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Abstract—The integration of Simultaneous Wireless Informa-
tion and Power Transfer (SWIPT) into vehicular networks presents
a promising approach to enhance the efficiency and sustainability
of future transportation systems. This paper introduces a novel
performance modeling framework for SWIPT-enabled vehicular
networks utilizing stochastic geometry. The proposed model
accounts for the spatial distribution of vehicles, the random
nature of wireless channel conditions, and the dual-functionality
of SWIPT for energy harvesting and information decoding.
Our analytical results provide insights into the impact of key
parameters, such as base station density, power splitting ratios,
and transmission power, on the network’s overall performance.
This study offers a foundational tool for designing and analyzing
SWIPT systems in the context of intelligent transportation,
paving the way for more resilient and sustainable vehicular
communication infrastructures.

I. INTRODUCTION

The rapid evolution of wireless communication technologies
has ushered in an era where connectivity is ubiquitous, driven
by the increasing demand for higher data rates, low latency,
and extended battery life. In such a context, IoT devices play a
fundamental role in smart applications in urban and rural areas,
where the latter have trouble guaranteeing reliable and stable
power and data connectivity. For this reason and for efficiency
reasons, such as power neutrality and reduced space available
on board, interest in technologies that are able to power up
devices without a battery is increasing. Among these solutions,
Wireless Power Transfer (WPT) is one of the most popular
ones.

WPT can be useful in a context where connectivity is
offered by other media but in post-disaster or remote sce-
narios, Simultaneous Wireless Information and Power Transfer
(SWIPT) networks are considered as one of the most interesting
technologies over the last few years. The huge challenge
is that SWIPT cannot be applied without a well-defined
system using parameters that can easily be adapted in a real-
world scenario. Characterization and performance evaluation
of SWIPT networks is inherently complex due to the interplay
of spatial dynamics, stochastic channel conditions, and energy
harvesting capabilities. Traditional analytical methods often
struggle to capture the nuanced behaviors of these networks
under real-world conditions. Consequently, there is a grow-
ing interest in leveraging stochastic geometry—a powerful

mathematical framework for modeling spatially distributed
systems—to provide accurate performance assessments in
SWIPT environments [1].

The advent of the automotive industry, 5G and future 6G
drastically increased the number of devices [2] leading to new
opportunities within the context of smart devices and network
modelization. UAVs (Unmanned Aerial Vehicles) can be used
to power up IoT devices in post-disaster scenarios [3], and a
correct modelization of the network is necessary to correctly
configure the parameters. It is possible to imagine a context
where devices are not directly connected to the Internet but
can leverage vehicle connections for sending information. If
on one side, the Poisson Point Process (PPP) is a well-defined
framework in network coverage and analysis [4], this cannot
be automatically turned into a SWIPT system due to the power
parameters involved. Moreover, by placing BSs on roads, rather
than on the plan according to a PPP, some differences will
be introduced on statistics and performance perceived by the
users.

Driven by the evolution of SWIPT systems and the need to
develop increasingly reliable analytical models, this research
aims to evaluate vehicular SWIPT networks, focusing on
key insights. The main contributions of this work can be
summarized as follows:
• Development of a two-tier analytical model for SWIPT

networks, where BSs are placed along lines following a
Poisson Line Cox Process (PLCP), and User Equipments
(UEs) are distributed according to a PPP;

• Formulation of an optimization problem targeting power
consumption minimization by fine-tuning key architectural
parameters of the network;

• Comparative evaluation of the proposed model against a
planar PPP-based SWIPT network, to assess the impact of
the new characterization and to highlight its advantages and
limitations.

Moreover, the proposed architecture will be evaluated using a
Genetic Algorithm (GA) designed to efficiently explore a set
of real-world scenario parameters and constraints.

II. RELATED WORKS

Stochastic Geometry (SG) is a mathematical study of random
spatial patterns, where a key subject is consisted of random



point patterns. The current literature is rich in applications of
such a theory for the study and analysis of wireless, cellular, and
ad-hoc networks, such that the following surveys and tutorials
have been published [5]–[10]. All these past experiences
have in common that SG methods are used to model partial
statistical property-based performance parameters (interference,
throughput, etc.). Such models can be exploited to study and
resolve different challenged related to wireless, cellular, and ad-
hoc networks, such as node or user position, user association,
state control, power measurements, etc.

Among the first works within the application of PPP to the
wireless networks we found [11], where a cellular network
model is composed of base stations (BSs) arranged according to
some homogeneous PPP in the Euclidean plane; assuming that
mobile user is associated with the closest base station. Baccelli
concludes the work in [11] with multiple considerations on the
Fading, highlighting a general fading with noise using α = 4,
and general fading without noise with α > 2. The work is
a milestone for the downlink cellular network analysis, with
possible applications in the C-RANs network composed of
micro/pico and femtocells, where user distance and cell size
are the most relevant parameters. In [12], considerations on
macro cell demonstrate the PPP is not usable in the context
where BSs are deployed close to each other and possible
usage of the Determinantal Point Process (DPP) can extend the
theory proposed in the previous work. New generation C-RAN
leverage on micro, pico, and femtocells; where macro cells are
not employed and it is possible to use PPP.

The usage of SG to model SWIPT networks has already
been evaluated for Non-orthogonal multiple access (NOMA)
technique in [13] while a first evaluation in IoT context has
been proposed in [14], where devices harvest energy from the
surrounding environment, from both BSs and User Equipments
(UEs). Anyway, new generations of C-RANs are deployed
considering the case of vehicles and the greatest part of the
discussed research in the context of SWIPT does not take into
consideration the mobility of nodes, meaning that both the
devices and BSs are assumed to be stationary and do not move
in space. [15] considers the case of a dense IoT environment
that leverages vehicles to exchange data and deliver wireless
connectivity. In [16], the vehicles are considered activators of
IoT devices and can be used for transmitting data. Each vehicle
has a coverage risk of radius centered at the vehicle, while IoT
devices are distributed according to a related PPP. In [17] the
authors modeled the source of power or more generally the
BSs using PPP, while a Manatthan Poisson Line Process (PLP)
is used for modeling the walls, and so the fading. Considering
the case of dense context, the results show an important impact
of walls while there is no effect on the maximum achievable
information rate by tuning the power splitting ratio.

Analysis of the literature underscores the widespread adop-
tion of SG as a powerful tool for modeling and analyzing
SWIPT networks, particularly in wireless communication
scenarios. However, there remains a significant gap in research
when applying SG to vehicular environments, where BSs are
placed along roadways to support mobile users in dynamic

Fig. 1: Two tiers proposed architecture composed by UE (green),
vehicular BS (blue) placed on roads (yellow), and planar BS (red).

traffic conditions. Existing studies largely focus on traditional
fixed-network architectures, leaving the intricacies of vehicular
networks — such as variable network topology, high mobility,
and environmental factors — underexplored. This manuscript
aims to bridge this gap by presenting a comprehensive SG-
based approach tailored for SWIPT-enabled vehicular networks,
offering insights into performance metrics specific to these
scenarios.

III. SYSTEM MODEL

For the purpose of our study, we consider a two-tier network
containing two different distributions of Base Stations (BSs),
while UEs are distributed in space according to Poisson Point
Process (PPP) with a density λu. UEs are either broadband
(BB) terminals, or IoT (Internet of Things) devices. We
assume the latter are a fraction γ of the total number of UEs.
Regarding the Base Station (BS), these are distributed into
two tiers, and can be of two types: planar or vehicular, and
are independently distributed into the space, according to two
different processes.

Planar BS (PBS). In the first tier, the BSs are distributed
according to a 2D homogeneous PPP Φb with a density λb.

Vehicular BS (VBS). In the second tier, a road system
is modeled by an independent Poisson Line Process (PLP)
Φl ∈ R2 produced by a homogeneous PPP Ξ on the cylinder
C := R[0, π) with an intensity λl. More precisely, a point of
Ξ, denoted by (ri, θi), describes the line li ∈ R2 of equation

l(ri, θi) = {(x, y) ∈ R2|xcos(θi) + ysin(θi) = ri} (1)
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where the parameters r and θ correspond to the shortest distance
from the origin to the line and the angle between the positive
x-axis and the line l, respectively. Conditionally on the lines,
BSs are modeled by independent 1-D homogenous PPP with
intensity µb, so the distance between two consecutive points on
the same line hence follows the exponential distribution with
parameter µb. The result is a Poisson Line Cox Point Process
Ψb with spatial intensity which can be expressed as

Λ(A) = E[Np(A)|Ψb] = µb

∑
li∈Ψb

v1(li ∩A) = µbπλl (2)

A. Coverage Analysis

We can evaluate the coverage probability of the proposed
network, by using a three steps approach. This coverage
probability is the fundamental measure, needed to evaluate
all the performance measures, that will be discussed in the
following subsections.

Step 1: Relevant distance distributions. The key distributions
that are of interest for our analysis are the CDF and PDF of the
distances between UE and the candidate serving BS from Tier
1 or Tier 2. Let us denote these distances with typical BS on
Tier 1 with x1 and with the typical BS on Tier 2 with x2, which
are driven by the random variable R1 and R2, respectively. As
ϕb is an 2D homogeneous PPP, the CDF and PDF of R1 are
given by:

FR1(ri) = 1− exp(−λbπr
2
i )

fR1(ri) = 2πλbri exp(−λbπr
2
i )

While in the Tier 2, since BS are distributed according to a
PLCP Ψb, the CDF and PDF are given by:

FR2
(ri) = 1−exp

[
−2πλl

∫ ri

0

(
1−exp(−2µb

√
r2i − ρ2)

)
dρ

]

fR2
(ri) =

[
2πλl

∫ ri

0

2µbri√
r2i − u2

exp(−2µb

√
r2i − u2) du

]
×

× exp

[
− 2πλl

∫ ri

0

(
1− exp(−2µb

√
r2i − ρ2)

)
dρ

]
Step 2: Association probabilities. To derive the coverage

probability we have to define the association probabilities to
both the BSs belonging to the two tiers. Let us define E1 the
event in which the user is associated with a BS on the Tier 1,
and with E2 the event in which the user is associated with a
BS on the Tier 2. The event E1 occur when the distance from
the nearest BS on the Tier 2 is greater than the distance of the
BS on the Tier 1, so the probability of occurrence of the event
E1 can be computed as:

TABLE 1: Main notation used in the paper

Name Description
Φb, Φu Planar BSs and Planar UEs distribution
λb, λu Planar BSs and Planar UEs density
Ψb Vehicular BSs distribution
λlµb Vehicular BSs density
η Splitting Factor

P(E1) = P(R1 < R2)

= ER1

[
P(R2 > r1|R1)

]
=

∫ ∞

0

(
1− FR2

(r1)

)
fR1

(r1) dr1

=

∫ ∞

0

2πλbr1e
−λbπr

2
1−2πλl

∫ r1
0 1−e

−2µb

√
r21−ρ2

dρ dr1

(3)
While, the probability of being associated with a BS on the

Tier 2 will be P(E2) = 1 − P(E1). It is possible to notice
that these probability also correspond to the probability to
be associated to one of the two distribution, so we have that
P(X ∈ ϕb) = P(E1).

Step 3: Serving BS distance distribution. After computing
the association probability to one among vehicular or planar
BS, we can now proceed to the computation of the serving
distance R and to the minimum of them in order to understand
which is the final serving distance distribution among two
different type of BS. R1 and R2 are two independent random
variable, so the resulting minimum is a new random variable
U = min{R1, R2} whose CDF can be computed as follows.

FU (ri) = 1− (1− FR1
(ri))(1− FR2

(ri))

FU (ri) = 1− (e−λbπr
2
i )(e−2πλl

∫ ri
0 (1−exp(−2µb

√
r2i−ρ2)) dρ)

FU (ri) = 1− e−λbπr
2
i−2πλl

∫ ri
0 (1−exp(−2µb

√
r2i−ρ2)) dρ

(4)
While the PDF can be computed as the derivate in ri of FU

fU (ri) = 2πλbrie
−πλbr

2
i−2πλl

∫ ri
0

(
1−e

−2µb

√
r2
i
−t2
)

dt

+ e−λbπr
2
i−2πλl

∫ ri
0 (1−e

−2µb

√
r2
i
−ρ2

) dρ

×
∫ ri

0

4λlπµbrie
−2µb

√
r2i−u2√

r2i − u2
du.

(5)

B. Base station energy consumption and service model

According to our previous research in this context [18], a
BS energy model, by which the power consumed by a BS,
denoted as PBS , is given by the following expression:

PBS = q1 + Ud[q2 + q3(P − Pmin)] (6)

The expression is composed of a fixed part, which depends on
the cost for the deployment of the BS itself, indicated as q1
and by two components q2 and q3 depending on the utilization
and the transmitting power used. For sake of completeness, we
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considered tha same costs for both planar and vehicular BSs,
aiming at demonstrating the impact of the deployment of one
of the two, independently from the costs that each of them
leverage on. We can now define the capacity of the channel as
follow:

C(r, P,G, I) =
B

k
log2

(
1 +

PGr−α

N0 + I(r, k)

)
(7)

C. User Performance

In this section, we characterize the main performance
parameters as a function of the main system parameters and
the expression derived in the coverage analysis section.

Theorem 1. The mean ideal per-bit delays in downlink and
uplink, and the mean ideal per-Joule delay perceived by a
typical best-effort user joining the system are given by:

τ̄d =H(wd, wd, C(r, P,G, Ī)) (8)

τ̄d,I,TS =τ̄d
wd

(1− η)
(9)

τ̄d,I,PS =H(wd, 1, C(r, (1− ν)P,G, (1− ν)Ī)) (10)
τ̄u =H (δu, δu, C(r, PI , 1, 0)) (11)

τ̄u,I =δuτ̄u (12)

Where:
H(y, z, g(r)) =

∫ ∞

0

f(r, y)k(r)

zg(r)
dr. (13)

with f(r, y) = λu [y + γ (ϕ− y)]×

×
∫ ∞

0

∫ 2π

0

e−λbA(r,x,θ)−2πλl

∫ ρ
0

1−e−2µb

√
ρ2−t2 dt

xdθ dx

A(r, x, θ) is the area of the circle centered at (x, θ) with radius
x that is not overlapped by the circle centered at (0,−r) with
radius r. ρ is the radius of a circle with the same area A(r, x, θ).
C(r, P,G, Ī) is given by (7), with the interference term Ī given
by

Ī(r, k) =
PLg(λb + λlµb)2πr

2−α

k(α− 2)

τ̄d
τ0d

(14)

Anyway, since we are considering a SWIPT network, it is
important to model the energy received from a typical IoT
device, can be harvested both from other UEs, and from other
BSs, as well as from the connected BS.

Theorem 2. In the dense IoT regime, the cumulative distri-
bution function CDFh of the power harvested by an IoT user
who is just beginning service is

CDFh(h0) = CDFr(g
−1(h0))

for all h0 ≥ 0, where CDFr is the cumulative distribution
function of the distance of the user to its serving BS:

CDFr(r) =

∫ r

0

2πλbre
−λbπr

2−2πλl

∫ r
0
(1−a(r,u)) du

+e−λbπr
2−2πλl

∫ r
0
(1−a(r,u)) du

×
∫ r

0

4λlπµbra(r, u)√
r2 − u2

dudr,

where
a(r, u) = e−2µb

√
r2−u2

g(r) = Θ

(
FTS(r) +

ZTS(r)

f(r, wd)

)
with FTS representing the energy harvested from the connected
BS, and ZTS representing the energy harvested from all the
other BSs, as well as from the other UEs near the UE. These can
be computed as follows, while f(r, wd) is given by Theorem 1.

FTS(r) = Pr−αLg
τ̄d
τ0d

+ kĪ(r, k) + Ō

ZTS(r) =
τ̄d
τ0d

[
Pr−α(Gη − Lg)− (1− η)(kĪ(r, k) + Ō)

]
Ō =

(1− γ)δuPbb + ϕγPI

(1− γ)δu + ϕγ

(λb + λlµb)πα

α− 2

τ̄u
τ0u

IV. OPTIMIZATION PROBLEM

Typically, in SWIPT networks it is hard to establish a unique
setting for the main system parameters. This is because multiple
configurations can achieve the same result. To determine the
best configuration, we introduce here an optimization problem,
which aims at reducing the total network power consumption
in terms of transmitting power P , PBS density λb, VBS density
µb and splitting factor for a given user density λu.

Problem 1.
minP,λb,µb,η λb + πλlµb

[
q1 +

τ̄d(η, P, λb, µb)

τ0d
×

× (q2 + q3(P − Pmin))

]
Subject to: τ̄d(η, P, λb)

τ0d
≤ 1,

τ̄u(η, P, λb)

τ0u
≤ 1 (15)

Pmin ≤ P ≤Pmax (16)
0 ≤ η ≤1 (17)

CDFh(h0, η, P ) ≤µ (18)
0 ≤ λb ≤λb,max (19)
πλlµb >ϖλb (20)

where h0 in constraint (18) is the minimum harvested power
required by each IoT device to operate, computed based
on the amount of energy required by the device during a
whole on-off cycle. µ is the maximum acceptable ratio of
IoT users which harvest less than h0 Joules per second. τ̄d,
τ̄u are given by Theorem 1. λb,max derives from practical
constraints to BS deployments in urban settings. Finally, we
considered a constraint on vehicular BSs in (20), which forces
the optimization problem to consider a minimum amount of
vehicular BSs. This constraint has been considered due to the
generally better performance of PPP, with respect to PLCP.
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Algorithm 1 Genetic Algorithm

1: Initialize population W with n random chromosomes Ci =
(P, λb, µ)

2: repeat
3: Evaluate fitness of each chromosome in W
4: Archive best solutions from W in an archive
5: Evaluate solutions in the archive and remove low

quality ones
6: Select parents from W based on fitness (e.g., roulette

wheel selection)
7: Apply genetic operators (e.g., crossover and mutation)

to produce offspring
8: Replace least fit individuals in W with offspring to

have a new generation
9: until Any improvement in 10 generations

In addressing the proposed problem, we employed a Genetic
Algorithm (GA)-based approach due to its strength in avoiding
local minima by working with a population of potential
solutions. In particular, we executed the GA by selecting
the dominant chromosome (i.e., the one with the highest
fitness value on the problem). The algorithm then generates a
new population through appropriate genetic operators, namely
mutation and crossover. The mutation used in the proposed
algorithm is the default one, namely the Gaussian mutation,
while the crossover employed by the proposed algorithm returns
a child that lies on the line containing the two parents, a small
distance away from the parent with the better fitness value
in the direction away from the parent with the worse fitness
value. Through MATLAB it is possible to set the distance for
which goes, which in our case has been set to 1.0. Set the
ratio parameter as follows. These operators produce offspring
by combining two chromosomes, with the resulting child lying
at the midpoint between the two parents.

This process is repeated over 150 generations or until
the termination condition is met, which is defined by no
improvement over 10 consecutive generations. Through this
approach, guided by the fitness function, the GA performs
a random exploration of the solution space, driven by the
outcomes of the evolutionary operators.

To enhance the convergence of GA, the fitness function is
constructed using the penalty method. In this method, a penalty
term proportional to the degree of violation of constraints ??
(downlink and uplink) and ?? is added to the objective function
of ??. This ensures that the algorithm can explore values near
the boundary of the feasible region of Problem 1.

V. NUMERICAL RESULTS

In this section, we evaluate the impact of the integration of
PLCP in a SWIPT system. We limit our discussion to just one
configuration of SWIPT.

A. Setup

Base stations work at a frequency of 1 GHz, and use a
bandwidth of 50 MHz. We assume a percentage of IoT devices

Fig. 2: Power per km2 consumed by the network at the optimum vs
user density, for different BS distributions.

equal to 20% of the total number of UEs, a transmit power
equal to 0.2 W for both IoT and BB UEs, a frequency reuse
factor of 3, a beamforming gain equal to 10, which is assumed
constant over the whole main lobe aperture of 45 degrees, and
a path loss exponent α = 3, typical of urban areas. Regarding
the harvesting model, we considered an EH model with a
conversion efficiency of 0.9 with no lower/upper threshold. We
assume the BS transmit power to vary between 1 and 11 W,
and we set a target mean per-bit delay in downlink for BB
(resp. IoT) UEs equal to 10−5s (resp. 10−3 s), and in uplink
equal to 10−4s for all UEs, (e.g. typical of IoT systems for
environmental monitoring [19]). We consider the user density
to vary from 10−4 users per m2 (typical of settings with a high
share of BB users, at night) to 10−1 users per m2 (modeling
scenarios with crowds of BB UEs and with high density of IoT
deployments). We assume IoT UEs to be active for all the time
time (ϕ = 1), while the minimum harvested power is 6mW. We
set to 5% the maximum acceptable share of IoT users which are
not able to harvest the target minimum energy. The parameters
of the BS energy model are chosen to fit two different types
of BSs. These BS reflects the behavior of the majority of
current stand-alone BSs, and it is characterized by a 27% load
proportionality (with q1 = 1100, q2 = 100, and q3 = 30). For the
evaluation we considered a single PPP distribution, and three
PLCP distributions. The PLCP distribution are charactherized
by different minimum amount of BS (0, 20, 40 %) over the total
number of BS, as specified in the constraint (20) of Problem
1.

B. Energy optimal configuration

In order to investigate the properties of the solutions of
Problem 1, in Fig. 2 we plot the power per km2 consumed
by the network at the optimum, as a function of user density,
while in Fig. 3 to 7 we plot the corresponding optimal values
of vehicular and planar base station density, of transmit power,
and of time split ratio.

A general consideration independently from the different
kind of BSs distribution is the exponential increase in power
consumption for highly dense user density, due to the low load
of these BS, while at low user densities, an energy-optimal
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Fig. 3: Optimal vehicular base station density per km2 for different
BS distributions.

Fig. 4: Optimal planar base station density per km2 for different BS
distributions.

tuning of the system brings to an almost linear proportionality
between user density and consumed power. This is in part
caused by the presence of high number of BSs corresponding
in high interference, which plays a crucial role in this evaluation.
By carefully looking at the high user density, PLCP is able to
marginally reduce the power consumed by the network, with
respect to PPP for all the minimum amount except for 40%
configuration. This demonstrate the beneficial effect of PLCP,
which by distributing BSs over lines instead of randomly in
the space, such as PPP, is able to reduce the interference, and
hence, increase the efficiency of the network. However, in
sharp contrast to RANs delivering only connectivity, at high
user densities the service capacity of a SWIPT network is
complemented by the signals transmitted by users, which thus
contribute to the delivery of power to IoT users. Despite at both
lower and higher user density there is no relevant difference
between PPP and PLCP, by looking in the middle, in the area
between 10−1 and 50−1, an evident difference exist, which is
directly caused by the reduced amount of PBS deployed, as
shown in Fig. 4.

Fig. 5 and 7 offer some key insight on how tuning transmit
power and power split ratio contributes to achieving energy
optimal operation. The behaviour between PLCP and PPP is
almost the same, with the only difference in the splitting factor,

Fig. 5: Optimal BS transmit power for different BS distributions.

Fig. 6: Optimal splitting factor for different BS distributions.

caused by the interference, as previously discussed.

VI. CONCLUSIONS

In this research we demonstrated the effectiveness of
the Poisson Line Cox Process (PLCP) distribution for the
charachterization of a SWIPT network composed of both
broadband and IoT UEs. This representation enables evaluation
of more realistic network, populated by vehicular devices such
as UAVs. Results demonstrate some advantages in introducing
vehicular BSs to avoid overlapping and hence increasing of

Fig. 7: Energy Harvested from other UEs vs. user density for different
BS distributions.

6



interference in the network. The proposed framework is able
to combine both distribution and give response over the main
network parameters through the usage of Genetic Algorithm
over the four variables. In future work we aim at extending
the framework to different SWIPT networks by als including
the opportunistic harvesting made among IoT devices.
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APPENDIX

A. Proof of Theorem 1
Here we sketch the main steps of the proof. The derivation

of the expression of the per-bit delay goes along the same lines
as the proof of Theorem 3.1 in [20]. The main variants are the
use of the palm expectation of I(r, k), Ī(r, k, τ̄), instead of
I(r, k), in order to make the derivation analytically tractable.

We consider the user at zero, but we drop this indication
in what follows for ease of notation (i.e. S(0) becomes S,
and D(0) becomes D). We start by computing the Palm
expectation of the expression in representing the load of a
single BS:

τ̄d = E0

[
Niot(S) + wdNbb(S)

wdC(D, I)

]
=

∫∞
0

E0[Niot(S)+wdNbb(S)
wdC(D,I) |r ≤ D ≤ r + dr]P (r ≤ D ≤ r + dr)

Let k(r) = P (r ≤ D ≤ r + dr). Under the Palm distribution
of Φu, the distribution of r, i.e. of the distance from the origin
to the nearest base station, is given by the minimum of the two
independent random variable representing the BSs distribution.
Referring to expression in (5), it is possible to write:

k(r) = 2πλbre
−πλbr

2−2πλl

∫ r
0

(
1−e−2µb

√
r2−t2

)
dt

+e−λbπr
2
i−2πλl

∫ ri
0 (1−e

−2µb

√
r2
i
−ρ2

) dρ

×
∫ ri

0

4λlπµbre
−2µb

√
r2−u2

√
r2 − u2

du.

The resulting formula is:
≈

∫∞
0

E0[Nbb(S)+wdNiot(S)|r≤D≤r+dr]
wdC(r,Ī(r,k))

k(r)dr

where Ī(r, k) is the average interfering power for the
typical user at r, recalling what is described in [21], it
is possible to extend the approach to the multiple BSs
distributions (planar and vehicular). It will be given by
Ī(r, k) = PL(λb+λlµb)2πr

2−α

k(α−2)
τ̄d
τ0
d

. Thus

τ̄d ≈
∫∞
0

E0[Nbb(S)+wdNiot(S)|r≤D≤r+dr]
wdC(r,Ī(r,k))

k(r)dr

Let Ntot(S) = Nbb(S) +Niot(S). The palm expectation at
the numerator becomes

QE0[Ntot(D)|r ≤ D ≤ r + dr]

with Q = wd + γ(ϕ− wd). The random variable Ntot(D) is
the total number of users present in the same cell as the user at
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the origin, when his distance from its serving base station is D.
As users are distributed according to a PPP with intensity λu,
Ntot(D) is Poisson, with an intensity given by the conditional
Palm expectation inside the integral.

Using Campbell’s formula [22], this expectation becomes

E0

[ ∫ ∞

0

∫ 2π

0

1(S(x,θ)=S|r≤D≤r+dr)λudθxdxQ

]
=

=

∫ ∞

0

∫ 2π

0

λuP (S(x, θ) = S|r ≤ D ≤ r + dr)dθxdxQ

The conditional probability within the integral is given by
the probability of being associate to one of the planar or
vehicular base station, by taking into account our position in
the origin.

∫∞
0

∫ 2π

0
e−λbA(r,x,θ)−2πλl

∫ ρ
0

1−e−µb

√
ρ2−t2dt

dθxdx,
where A(r, x, θ) is given by:

A(r, x, θ) =

πx2−
[
r2 arccos

(
r + x sin(θ)

d(r, x, θ)

)
+x2 arccos

(
x+ r sin(θ)

d(r, x, θ)

)
+

−1

2
(−(d(r, x, θ)− x)2 + r2)

1
2 ((d(r, x, θ) + x)2 − r2)

1
2

]
while, since the formulation of PLCP is related to a well
structured area with radius ρ it is possible to obtain that radius
by starting from the created area A and by converting it into a

circle with radius ρ =
√

A(r,x,θ)
π . By substituting, we get the

expression for τ̄d.
The derivation of τ̄u follows along the same lines.The

expressions of τ̄d and τ̄u obtained are implicit (i.e. they are
a function of these same parameters). Thus they constitute a
fixed point problem. It is easy to see however that the mapping
operator associated to this fixed point is contractive, and thus
that the problem admits a unique solution.

B. Proof of Theorem 2
Lemma 1. The average power received from users for the
typical user arriving in the system at a distance r from the
serving BS is approximated by

Ō =
(1− γ)δuPbb + ϕγPI

(1− γ)δu + ϕγ

(λb + λlµb)πα

α− 2

τ̄u
τ0u

(21)

Proof. The mean transmit power from a user is
(1−γ)δuPbb+γϕPI

(1−γ)δu+γϕ . Let x′
i(t), i ∈ χ(j) be the position of

the i-th user served by BS j at time t, d(x, x′
i(t)) denote the

distance between the two users considered, and u(x′
i(t)) the

probability that the given user is transmitting at time t. Then
we can write the expression of O(x, t) as

∑
j

∑
i∈χ(j)

(1− γ)δuPbb + γϕPI

(1− γ)δu + γϕ
d(x, x′

i(t))
−αu(x′

i(t)) (22)

where χ(j) is the set of users served by BS j. As we assume
the base station has utilization τ̄u

τ0
u

in the uplink,

u(x′
i(t)) =

1

λuAj

τ̄u
τ0u

where Aj is the area of the Voronoi cell of BS j. Given that users
are uniformly distributed in the plane, the palm expectation of
(22) is well approximated by

(1− γ)δuPbb + γϕPI

(1− γ)δu + γϕ
E

∑
j

∫
x′∈Aj

d(x, x′)−αdx′

λuAj

 τ̄u
τ0u

=

As Aj is statistically independent on d(x, x′), the approximated
formula becomes

=
(1− γ)δuPbb + γϕPI

(1− γ)δu + γϕ

∫ +∞
0

λumin(1, s−α)2πsds

λuĀ

τ̄u
τ0u

where Ā is the mean area of a Voronoi cell for a BS density
of λb, which is equal to λ−1

b . Assuming α > 2, we get

=
(1− γ)δuPbb + γϕPI

(1− γ)δu + γϕ

(λb + λlµb)πα

α− 2

τ̄u
τ0u

Proof. (Theorem 2) Let us rewrite expressions (5) to (7) in
the form h(x) = F (x) +K(x)Z(x). We have:

FTS(x) = PD(x)−αLUd(x) + I(x) +O(x)

ZTS(x) = PD(x)−αUd(x)(Gη − Lg)+

−Ud(x)(1− η)(I(x) +O(x))

Let us consider first the TS case. Let’s set

E0[F (D)|r ≤ D ≤ r + dr] =

In the TS case, we have

PE0[D(x)−αLUd(x)|r ≤ D ≤ r + dr] =

∀x, we approximate Ud(x) =
τ̄d
τ0
d

. Thus

= Pr−αLg
τ̄d
τ0d

As for the remaining terms, we have

E0[I(x) +O(x)|r ≤ D ≤ r + dr] =

O(x) does not depend on the user distance from its serving BS.
The expression of its expected value is thus given by Lemma 1.
As for the conditional expectation of I(x), it is given by (14)
in Theorem 1, multiplied by reuse factor k. We thus have:

= kĪ(r, k) + Ō

For a given cell, Ntot(D) is Poisson distributed. Thus
the ratio of the standard deviation of over the mean of this
variable decreases with increasing user density. Therefore in
the dense IoT regime, such an inequality is tight. therefore,
the denominator is then computed as a function of r as in the
proof of Theorem 1. The derivation of the expressions for the
DPS and SPS case follows along the same line.

8


