of unilateral interactions. How-
ever, we did not observe any instances where steady states
persisted longer than the predefined interval 𝑇 . Thus, under
the specific parameters of 𝛼 and 𝑇 used in our study, we did
not identify any long-term steady states which spans over
multiple consecutive intervals 𝑇 . Furthermore, the analysis
of steady states corroborates the findings of the paper on
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Table 7
Parameter characteristics for steady states with 𝛼 ̸= 0, using 𝐶2

Parameter Min Max

Company 1 initial market shares 5 50
Company 2 initial market shares 5 45

The rest of the market final market shares (company 3) 0 100
Cooperation rate (b) 1 70

Collaboration frequency 10% 100%

Table 8
Steady states proportion distribution case 𝐶2

Minimum Maximum Mean Median mode

Ratio 5.35% 16.04% 5.85% 5.35% 5.35%

Figure 18: Steady sates case 𝐶2, plot 1: market shares of com-
pany 1, plot 2: market shares of company 2, plot 3: market shares
of the rest of the market, vertical lines: steady state bounds

Figure 19: Steady sates case 𝐶2 with 𝛼 ̸= 0, plot 1: market
shares of company 1, plot 2: market shares of company 2, plot
3: market shares of the rest of the market, vertical lines: steady
states’ bounds.

globally attractive stable steady states, and the presence of
transient ones.

As in the case of 𝐶1 we calculated for each simulation
that exhibited steady states, the ratio of the total duration
of steady states to the total duration of the simulation (see
Table 8).

Similar to the case of the interaction matrix 𝐶1, even
though more cases exhibited steady states, the duration of
these steady states is very low compared to the total du-
ration of the competition. This leads us to conclude that
under equal competition, steady states can occur more of-
ten than in the case of uneven competition. However, these
steady states remain transient, suggesting that the occur-

rence of stable steady states might require a competitive
environment that favours long-term equilibrium.

4. Key Findings from Simulation
Experiments

The simulation experiments conducted in this study yield
several significant insights into the dynamics of coopetition
and its effects on the market. The main results from the
study can be summarized as follows:

• For the first case where 𝐶1 is used there is always
the dominance of company 1 over 2.

• All simulations in both cases of𝐶1 and𝐶2 end in one
of the trivial states where one company dominates
the rest, which supports the results of the paper [1]
about the global attractor stable steady state.

• Achieving short term stable steady states is possible
in 𝐶1 and 𝐶2. This is in line with the results of
the paper [1] about the presence of transient steady
states.

• The steady states occur more often in an environ-
ment with even competition.

• In both 𝐶1 and 𝐶2 cases, the steady states are rare
and short-term.

• The cooperation rate 𝑏 affects the dynamics of the
competition.

• The initial distribution of market shares might affect
slightly the final state of the competition.

• No matter what the starting conditions are, a com-
pany with a market advantage can still overtake the
market even if they start with less market shares
compared to their competition.

• Collaboration can extend the life span of companies
in the market.

5. Discussion
In the paper, the authors modified the Lotka and Volterra
equations to describe the coopetition between two com-
panies and the rest of the market. The presented analogy
suggests that each interaction will lead to an exchange of
market shares, in addition to a collaborative effect that takes
market shares from the rest of the market. While this model
is an extension of the Lotka and Volterra framework, it in-
troduces a unique dynamic where companies can act as
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both predator and prey simultaneously, ultimately leading
to either one company dominating the other or reaching a
certain equilibrium.

With the parameters chosen, particularly the interaction
coefficients that gives advantage for company 1 over 2, the
model tends to result in one company taking over the other
in each interaction. When there are no market shares left
for a company, it ceases to exist, akin to a company going
out of business in a real-world scenario, which could be
interpreted as achieving a monopoly after one company
remains. Unlike biological predators that might die out in
the absence of prey, in an economic context, the remaining
company continues to exist and operate. Thus, we can state
that the dependency relationship between the two types of
actors, which exist in the biological system, does not exist
in the economic context. Which opens the discussion for to
what degree the original model form addressing biological
systems is transferable to other types of systems, here a
market and its actors.

While the presented model captures some aspects of com-
petitive interactions, there may be limitations in fully rep-
resenting the complexities of economic environments. Fu-
ture research could explore enhanced models that consider
additional factors, such as resource availability or market
demand dynamics, to better simulate and understand the
dynamics of competitive markets. Such approaches could
provide deeper insights into how different economic fac-
tors influence the emergence, growth, and sustainability of
companies in competitive environments.

6. Conclusion and Outlook
This paper presented an adaptation of the agent-based model
from the work by Scherrer et al. [1], utilizing the original
study’s parameters for simulations. Variations in these pa-
rameters were also tested to broaden the understanding of
their effects on company behavior in a coopetition setting.
The model successfully replicated the original results and
provides a foundation for future research.

While the biological model used in the original work
captures several aspects of market coopetition, it also has
limitations, as discussed above. Thus, its suitability for fur-
ther more in-depth analysis is limited. Thus, future research
could build on the model presented in this paper by incorpo-
rating more realistic supply chain dynamics. A comprehen-
sive approach might consider the entire supply chain from
suppliers and manufacturers to retailers and consumers,
while making necessary assumptions to manage complex-
ity. Including key factors like resource availability, demand
disruptions, and supply chain configurations could provide
valuable insights into the effects of horizontal collaboration,
offering a closer approximation of real-world conditions.

Another promising direction for future research is the in-
corporation of external, unforeseen effects such as changes
in regulations and stochastic market disruptions. Examining
whether collaboration can be advantageous during critical
times, such as when the market is shrinking, could provide
valuable insights into the resilience of coopetition under
severe competitive conditions. This approach could also
capture challenges that supply chains have faced in recent
years, such as pandemics. Again, this work would require a
signifincantly more detailed modelled, as these externalities
needs to be encaptured.

Additionally, the model could be enhanced by view-

ing each company as a unique entity, where the internal
decision-making processes of individual agents more closely
mirror real-world economic behavior. This would allow for
a deeper exploration of how internal decisions impact the
overall system in a coopetition setting, offering a more de-
tailed understanding of the dynamics at play. Also this
can enable research on the motivational settings enabling
coopetitive scenarios as mdoel indogenous aspects, which
is at the moment given to the model.

Exploring these potential avenues and others could signif-
icantly enhance our understanding of horizontal collabora-
tion between competitors, providing valuable insights into
how such strategies might be implemented in real-world
contexts.
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