
1

Decentralized Coordination for Multi-Agent Data
Collection in Dynamic Environments
Nhat Nguyen, Duong Nguyen, Junae Kim, Gianluca Rizzo, and Hung Nguyen

Abstract—Coordinated multi-robot systems are an effective way to harvest data from sensor networks and implement active
perception strategies. However, achieving efficient coordination in a way that guarantees a target QoS while adapting dynamically to
changes (in the environment and/or in the system) is a key open issue. In this paper, we propose a novel decentralized Monte Carlo
Tree Search (MCTS) algorithm for dynamic environments that allows agents to optimize their own actions while achieving some form of
coordination. Its main underlying idea is to balance adaptively the exploration-exploitation trade-off to deal effectively with changes in
the environment while filtering out outdated and irrelevant samples via a sliding window mechanism. We show both theoretically and
through simulations that in dynamic environments our algorithm provides a log-factor (in terms of time steps) smaller regret than
state-of-the-art decentralized multi-agent planning methods. We instantiate our approach to the problem of underwater data collection,
showing in a variety of different settings that our approach greatly outperforms the best-competing approaches, both in terms of
convergence speed and global utility.

Index Terms—Monte-Carlo Tree Search, Active Perception, Multi-Agent Systems, Underwater Sensor Networks, Autonomous
Underwater Vehicles

✦

1 INTRODUCTION

O Ver the last few years, there has been a growing
interest in utilizing multi-robot for cooperative data

harvesting, such as the use of unmanned aerial vehicles
(UAVs) or autonomous underwater vehicles (AUVs) [1],
[2]. In particular, decentralized collaborative multi-robot
systems for active perception have gained widespread pop-
ularity due to their robustness and scalability, which makes
them suitable for industrial applications, as well as in envi-
ronmental monitoring, search and rescue missions, or online
object recognition and tracking [1], [3]–[5]. In these schemes,
autonomous vehicles (AVs) play the role of wireless relays,
moving in the proximity of IoT devices to harvest data
and relay them to a fusion center. This allows relieving
IoT devices from energy-intensive long-range transmissions,
greatly increasing their availability. This is particularly valu-
able when sensors/tracked objects are too distant from each
other and from data sinks, and when the location of sen-
sors and tracked objects, and the surrounding environment
change over time in an unpredictable manner, such as in
post-disaster scenarios (e.g. after a flood, or an earthquake).

It is this dynamic of the environment that makes the
problem of how to effectively achieve coordination in a de-
centralized manner – emerging from the need to guarantee
a target performance, e.g. in terms of Age of Information
(AoI) or latency – a key issue still largely unsolved [6]–[8].

• N. Nguyen and H. Nguyen are with the School of Computer and
Mathematical Sciences, The University of Adelaide, SA 5005, Australia.
Email: {nhatdaoanh.nguyen, hung.nguyen}@adelaide.edu.au.

• D. Nguyen and J. Kim are with the Defence Science and Technology
Group, Australia. Email: {duong.nguyen, junae.kim}@defence.gov.au.

• G. Rizzo is with the HES SO Valais, Switzerland, and the University of
Foggia, Italy. Email: gianluca.rizzo@hevs.ch.

Decentralized Monte Carlo Tree Search (Dec-MCTS) [8] is
the state-of-the-art approach in multi-robot path planning. A
key factor in its performance is an exponentially decreasing
forgetting factor to handle the changes in reward distri-
bution caused by other agents’ actions and to encourage
the exploration of new paths. Nevertheless, recent works
have identified significant issues with such approach [9]–
[11], showing that it is unfit for addressing effectively realis-
tic scenarios characterized by inherently unpredictable and
dynamic changes in the environment, such as uncertain or
unknown variations in sensor locations and/or availability.

In this paper, we perform a first step towards tackling the
above-mentioned issues. We propose a novel approach for
efficient decentralized multi-robot path planning for data
harvesting and active perception in volatile environments.
Our algorithm is able to cope effectively with complex
and unexpected changes in the rewards associated with
each data collection task, by having agents periodically
share a compressed form of their search trees. Our strategy
enables each agent to optimize its actions by maintaining a
probability distribution over plans in the joint action space.
Moreover, it adopts a sliding window mechanism to avoid
accounting for outdated samples. This allows adapting ef-
ficiently to changes in the environment, as well as to those
due to agents’ choices at each round of the data collection
process, without the need for a full restart of the search tree.
Specifically, our main contributions are:
• We formulate the problem of optimal multi-robot path

planning with time-varying rewards, where changes are
due to the dynamics of the environment and the actions
of each agent.

• We propose a novel sliding window decentralized Monte
Carlo Tree Search algorithm (SW-MCTS), which allows
each AUV to plan its own trajectory in a way that balances
the exploration-exploitation trade-off, to deal effectively

with changes in the environment. Our algorithm admits a
general class of objective functions and optimizes actions
over an arbitrarily long planning horizon. It is anytime
and robust with respect to limitations in the frequency
and amount of information exchanged among agents.

• We prove formally that our algorithm provides a log
factor (in terms of time steps) smaller regret than state-
of-the-art decentralized solutions. By doing so, we show
that our algorithm converges faster and achieves better
performance than the best available decentralized MCTS
planning algorithm for coordinated multi-robot data col-
lection and active perception. We provide guarantees for
the convergence rate to the optimal payoff sequence even
when rewards change, based on an analytical relationship
between the sliding window size and the rate of changes
in the environment. To the best of our knowledge, our
work is the first to provide theoretical bounds and per-
formance guarantees for a decentralized MCTS algorithm
with changing rewards.

• We evaluate the performance of our algorithm in a multi-
drone path planning scenario for underwater data har-
vesting. Results suggest that our solution substantially
outperforms the most relevant existing approaches, both
in static settings and in the presence of frequent changes
in sensor distribution. The numerical assessment of our
approach shows that it consistently achieves faster con-
vergence and higher resource efficiency than competing
algorithms, even when decreasing the frequency of coor-
dination exchanges among agents.

The paper is structured as follows. In Section 2 we review
the state-of-the-art. Section 3 presents the system model
and the problem formulation. Our sliding window MCTS
algorithm is illustrated in Section 4. Section 5 presents
some analytical results on the properties of our algorithm,
which is assessed numerically in Section 6. Finally, Section 7
concludes the paper.

2 BACKGROUND AND RELATED WORK

Information-gathering problems using robots are often
modeled as sequential decision-making problems [12]. In
the simplest setting with a single agent, the problem reduces
to a typical traveling salesman problem - a well-known
NP-hard search problem. When there are multiple agents,
joint optimization of all agent actions explodes the state
space and it results in an intractable problem even for
a small number of agents. Some early heuristic solutions
include myopic solvers, that minimize the objective function
over a limited time horizon [13], [14]. When the objective
function is submodular, these methods can achieve near-
optimal performance [15]. When this is not the case, non-
myopic decentralized coordination algorithms for multiple
agents (e.g. [16], [17] and literature therein) have been
proposed. However, they rely heavily on problem-specific
assumptions, and they are thus not applicable outside of
those settings, and in particular, in dynamic scenarios.

In more general settings, decentralized active infor-
mation gathering is modeled as a decentralized ver-
sion of a partially observable Markov decision process
(POMDP) [18], [19]. The dominant approach to planning
in these works consists of first solving the centralized,

offline planning over the joint multi-agent policy space, and
pushing these policies to agents who execute them online
in a decentralized way [19]. These online-offline approaches
are however not applicable to dynamic environments where
the state of the environment is not known ahead of time. Si-
multaneous decentralized planning and execution solutions
for Dec-POMDP exists [20], but they suffer from significant
memory and computational demands to store the reachable
joint state estimations of all agents [21]. Several works
approximated the problem to a set of local POMDPs that
are easier to solve and allow each agent to act indepen-
dently [22], [23]. Alternatively, role-based abstraction was
proposed to decompose the problem into a set of single-
agent problems and an optimal task assignment [24], [25].
These techniques can improve computational efficiency and
scalability but at the cost of losing global optimality [26].

Recently, decentralized planning using the anytime
Monte Carlo Tree Search algorithm has gained significant
traction due to its flexibility in trading off computation time
for accuracy, and it has been applied to several decentralized
collaborative planning problems for groups of robots [27]–
[30]. The key idea in these solutions is to use MCTS with
upper confidence bound (UCB) in order to find the best
paths, treating node selection at each step as a multi-armed
bandit (MAB) problem [31], [32]. These algorithms seek to
find the most rewarding move relative to a given goal at a
given time and a given state in a mission or game, based on a
search tree with an arborescence that grows and evolves as it
is used. In order to create cooperation between agents, these
methods usually keep a predefined model of the teammates,
which can be heuristic or machine learning trained [27], [29],
[30]. However, as they are based on previous knowledge,
they are unsuitable for robot motion planning in settings
that change in an unpredictable fashion, as is often the
case in many application scenarios, such as in post-disaster
environments.

One way to coordinate agents without apriori knowl-
edge about their behavior is by having them communicate
the intended actions with each other and act accordingly
[8], [28]. This introduces breakpoints where the reward dis-
tribution and optimal actions from one agent’s perspective
switch as the actions of other agents can vary over time.
In [8], the Decentralized MCTS algorithm (Dec-MCTS) uses
a discounting factor to handle such changes. However, this
technique can be suboptimal in environments where the dis-
tributions of rewards change abruptly and independently of
the agents’ policy [33]. To deal with this uncertainty, Dec-
MCTS allows for online replanning during execution by
letting agents update their beliefs of the environment and
even reset the search tree if changes are deemed substantial.
However, determining the significance of a change event is
often impractical and lacks a clear metric. Frequent reset-
ting could also hinder the performance in scenarios with
constrained planning time or computing resources.

Within the larger domain of multi-armed bandit (MAB)
approaches, recent works [33]–[38] have focused on non-
stationary environments. Some of these approaches are
based on the assumption that the dynamics of the chang-
ing rewards over time are known [33]–[36], while others
assume no previous knowledge on patterns of reward vari-
ation [37]–[39]. However, how to apply these results to

2

multi-robot planning via MCTS in nonstationary settings is
a non-trivial problem that is still open to date. Indeed, it
involves modeling the evolution of multiple interdependent
MABs and the way in which they dynamically impact each
other’s decisions. Our present work tackles these challenges,
providing for the first time a sliding-window-based MCTS
algorithm for nonstationary environments where changes
cannot be forecasted, proving formally its convergence
properties, and assessing its performance via simulation in
a concrete scenario of underwater data harvesting by a set
of autonomous underwater vehicles (AUVs).

3 SYSTEM MODEL AND PROBLEM DEFINITION

3.1 Basic Assumptions
We consider a set of S of S wireless sensors, each with
a transmission range R, arbitrarily distributed within a
volume of space, and let s be the label of the s-th element of
the set. These sensors may model e.g. a WSN for underwater
monitoring of a seaport exit, or for hydrogeologic mea-
surements, among others. We assume sensors may move
over time within the volume of reference, e.g. as in the
case of wildlife monitoring, or in underwater monitoring
when sensors are displaced by water currents, movement of
marine species, and other factors.

We assume that, within the given volume of space, data
sinks collect data from sensors and deliver them e.g. to the
cloud for further elaboration. In water monitoring systems,
data sinks are typically located on the surface of the water
volume monitored, while in post-disaster communications
they usually lie at the border of the monitored area.

We assume that, in general, sensor nodes are not able
to relay data directly to a sink. Thus, in the given volume
a set of M of M homogeneous data harvesting agents (e.g.,
modeling UAVs, or underwater drones) periodically collect
data from sensors by moving within their transmission
range and establishing a direct wireless connection with
the sensors. Then the data harvesting agents head to one of
the data gathering points of the volume, where they relay the
collected data either directly to a data sink or (as is the case
in many underwater scenarios) to a transporting agent, that
carries the data to a sink. We assume each agent is endowed
with a wireless communications interface for direct device-
to-device exchange of data with sensor nodes and with
transporting agents, and with the same transmission radius
as sensor nodes. In addition, we assume that each agent
is endowed with another wireless communication interface
(e.g., cellular in the case of UAVs) for information exchange
with all of the other agents in the given volume of space.

The path and schedule of each transporting agent are
such that the data carried by each harvesting agent can be
considered as transferred instantaneously to a transporting
agent as soon as the harvesting agent gets to a gathering
point. Let m be the label of the m−th harvesting agent.
Without loss of generality, we assume the trajectories of the
harvesting agents to be constrained on a motion graph G, i.e.
a directed graph defined at system setup time, and which
does not vary over time. The motion graph typically models
constraints to agent trajectories due to e.g. morphology of
the monitored volume, presence of obstacles, maximum
distance from sensors sufficient for successfully harvesting

Fig. 1: Example of multi-agent data collection scenario for
the case of an underwater WSN. Both harvesting agents and
transporting agents are implemented by AUVs.

data, limitations in agent movements (e.g. on a road grid),
legal constraints on agent paths, among others. The specific
way in which the graph is derived is thus application-
and context-dependent, and it is out of the scope of the
present work. A schematic representation of the system and
an example of the path model are illustrated in Fig. 1. All
harvesting agents know the motion graph for the considered
volume and the locations of the gathering points.

We assume the data harvesting process takes place as
a sequence of missions, all of the same duration. At the
beginning of a mission, each agent is located at a data
gathering point, and all sensors have data to be harvested.
During each mission, each agent moves along the graph G
and collects data from sensors. By the end of the mission,
each agent reaches a data gathering point, delivers the
harvested data to a transporting agent, and waits for the
beginning of the next mission. With pm we denote a path
of the m-th agent on the motion graph during a mission,
consisting in an ordered list of edges pm = (e1m, e2m, . . .),
such that two adjacent edges in the path are connected by
a vertex of the motion graph G. We denote the collection of
paths of every agent in a mission as p = (p1, ..., pm, ...pM).
The travel budget B is the maximum number of edges an
agent can traverse in a mission, and it is assumed to be the
same for all agents. Such a maximum value is a function of
the duration of the mission, of the agent’s speed, but it may
also account for several other constraints, e.g. due to finite
storage capacity, and finite energy budget at each mission.

Each mission takes place over a finite time horizon.
At the beginning of a mission, each agent is located at
a gathering point. All agents perform distributed planning
together, to decide a path for each agent. Each agent then
executes its planned path by moving along the first edge
of the path, harvesting data from all sensors for which
it gets within the transmission range, possibly updating
its information on the position and availability of those
sensors. We assume agents can observe the location and
availability of sensors using localization techniques such as
e.g., periodically broadcasting a beacon message to sensor

3

TABLE 1: Key notation used in the paper.

Notation Description

S Set of S sensor nodes
s Index of the s-th node ∈ S
R Transmission radius
M Set of M harvesting agents
m Index of the m-th agent ∈M
G Motion graph
B Travel budget
p Collection of paths for all agents, in a

mission
pm Path of the m-th agent in a mission
ws Utility of the s-th sensor
Pm Set of all possible paths of the m-th agent
P Collection of sets of all possible paths for

all agents
Tm Search Tree of the m-th agent
T Planning time budget per action
τ Maximal window size of SW-MCTS
Cp Exploration parameter of SW-MCTS

nodes, with which each sensor can respond with its up-
dated location, and unresponsive sensors are assumed to be
unavailable [40]. This technique is widely applicable since
beacon messages have a low bit rate and travel fast while the
sensor’s data is more complicated and requires close-range
transmission [41]. After that, all agents exchange updates
on sensor position and availability, and on those sensors
whose data has already been harvested. Finally, they plan
their residual path with the newly available information.
We assume the planning, execution, and replanning phases
to be synchronized across all agents. This planning-executing
procedure repeats until the end of the mission, or until all
agents’ travel budget expires.

We assume at any time each agent can communicate with
all the other agents. In scenarios with D2D communications,
this may correspond to the case in which each agent is
always in the transmission range of all of the other agents
so that each agent implements this information exchange by
periodically broadcasting to all others. Or, we may assume
that each agent relays the information received by other
agents. In this case, all-to-all communications are feasible
if the connectivity graph of the agents is always connected.
As we assume that all nodes do not move while exchanging
information and planning, and as these phases are assumed
to be synchronized across all nodes, the exchange duration
does not affect the performance of our algorithm. For ease
of analytical treatment, we assume that traversal time is the
same for all edges. In addition, we assume any exchange of
information (e.g. from sensors to agents, from agents to data
sinks, and among agents) to be instantaneous. Note how-
ever that our approach can be easily extended to account
for realistic exchange durations, as well as for different edge
traversal times.

At the beginning of each mission, all sensors have data to
be harvested. We consider that the first time in the mission
that a sensor finds an agent within its transmission range,
it sends its data, removing them from memory. We denote

this event as a successful harvesting event. Therefore, all
subsequent events of contact between that sensor and agents
during the mission will not bring to any data transfer (failed
harvesting). This satisfies the diminishing returns property,
which frequently arises in data collection applications [42],
[43], i.e., there is no additional gain to revisit a sensor
that has already been collected. This utility formulation
belongs to the class of submodular reward functions, which
is broadly applicable to many planning problems (e.g., cov-
erage control [44], informative path planning [45], resource
allocation [46]). All data from sensors not collected during a
mission is discarded at the end of the mission by the sensors
themselves (e.g. since more recent data is made available). In
practice, the reward associated with a path can be modeled
as the number of unique sensors crossed by that path. This
formulation is fast to compute and it naturally aligns with
many practical applications such as object classification [8]
or area coverage [47]. We assume that at the beginning of the
mission, agents know the exact position and the operating
status of the sensors. However, we assume that during a
mission both the position and the operating status of each
sensor may change. Note that mission duration can be set in
such a way as to account for, e.g., the mean speed of agents,
node distribution in the volume, and maximum acceptable
worst-case age of the information collected, among others.

3.2 Problem Formulation
The goal of path planning is to find a path for each agent
such that the joint utility of the data collection task is
maximized. The utility function is defined as follows. To
every harvesting event at the s-th sensor, we associate a
utility, which is equal to ws in case of success, and zero
otherwise. ws is in principle different for each sensor. This
reward structure is appropriate for applications with homo-
geneous sensors such as in tectonic movement monitoring
where each sensor covers a given seabed area. More specific
reward structures where different sensors have different
rewards and that rewards decay or improve with time
can be developed for specific applications but will not
fundamentally alter our solution for decentralized agent
coordination.

Let r(pm) denote the total utility associated with the
traversal of path pm. It is equal to the sum of the utility of
all the successful harvesting events that the m-th agent has
performed while traversing it. For a same path, such quan-
tity may in principle differ, e.g., due to sensor movement,
changes in sensor availability, and/or harvesting utility.
Moreover, given that failed harvesting events yield zero
utility, rm depends on the paths of all the other agents, in
addition to that of the m-th agent. Moreover, to any path
pm on the motion graph, we associate a cost b(pm), equal
to the number of edges of the path. Note however that our
analysis can be easily extended to the case of different edge
costs.

Let us consider a given mission, and the location of
each agent at the beginning of such mission. With Pm

we denote the set of all possible paths that start at agent
m’s starting position and end at a gathering point. Let
P = (P1, ..., Pm, ..., PM) denote the collection of sets of
paths for all agents. We define the following problem:

4

Problem 1. (Multi-robot path planning in non-stationary set-
tings)

maximize
p∈P

R(p) =
∑

m∈M
r(pm), (1)

Subject to, ∀m,

b(pm) ≤ B (2)

Constraint (2) derives from imposing that the total path
cost for the m-th agent is less than the travel budget B
available to each agent.

Such an optimization problem cannot be solved effi-
ciently in polynomial time. Indeed it is easy to see that in
the simplest cases, it is a variant of the well-known NP-hard
traveling salesman problem. In the next section, we provide
an adaptive and distributed learning solution to Problem 1,
that learns from the environment and the actions of other
agents, updating planning decisions accordingly.

4 THE SLIDING WINDOW MCTS ALGORITHM

4.1 Algorithm Overview
Our algorithm, denoted as sliding window MCTS (SW-MCTS)
implements a distributed planner that aims at finding the
best course of action (CoA) for each agent in each round,
i.e., to determine for each agent a path from Pm which
globally maximizes the utility function in Problem 1. Given
a planning time budget T , the distributed planner deter-
mines these paths (one per agent), executes the first action
(i.e., traverse the first edge), updates the information used
for path planning (such as sensor position and availability,
which might have changed), and replans. Each agent runs
an independent instance of SW-MCTS.

The best CoA for each agent is determined using a Monte
Carlo tree search, where a node of the tree corresponds
to an edge of the motion graph, and a sequence of nodes
starting from the root represents a valid travel path for
agent m. Specifically, our algorithm extends the well-known
UCT bandit algorithm for tree search [31] to non-stationary
settings. Let Tm represent the MCTS tree of agent m, which
is built on the set of all its possible paths Pm. In order to
find the optimal equilibrium between exploration and ex-
ploitation in the presence of changes in the reward scheme,
the action selection problem at each internal tree node is
modeled as a separate multi-armed bandit, in which the
arms correspond to the possible children nodes from each
node, and the payoff to the result of the rollout episode that
traverses the node. The pseudo-code of SW-MCTS for the
m-th agent is shown in Algorithm 1.

For coordination between agents with SW-MCTS, each
agent optimizes its own actions while accounting for other
agents’ choices by maintaining a probability distribution
over its search tree. To this end, at each planning iteration
t, every agent m exchanges with other agents a description
of the set of best paths it has chosen so far, in the form
of a set of paths P̂m and of a probability mass function
qm which associates to every element of P̂m a value of
probability, which is function of how likely that path would
be chosen by agent m. In the same way, to account for
the effect of other agents’ choices, every agent maintains
a set P̂(m) of paths that other agents might take, and its

Algorithm 1 SW-MCTS for agent m

Input: Planning time budget T , travel budget B, set of
possible paths P̂(m) and probability mass function q(m)

of other agents
Output: Travel path pm for agent m

1: Tm← Initialize the MCTS Tree
2: while planning time budget not met do
3: P̂m← Select subset (Pm)
4: for fixed number of iterations, at iteration t do
5: pt(m)← Sample paths for other agents (P̂(m), q(m))
6: Expanded Node i← SW-UCT Selection (Tm)
7: ptm← Rollout policy (i, B)
8: Calculate rollout score F t

m using Eq. (3)
9: Tm← Backpropagation (Tm, F t

m)
10: P̂(m), q(m)← Update and Communicate (P̂m, qm)
11: end for
12: end while
13: return pm←argmax

p∈P̂m

[qm(p)]

probability mass function q(m). To reduce the computation
and communication requirements for agents, the set P̂m

may be built to include only those paths that are sampled
the most thus far (Line 3).

In our algorithm, each agent does not know the deter-
ministic action of others. Instead, it takes a sample from the
set of shared intended actions P̂(m) based on the associated
probability distribution q(m) to predict the choice of others
at the beginning of each planning iteration t (Algorithm 1,
Line 5). These sampled paths, denoted as pt(m), are then used
by the agent in planning its own optimal path, assuming
the other agents are taking these sampled paths. Then, each
agent incrementally grows its search tree by adding a new
leaf node each iteration via a four-step process: selection,
expansion, rollout, and backpropagation. To each node i of the
search tree, we associate the following parameters (denoted
as node statistics):
• The expected value, which is the average of the utility of all

paths which traversed node i;
• For every child node j of i, the number of times it has

been visited from the parent node i.
In the selection phase, starting from the root node, while

the current node is fully explored (i.e., all children nodes
have been tried in the past at that node), the sliding win-
dow UCT (SW-UCT) algorithm (described in the following
section) is used to compute a score for each child. Then
the agent selects the node with the highest score and visits
the corresponding next hop. This continues until either the
travel budget expires, or the agent reaches a node that is not
fully explored. In the latter case, the agent chooses randomly
one untried child node to expand the tree search (Line 6).
Then, the agent applies the random policy, randomly picking
one child at every node and visiting the corresponding next
hop until the travel budget expires (Line 7).

In the backpropagation phase, the rollout score F t
m for ptm

is computed, which is set equal to the utility of the agent’s
path at that planning iteration. This utility is derived using a
marginal contribution function as described in [48] as follows:

F t
m = r(pm) = R(ptm, pt(m))−R(pt(m)), (3)

5

where R is the global objective function as defined in Eq.
(1) and R(pt(m)) is the joint utility of every agent except
agent m (Line 8). Under this utility scheme, the actions of
one agent can influence the contribution of others, which in
turn affects their decisions. Such information is updated for
every node selected by the SW-UCT policy for calculating the
SW-UCT scores in the following iterations (Line 9).

After that, each agent elaborates P̂m and qm by ac-
counting for ptm using a decentralized gradient descent
algorithm [8], and it shares them with the other agents
(Line 10). Finally, it updates the node statistics and starts
a new planning iteration. When the planning time budget is
met, the algorithm returns the path pm that has the highest
probability qm(pm) to be executed (Line 13).

4.2 Sliding Window UCT Algorithm
In this section, we present our algorithm for computing
a score for each of the actions available at a node, when
the node has been fully explored. To incorporate the time-
varying nature of reward distribution in nonstationary set-
tings, a sliding window strategy is used to force the al-
gorithm to “forget” outdated previous samples. Thus, the
algorithm is parameterized by a sliding window constant
τ ≥ 1 which tunes the weight that the results of past
explorations should have in computing payoffs.

The algorithm is based on computing, at planning itera-
tion t and node i, an upper confidence bound Uj,t on the value
of each child j ∈ C(i) of the given node i. That is an upper
bound on the potential payoff of choosing that child node
as the next hop. The algorithm then selects the child node
that maximizes this quantity over all children of the given
node. We denote this optimal node by Ii,t, i.e.

Ii,t = argmax
j∈C(i)

Uj,t.

The upper bound Uj,t is derived as a combination of
the empirical mean of rewards received at node j and a
confidence interval derived from the Chernoff-Hoeffding
inequality [34]. Specifically, at each planning iteration t, the
UCB score Uj,t for the children j ∈ C(i) of the parent node
i is calculated is given by

Uj,t = Xj,t(τ) +Hj,t(τ),

where Xj,t(τ) is the average empirical reward for choosing
node j, given by

Xj,t(τ) =
1

Nt(τ, j)

t∑
u=t−τ+1

F j
u I{Ii,u,j}, (4)

where I{Ii,u,j} denotes the indicator function, equal to
one if the child node of i selected at iteration u is j, and
Nt(τ, j) is the number of times the child node j within the
last τ iterations has been visited, given by

Nt(τ, j) =
t∑

u=t−τ+1

I{Ii,u,j}.

The average empirical reward accounts for the results of
the past explorations, and it thus represents the exploitation
component of Uj,t, as it tends to favor the child with the

1 2 3 4 5 6 7 8 9 10
Sample

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Breakpoint

0.0 0.2 0.4 0.6 0.8 1.0
Average Reward

UCT
SW-
UCT

Fig. 2: Example of SW-UCT mechanism with a window size
τ = 4, and an abrupt change in reward value from sample
8th. SW-UCT (in yellow) only considers the most recent
observations and has a better estimation of the new UCT
score. In contrast, classical UCT (in blue) converges slower
as it considers all past samples.

best score in the recent past. Hj,t(τ) is instead the exploration
bonus in a window of τ past iterations from t for node j:

Hj,t(τ) = Cp

√
2 logNt(τ, i)

Nt(τ, j)
, (5)

where Nt(τ, i) is the number of times the parent node
node i within the last τ iterations has been visited. Cp > 0
is an exploration constant, and it is used to tune the relative
weight that the exploration bonus has with respect to the
average empirical reward. As it can be seen, Hj,t(τ) is larger
for child nodes that have been visited less in the past, and
it thus pushes the algorithm towards exploring new path
choices.

Critically, in the classical UCT algorithm [31], every
sampled reward is considered when estimating the score of
an action. For abruptly changing environments, the distri-
butions of rewards change at unknown time instants, thus
making the UCT scores slow or even unable to converge.
Our work provides for the first time a sliding-window-
based UCT algorithm for decentralized settings, in which
exploration and exploitation terms are functions of the
sliding window constant τ that models the ”memory” of the
system to limit outdated and irrelevant samples from before
the abrupt changes. This allows the algorithm to estimate
the UCT scores better and converge faster.

4.3 Online Replanning

SW-MCTS is designed as an online, and anytime algorithm.
Given enough planning time budget T , the algorithm can
return a solution that is arbitrarily close to optimal, that is
the action sequence (i.e., the travel path pm) that has the
highest probability in the subset P̂m. Agent m then executes
pm, observes the changes in the environment (such as the
sensor’s new location and availability), updates such in-
formation with its teammates, and replans. Planning might

6

require resetting the search tree if changes are significant, or
else adapting the previous tree.

Remark: Our goal is to maximize the global utility, which
is a function of the joint action sequence and is known by
all agents. Specifically, we assume agents know the exact
position and operating status of the sensors to calculate
the utility associated with each action. However, in cases
where agents do not have full knowledge of the reward dis-
tribution, our algorithm can be readily extended to optimize
based on the agent’s estimate of the environment, with the
estimations being refined as agents traverse the graph and
replan such as in [45].

5 THEORETICAL BOUND ON SW-MCTS PERFOR-
MANCE

We provide in this section an upper bound on the regret
of SW-MCTS, where the regret is generally defined as the
difference between the actual payoff at the root node and
the optimal payoff for the root node. In our particular
application, the regret is the difference between the reward
that an AV agent obtains by using SW-MCTS versus the
optimal reward. SW-MCTS aims to minimize this regret.

Recall that the child node selection problem at each node
in the tree is similar to the bandit problem [31], with the
key difference that the payoff received on selecting an arm
changes as we explore the search tree. The changes come
from three sources:
• The reward for each internal node drifts as we discover

more descendant nodes;
• The reward for each node in the MCTS tree of each agent

changes as a result of other agents’ actions; and
• The rewards for the nodes change as the environment

changes. This last point has not been considered else-
where in the literature and is our main theoretical con-
tribution.

Our analysis of SW-MCTS therefore needs to take into ac-
count these three sources of changes and provide a thorough
treatment of their combined impact. To handle the inter-
dependencies between the sources of changes, we break the
proof into three steps: (1) SW-UCB: Bounds on the regret
when applying sliding windows to bandits with drifting
changes; (2) Bounds on sliding window when applying
to UCT as extensions of results in step 1; and (3) Bounds
on SW-MCTS when there are multiple agents using results
from step 2. We start with known results for SW-UCB when
applying to the bandit problem [33]. From these results, we
analyze the convergence of the actual to the optimal payoff
sequence at the root node after some transitory periods.

5.1 Upper-bound on SW-UCB

A few notations are needed for the analysis of step 1, SW-
UCB. Let It ∈ {1, . . . ,K} denote the arm pulled at round t,
with K being the number of possible arms. After selecting
the arm It = i, we receive a stochastic payoff Xi,t ∈ [0, 1].
The sequence of payoffs generate the stochastic process
{Xi,t}t, i = 1, . . . ,K for t ≥ 1. Let µi,t be the expected
reward for arm i at time t.

The SW-UCB arm selection policy chooses the arm with
the best UCB within a sliding window τ as

It = argmax
i∈{1,...,K}

{X̄i,t(τ) +Hi,t(τ)},

where the empirical reward X̄i,t(τ) is given by (4) and the
exploration bonus Hi,t(τ) is given by (5).

We make the following four key assumptions about the
rewards.

Assumption 1. (Independence) Fix 1 ≤ i ≤ K . Let {Fi,t}t be
a filtration such that {Xi,t}t is {Fi,t}t-adapted and Xi,t is
conditionally independent ofFi,t+1,Fi,t+2, . . . givenFi,t−1.
Further, there exists an integer Tp such that for ti ≥ Tp and
t < ti, Xi,t is independent from Fi,t.

Let Υt denote the number of breakpoints before time
t, where a breakpoint is defined as the time instant where
distributions of the rewards change.

Assumption 2. (Finite Number of Changes) The sequence
{Υt}t is known and bounded such that limt→∞ Υt =
supt Υt <∞ and Υt+1 ≥ Υt.

We also assume that the expected payoff µi,t converges.

Assumption 3. (Convergence of means) The limit µi =
limt→∞ µi,t exists for all i ∈ {1, . . . ,K}.

Let the difference between the two quantities be δi,t =
µi,t − µi. For any arbitrary time t, denote the optimal arm
as ti∗ , and define the optimal expected payoff by µi∗t ,t =
maxi∈{1,...,K}µi,t

. The average expected payoff up to time t
is

µ∗
t =

1

t

t∑
u=1

µi∗u,u
.

The minimum difference between the optimal reward
and the instantaneous reward up to time t is defined as

∆i,t = min
u∈{1,...,t}

{µi∗u,u
− µiu,u : i ̸= i∗u}.

Let Mi(t) be the number of times arm i is pulled following
the most recent breakpoint. The following assumption re-
quires that the drift δi,t is proportional to ∆i,t after a finite
burn-in period.

Assumption 4. (Small drifts) There exists an index T0(ϵ) such
that for any arbitrary ϵ > 0 and Mi(t) ≥ T0(ϵ), |δi,t| ≤
ϵ∆i,t/2 and |δ∗| ≤ ϵ∆i,t/2 for all i.

Given these assumptions, we first bound the number
of times each sub-optimal arm is pulled. Let Ñi(t) =∑t

u=1 I{Iu=i ̸=i∗u} be the number of times an arm i was
played when it was not the best arm in the first t rounds.
The following lemma gives a bound on Ñi(t).

Lemma 1. Consider the SW-UCB applied to a non-stationary,
switching bandit problem where Assumptions 1, 2, 3, and 4
hold and let τ =

⌈√
16t log(t)/E[Υt]

⌉
. Then for any arm

i ∈ {1, . . . ,K} and t > 1,

Eτ

[
Ñi(t)

]
≤ O

(√
E[Υt]t log(t) (C

2
p + T0(ϵ) + Tp)

)
. (6)

This lemma is the cornerstone of all the theoretical
analyses in this work and we present the proof in Appendix
A.

7

Remark: Compared to the bounds for the Dec-MCTS in [8]
where the number of suboptimal pulls is bounded by
O

(√
E[Υt]t(C

2
p log(t) + T0(ϵ) + Tp)

)
, our SW-MCTS per-

forms better in terms of time steps by a factor of
√
log t.

In the typical multi-arm bandit problem with fixed ex-
pected pay-offs, the bound on the number of suboptimal
pulls leads directly to the bound on the expected regret.
In UCT, as the expected payoff drifts over time, we need
to prove that the expected payoff converges to the optimal
payoff. The following lemma gives such guarantee.

Lemma 2. Let

X̄t =
K∑
i=1

Ni(t)

t
X̄i,t

Under Assumptions 1-4,

Eτ

[
X̄t − µ∗] ≤ |δ∗t |

+O

K

√
E[Υt] log(t)

t
(C2

p + T0(ϵ) + Tp)


(7)

We still need to provide a bound on the concentration
of the actual payoff X̄t about the expected payoff. The
following lemma provides that bound. The bound relies on a
non-trivial assumption related to the number of suboptimal
pulls. Let Zt denote the indicator variable that a suboptimal
arm was pulled at time t. From Assumption 1, for t > Tp,
the indicator Zt is independent of Zt+1, Zt+2, . . . , given
Z1, . . . , Zt−1. Thus, after Tp and T0, the non-stationary
bandit problem becomes equivalent to a stationary problem
with high probability.

Lemma 3. For an arbitrary 0 < ϵ ≤ 1 and let

Γt = 9E[Υt]t
√
2 ln(2/ϵ)

Then, under the assumptions of Lemma 1, for

t ≥ O

(√
E[Υt]t log(t)(C

2
p + T0(ϵ) + Tp)

)
The following bound holds:

P(t|X̄t − Eτ [X̄t]| ≥ Γt) ≤ ϵ.

Finally, we are interested in an upper bound on the
failure probability of the algorithm. The proof relies on
the assumption that the breakpoint sequence is known as
monotone and bounded, thus making SW-UCB equivalent
as UCB1 as t grows large.

Lemma 4. Under the assumptions of Lemma 1, it holds that

lim
t→∞

Pτ (It ̸= i∗t = i∗) = 0

The proofs for Lemma 2, 3, and 4 follow closely the
steps in the proofs of Theorem 3 and Theorem 5 in [31] and
Lemma 4 in [8] with adjustments for the sliding window,
and are presented in Appendix B, C, and D respectively.

5.2 Upper-bound on SW-MCTS

We are now in the position to prove the main theorem for
SW-MCTS. The previous three lemmas are for SW-UCB.
We need to extend these results to a tree, where the node
selection problem at each node in the tree is equivalent to the
bandit problem, however with different assumptions on the
payoff. For node id, after selecting node Iid,t = j, the tree
search further down the tree and subsequent MCTS rollout
yield a stochastic payoff Fj,t = Ft ∈ [0, 1] that is adapted
to Fj,t as in Assumption 1. As nodes are slowly expanded
in the search tree, the expected reward at any node higher
up the tree slowly drifts until all nodes are explored in the
subtree (Assumption 3).

The sequence of payoffs generates the stochastic process
{Fj,t},∀j ∈ C(Id) and t ≥ 1. Recall that F̄id,tid

is the
empirical mean and that F̄i0,ti0

is the empirical mean at the
root node. Let µ∗

i0
denote the optimal expected payoff at the

root node and note that ti0 = t.
Theorem 1. Consider algorithm SW-MCTS running on a tree
of depth D and branching factor K . The payoff distributions
of the leaf nodes are independently distributed and they can
change at breakpoints. The sequence that gives the expected
bound of breakpoints E[Υt] follows Assumption 2, and let
τ =

⌈√
16t log(t)/E[Υt]

⌉
. Then, the regret of the payoff at

the root node is given by

|F̄i0,ti0
− µ∗

i0 | = O

(
KD

√
E[Υt]log(t)

t

)
(8)

Further, the probability of failure at the root node be-
comes zero as t grows large.

The proof of Theorem 1 is presented in Appendix E.
In addition, we make the following observations that are
important for the practical applications of the algorithm.
• Smooth rewards: it was observed in [49] that UCT can

have exponential transitory periods and performs best
when the rewards on different branches of the MCTS tree
are similar (smooth). The smooth rewards are assumed
in Assumption 4. In practice, if the assumption does not
hold, the algorithm can take exponential time to converge.

• Optimal window size τ : from Theorem 1, given a known
and fixed Eτ [Υt], the optimal value for τ can be deter-
mined precisely.

6 NUMERICAL ASSESSMENT

6.1 Experimental Setup

In this section, we evaluate the performance of our SW-
MCTS algorithm as a function of the main system parame-
ters. To this end, we consider a reference scenario modeling
an underwater wireless sensor network (UWSN), in which
200 sensor nodes are located at the bottom surface of a
volume of water (sensor plane) of size 4000 m × 4000 m
and at a depth of 200 m. Such choices have been made to
have sensor nodes enough spaced among them for multi-
hop data relaying not to be feasible. At the same time, the
dimensions of the volume of water are compatible with the
mean autonomy of available commercial AUVs [50]–[52].
Each node is connected through a cable of length equal
for all nodes to a stationary anchor (see Fig. 3). Anchors

8

Cable L
�

x

y

Sensor Node

Sensor's Range of Position

Anchor

Fig. 3: Configuration of an underwater sensor node in the
considered setup.

are distributed uniformly at random on the bottom surface
of the given volume. This type of model is referred to as
active-restricted underwater WSN [53], [54], and it allows
modeling sensor drifts due to storms or to changes in water
currents, e.g. due to ocean tides. With reference to Fig. 3,
we assume that for each node, the angle ϕ is uniformly
distributed (0, π), while the distance of the node from the
anchor varies between 0 and the cable length. The cable
length has been set to 50 m.

We assume that each sensor node has a transmission
radius R of 50 m and a transmission rate d of 5 kb/s, and
the size of each data packet is 1 kb (i.e., typical for UWSN,
e.g. [55]–[58]). Since the data is to be transmitted in a short
distance, the water flow does not affect the transmission
rate and quality. We assume sensors can send their data
to an agent once it enters a sensor’s transmission range.
We denote the minimum time required for each sensor to
transmit a data packet as τtrans = S/d. We assume every
agent moves at a constant speed v of 5 m/s. Let l(m,s)

be the length of the path segment of agent m that crosses
the transmission range of sensor s. We denote the traversal
time of agent m on this path segment as τtrave = l(m,s)/v.
We assume the average length of l(m,s),∀m, s equals the
average chord length of a circle whose radius is the sensor’s
transmission radius. We assume the time to traverse this
length, denoted as τ̄trave = 4Rv/π, as the average time for
an agent to traverse any sensor’s transmission range. Fig.
4 shows different scenarios where an agent can visit and
harvest data from a sensor. The harvest succeeds if the data
transmission time τtrans is less than or equal to the cross-
over traversal time τtrave.

We adopt a D2D all-to-all communication network in
which each AUV can directly communicate with all other
AUVs, e.g., using an acoustic modem whose effective range
is several thousand meters [41]. With each communication
attempt, we assume an agent only tries to transmit its
message exactly once. For the sake of simplicity and to
better examine the fundamentals of our proposed algorithm,
we assume that the communication link remains robust
and unaffected by changes in both spatial and temporal
domains. We later relax this assumption and investigate
the impact of nonidealities in information sharing on the
effectiveness of our approach.

We assume that the motion graph lies on the same 2-
dimensional plane as the sensor plane. The motion graph
has been built using a probabilistic roadmap (PRM) with
a Dubins path model [59]. This model uses curves for

R R

Sensor Node

Sensor's Transmission Range Cross-over segment

AUV AUV's Path

Fig. 4: Different examples of AUV harvest data from sensors.

smoothing straight lines between waypoints and it has been
widely used to model motion constraints of vehicle-like
nonholonomic robots such as AUVs [60]. These constraints
imply that each AUV agent can only travel along smooth
curvatures without reversing direction and that its trajectory
must satisfy geometric continuity. The resulting graph has
400 vertices and an average of 15500 edges. We assume that
a single data gathering point and a single sink are present in
the scenario. We assume the transporting agent only moves
vertically between the gathering point and the data sink to
transmit data. This configuration has proven to improve the
energy efficiency of the overall data harvesting process [61].
The rewards for data harvesting from sensor nodes have
been set to be the same for all nodes.

To perform an accurate evaluation of the performance
of our SW-MCTS scheme, we considered the following
baseline algorithms:
• Centralized MCTS (Central-MCTS): In this scheme, all

agents are assumed to communicate directly with a cen-
tral server, on which a single search tree is built for all of
the M harvesting agents. Note that in such a tree the ac-
tions of agent m are at tree depth (m,m+M,m+2M, ...).

• Dec-MCTS [8]: It is the state-of-the-art decentralized multi-
agent planning method for information gathering. In it,
agents build their own search tree with a discounting
factor and adapt it when replanning after a change in the
environment.

• Dec-MCTS with reset (Dec-MCTS-Res). In this scheme, like
Dec-MCTS, each agent builds its own search tree with
a discounting factor. Whenever there are changes in the
environment, the tree of each agent is reset [8].

Table 2 compares the key features of the considered algo-
rithms, i.e., the forgetting mechanisms, and whether they
handle varying environments via online replanning and/or
tree reset.

TABLE 2: Main features of the considered algorithms.

Algorithm Forgetting
Mechanism

Online
Replanning

Reset
Tree

Central-MCTS None no no
Dec-MCTS Discounting factor yes no
Dec-MCTS-Res Discounting factor yes yes
SW-MCTS Fixed window yes no

9

In all these algorithms, the duration of the planning
phase has been set to 500 iterations. For SW-MCTS, Dec-
MCTS, and Dec-MCTS-Res, each agent exchanges with all
the other agents a set of the 10 best possible paths every
50 planning iterations. These values have been chosen as
they are commonly used in the literature for this family
of algorithms (e.g., as in [8]). Moreover, we have verified
experimentally that increasing either the number of paths
exchanged and/or the frequency of these exchanges has no
measurable impact on performance. The exploration param-
eter Cp for all algorithms has been set to 0.4, i.e. within the
recommended range [8]. In realistic scenarios, determining
the appropriate number of agents and travel budgets must
account for the size of the area under surveillance and the
communication range of the sensor nodes being utilized.
Unless otherwise stated, in our experiments, we assumed 10
harvesting agents are deployed, each with a travel budget
of 10 edges, as this choice has proven sufficient to enable
full coverage of all sensors in the given area. The default
value of the window size τ of SW-MCTS has been set
to 300 iterations, and the discounting factor of Dec-MCTS
and Dec-MCTS-Res to 0.9, i.e. within the range of values
recommended in [8] to ensure an optimal balance between
exploration and exploitation, and thus an effective adapta-
tion to changes in the environment. The key performance
metric we have used in our assessment is the Instantaneous
Reward coverage (IRC), given by the total amount of harvest-
ing reward collected by all agents, expressed as a percentage
of the total amount of harvesting rewards available.

For what concerns the changes in the environment, in
our experiments, we considered two models:
• The stationary model, in which sensor nodes do not change

their position over time.
• The correlated model, in which the location of all sensors

changes one or more times during a mission. As for the
location of sensor nodes after a change event, we adopted
the underwater sensor mobility model from [62]. Specif-
ically, after a change event, we assume that each node
independently takes a new position satisfying the prop-
erties of the active-restricted underwater WSN layouts
described above. We assume that there is no correlation
between the values that the angles and the distance from
the anchor take before and after a change. By varying
the cable length, such a mobility model allows tuning
the mean distance between the old and the new location
of each sensor, and thus the degree to which the change
event may actually bring a change in the trajectory choices
made by each agent. At the same time, the assumption of
independence (both across nodes, and between a node
position before and after a change) aims at a worst-case
assessment of the impact of changes in sensor location on
the performance of the considered schemes.

• The dynamic model, in which a fraction of nodes change
location at random within the sensor plane one or more
times during a mission. We assume during each change
event, each node has an equal probability 1/|S| to change.
This is interesting as a worst-case assessment of the ability
of our algorithms to converge and achieve high IRC
values.

For both correlated and dynamic models, we assume that the
change events are distributed uniformly at random over the

duration of the mission. In addition, we also assume that
the sensor plane is wraparound to avoid border effects (i.e.,
sensors exit the sensor plane via one edge of the area would
re-enter via the opposite edge).

6.2 Evaluation Results

6.2.1 Performance Benchmarking
To perform a first evaluation of our algorithm, we consid-
ered the stationary model, in which the location of each
sensor does not vary over time. Fig. 5a shows the IRC
at the end of the mission of our algorithm as well as the
baseline for different planning times. It can be seen that SW-
MCTS sustainably outperformed other methods and typi-
cally converged after 500 iterations. Fig. 5d shows the IRC
of each algorithm throughout the mission for a default plan-
ning time of 500 iterations. While all algorithms perform
similarly at the early stage of a mission, all decentralized
algorithms quickly outperform the centralized counterpart,
with our scheme achieving an average IRC that is 10%
and 35% larger than that of Dec-MCTS and Central-MCTS,
respectively. The centralized MCTS performs well initially
because its rollout policy maximizes the global rewards by
optimizing the action selection of each agent sequentially.
However, because the joint action space grows exponen-
tially with the number of agents, the central algorithm
would require more iterations for efficient exploration. On
the other hand, the decentralized methods take advantage of
distributed and parallel computing while letting each agent
grow its search tree over its respected action space. Thus,
given the same number of planning iterations, the decentral-
ized methods can reach deeper levels of their search trees
and outperform the central one. Additionally, agents can
discover more potential high-reward areas by performing
online replanning after every action. Note that, as there are
no changes in the environment, the tree is never reset, and
the performance of Dec-MCTS-Res coincides with that of
Dec-MCTS. These results suggest that SW-MCTS, although
not designed for static settings, can outperform Dec-MCTS
(i.e., the best available algorithm for AUVs coordination
in such settings) even when there are no changes in the
environment, thanks to its substantially faster convergence
rate.

To evaluate the impact of changes in the environment,
we performed a second set of tests in non-stationary scenar-
ios, in which the location of all sensors changes according to
the correlated and dynamic models respectively. Specifically,
we observed the performances of our algorithm in the
correlated model with a default cable length of 50 m, and in
the dynamic model with all sensors changing their location,
and for a number of changes per mission equal to 10. Fig.
5b and c show the IRC of SW-MCTS and other baseline
algorithms at the end of the mission with different planning
times, while Fig. 5e and f show the evolution of IRC with a
planning time of 500 iterations of each algorithm over the
mission for the correlated and dynamic model respectively.
Similar to the stationary model, the result demonstrated
that agents running SW-MCTS required approximately the
same planning time to produce a sufficient output. This is
thanks to they actively performed online replanning based
on newly available information during the mission. This is

10

Fig. 5: Impact of planning time (top) on the algorithms’ performance at the end of the mission, and evolution of the
Instantaneous Reward Coverage (IRC) over the mission duration (bottom) for different environment models: Stationary
(left); Correlated (middle); and Dynamic (right). The shaded areas denote the 95% confidence intervals.

ideal for applications such as underwater data collection,
in which the state-action space can be extremely large and
varies over time.

Results also suggested that the Dec-MCTS version that
resets the search tree for replanning produced no benefits
compared to those that adapted the same tree and even
performed worse in the later stage of the mission. This is
because at the start of the planning phase, MCTS agents
need to spend some iterations to explore the environment,
and incrementally add new nodes to the search tree. In this
process, agents intentionally take random actions in order to
improve their knowledge of the reward distribution. Thus,
resetting the tree frequently causes the produced joint policy
to be sub-optimal, as agents are stuck in such transient explo-
ration phase. This is particularly sub-optimal if the change is
minor, such as in the case of the correlated model as can be
seen in Fig. 5e. These results suggest that when dealing with
abrupt changes in the environment, the decision to reset
the tree is beneficial the most given that the changes are
significant and/or occur less frequently. Nevertheless, these
factors are impractical to determine beforehand. Regardless
of such difficulties, SW-MCTS performance is the best across

all considered baselines. Specifically, our algorithm achieved
a substantially better IRC than Dec-MCTS, as the sliding
window of SW-MCTS allows agents to remove irrelevant
samples faster than in the discounting factor technique.

6.2.2 Impact of Nonidealities in Communication
A key factor affecting the performance of multi-agent

schemes for data collection is the quality of communica-
tions, particularly those among agents. Naturally, under-
water communications can be very challenging due to the
difficulties of channel modeling, limited bandwidth, and
signal attenuation. To understand better the impact of such
limitations, we evaluated the algorithms’ performances un-
der different successful communication probabilities. Specif-
ically, we randomly dropped for each agent a percentage of
its sent messages during a mission. As shown in Fig. 6, when
agents cannot communicate at all, SW-MCTS performs the
same as Central-MCTS in the stationary and correlated
models. However, a success rate of 5% only could yield
more than 30% improvement over the centralized algo-
rithm. Furthermore, when the communication is severely
unstable with 90% of the communication lost, there is still

11

Fig. 6: Impact of nonidealities in communication on the algorithms’ performance at the end of the mission for different
environment models: Stationary (left); Correlated (middle); and Dynamic (right). The shaded areas denote the 95% confidence
intervals.

no significant degradation in the average mission’s reward
coverage. These results show that under our proposed SW-
MCTS paradigm, agents can cooperate efficiently in hostile
environments even with restricted communication.
6.2.3 Impact of Parameter Settings
In this section, we investigate the impact of the key param-
eters of the system on the performance of our solution, with
a special focus on its scalability and robustness. Specifically,
we evaluate the impact of the travel budget, the number of
AUVs, the ratio between the data transmission time τtrans
and the average traversal time τ̄trave, and the number of
sensor nodes. Fig. 7 illustrates the impact of these param-
eters on the instantaneous reward coverage at the end of
the mission, for a default number of changes of 10, a default
cable length of 50 m in the correlated setting, and all sensors
changing in the dynamic setting.

As Fig. 7a-c shows, the improvement of our approach
with respect to the discounted method also grows from 5%
to 10% with the increasing travel budgets. Indeed, with
larger travel budgets the depth level of the search tree
reached at each planning iteration increases too, and so do
the gains of a better planning strategy, such as the one of
SW-MCTS. A similar behavior is exhibited by the system
when we vary the number of AUVs as shown in Fig. 7d-f.
However, when trying to achieve large values of coverage
with the use of a larger number of AUVs, the performance
advantage of a smarter planner is less evident. Indeed,
achieving very high values of coverage requires reaching
nodes associated with low reward, e.g. because of being far
away from the bulk of the other sensors.

Another key factor affecting the performance of the
data harvesting scheme is the ratio between the data trans-
mission time τtrans and the average traversal time τ̄trave.
Naturally, if the data transmission time is insignificant com-
pared to the traversal time, it would afford agents greater
flexibility in selecting edges to traverse, thereby potentially
harvesting more sensors. Indeed, results from Fig. 7g-i show

that as the τtrans/τ̄trave ratio increases, the performances
of all algorithms decrease. Regardless, our SW-MCTS’s im-
provement with respect to Dec-MCTS grows as we raise the
ratio from 0 to 1.4, especially in the Correlated and Dynamic
models.

In the three considered settings, we also assess the
impact of the density of sensors on the algorithms’ perfor-
mance. Specifically, within the same area, we vary the num-
ber of sensor nodes and observe the instantaneous reward
coverage at the end of the mission of each algorithm. As
shown in Fig. 7j-l, the percentage of sensors covered declines
as more sensors are introduced in the system. Naturally,
with an increasing number of sensors the area that must
be covered by agents expands as well. Nevertheless, SW-
MCTS still managed to consistently outperform other base-
line methods despite the difficulty of decentralized plan-
ning with a growing number of sensors. These outcomes
thus demonstrate our proposed algorithm as a scalable and
robust distributed planner for multi-agent systems.

6.2.4 Impact of the abruptness of change
In this section, we parameterized the abruptness of changes
in the environment, including its intensity and frequency,
and assessed the performance of SW-MCTS as a function
of it. Specifically, we considered the two non-stationary
scenarios with the frequency represented by the number of
changes, and the intensity represented by the cable length L
in the correlated model, by the number of changed sensors
in the dynamic model. Fig. 8 shows the results in terms of
instantaneous reward coverage at the end of the mission.

Among the factors affecting the intensity of changes in
the correlated model, a key role is played by the cable length
L connecting the sensor with its anchor. Potentially, a longer
cable length implies a larger area in which the sensor’s
new location can be. Similarly, in the dynamic model, the
intensity can be measured by the amount of changed sensors
in each change event. As a key step towards studying such

12

Fig. 7: Impact of travel budget (top row), number of AUVs (second row), ratio between τtrans and τ̄trave (third row),
and number of sensors (bottom row) on the algorithms’ performance at the end of the mission for different environment
models: Stationary (left); Correlated (middle); and Dynamic (right). The shaded areas denote the 95% confidence intervals.

13

Fig. 8: Impact of changes intensity and number of changes on the algorithms’ performance at the end of the mission for
different environment models: Correlated (a-b) and Dynamic (c-d). The shaded areas denote the 95% confidence intervals.

impact, in Fig. 8a and c we observed how the average IRC
at the end of the mission varied with different cable lengths
and different numbers of changed sensors respectively, for
a default number of changes of 10. As expected, both SW-
MCTS and Dec-MCTS drop in performance as the intensity
increases. Indeed, the further sensors drift away or the more
sensors drift, the more severe the rewards associated with
each edge change, thus potentially making a current optimal
branch sub-optimal.

To assess the impact of the frequency of changes in the
environment, we considered a default cable length L of 50
m in the correlated setting and a default for all sensors
changed in the dynamic setting with different numbers of
changes. A similar trend can also be observed from Fig. 6b
and d as the reward coverage decreases when the number
of changes increases. Indeed, a higher number of changes
implies that less time is available for the algorithms to
converge and adapt to the new configuration as well as its
induced reward distribution. However, thanks to its faster
convergence rate our SW-MCTS algorithms substantially
outperform the discounted approach in both experiments,
showing a better ability to adapt to changing environments
regardless of the intensity and frequency of the abruptness.

7 CONCLUSIONS

Achieving efficient coordination in multi-robot planning
for active perception is a hard open issue in practical set-
tings, where available resources and environmental condi-
tions vary over time, often in an abrupt and unpredictable
fashion. In this work, we proposed a new decentralized
Monte Carlo Tree search approach to tackle this issue that
carefully balances the exploration-exploitation trade-off in a
dynamic environment. Specifically, we proposed a new tree
expansion policy based on a sliding window mechanism to
appropriately weigh the contribution of past information on
planning decisions. We prove that our algorithm provides
a log factor (in terms of time steps) smaller regret than the
state-of-the-art decentralized planning method. Numerical
results also confirmed that our algorithm performs sub-
stantially better than the best approach available in the

literature on a practical scenario of underwater data col-
lection using multiple AUVs, achieving faster convergence
and higher resource efficiency despite implementing a loose
form of synchronization among agents, even in settings with
frequent changes. As a follow-up, we intend to explore
the impact of long transitory periods for SW-MCTS when
rewards vary significantly, and of non-stationarity in the
frequency and spatial distribution of changes. In addition,
we plan to extend our approach to settings where the MCTS
tree is imbalanced and the assumption of the smooth reward
does not hold.

Another interesting avenue for future work is to in-
corporate other practical communication models into our
approach. While an all-to-all communication model offers
great benefits in coordinating the agents’ actions, it is often
limited in real-world applications. A possible consideration
could be an opportunistic communication model such as
[63] in which agents share information only as they are in
range with one another. It could also be useful to integrate
the value of communication into the path planning utility, as
agents have to decide between collecting rewards or moving
toward other agents to exchange information.

REFERENCES

[1] G. Han, X. Long, C. Zhu, M. Guizani, Y. Bi, and W. Zhang,
“An AUV Location Prediction-Based Data Collection Scheme For
Underwater Wireless Sensor Networks,” IEEE Trans. Veh. Technol.,
vol. 68, no. 6, pp. 6037–6049, 2019.

[2] T. Cerquitelli, M. Meo, M. Curado, L. Skorin-Kapov, and E. E.
Tsiropoulou, “Machine learning empowered computer networks,”
p. 109807, 2023.

[3] R. Ma, R. Wang, G. Liu, H.-H. Chen, and Z. Qin, “Uav-assisted
data collection for ocean monitoring networks,” IEEE Network,
vol. 34, no. 6, pp. 250–258, 2020.

[4] F. Banaeizadeh and A. T. Haghighat, “An energy-efficient data
gathering scheme in underwater wireless sensor networks using a
mobile sink,” Int. J. Inf. Technol., vol. 12, no. 2, pp. 513–522, 2020.

[5] Z. Lv, L. Xiao, Y. Du, G. Niu, C. Xing, and W. Xu, “Multi-agent
reinforcement learning based uav swarm communications against
jamming,” IEEE Transactions on Wireless Communications, 2023.

[6] M. Otte and N. Correll, “Any-com multi-robot path-planning:
Maximizing collaboration for variable bandwidth,” in Distributed
Autonomous Robotic Systems. Springer, 2013, pp. 161–173.

[7] G. Best, J. Faigl, and R. Fitch, “Online planning for multi-robot
active perception with self-organising maps,” Autonomous Robots,
vol. 42, no. 4, pp. 715–738, 2018.

14

[8] G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Dec-mcts:
Decentralized planning for multi-robot active perception,” Int. J.
Robot. Res., vol. 38, no. 2-3, pp. 316–337, 2019.

[9] O. Gupta and N. Goyal, “The evolution of data gathering static
and mobility models in underwater wireless sensor networks: A
survey,” J. Ambient. Intell. Humaniz. Comput., pp. 1–17, 2021.

[10] X. Su, I. Ullah, X. Liu, and D. Choi, “A review of underwater
localization techniques, algorithms, and challenges,” Journal Of
Sensors, vol. 2020, 2020.

[11] K. M. Awan, P. A. Shah, K. Iqbal, S. Gillani, W. Ahmad, and
Y. Nam, “Underwater wireless sensor networks: A review of
recent issues and challenges,” Wirel. Commun. Mob. Comput., vol.
2019, 2019.

[12] X. Yao, X. Wang, F. Wang, and L. Zhang, “Path following based
on waypoints and real-time obstacle avoidance control of an
autonomous underwater vehicle,” Sensors, vol. 20, no. 3, p. 795,
2020.

[13] Z. Xu, R. Fitch, J. Underwood, and S. Sukkarieh, “Decentralized
coordinated tracking with mixed discrete–continuous decisions,”
Journal Of Field Robotics, vol. 30, no. 5, pp. 717–740, 2013.

[14] S. K. Gan, R. Fitch, and S. Sukkarieh, “Online decentralized infor-
mation gathering with spatial-temporal constraints,” Autonomous
Robots, vol. 37, no. 1, pp. 1–25, 2014.

[15] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis
of approximations for maximizing submodular set functions—i,”
Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978.

[16] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based
multirobot coordination: A survey and analysis,” Proceedings Of
The IEEE, vol. 94, no. 7, pp. 1257–1270, 2006.

[17] A. Sadeghi and S. L. Smith, “Heterogeneous task allocation and
sequencing via decentralized large neighborhood search,” Un-
manned Systems, vol. 5, no. 02, pp. 79–95, 2017.

[18] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein,
“The complexity of decentralized control of markov decision
processes,” Mathematics Of Operations Research, vol. 27, no. 4, pp.
819–840, 2002.

[19] F. A. Oliehoek and C. Amato, A Concise Introduction To Decentral-
ized Pomdps. Springer, 2016.

[20] M. T. Spaan, G. J. Gordon, and N. Vlassis, “Decentralized plan-
ning under uncertainty for teams of communicating agents,” in
AAMAS, 2006, pp. 249–256.

[21] M. Lauri and F. Oliehoek, “Multi-agent active perception with
prediction rewards,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 13 651–
13 661.

[22] L. Matignon, L. Jeanpierre, and A.-I. Mouaddib, “Coordinated
multi-robot exploration under communication constraints using
decentralized markov decision processes,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 26, no. 1, 2012, pp.
2017–2023.

[23] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep
reinforcement learning,” in 2018 IEEE international conference on
robotics and automation (ICRA). IEEE, 2018, pp. 6252–6259.

[24] J. Capitan, M. T. Spaan, L. Merino, and A. Ollero, “Decentralized
multi-robot cooperation with auctioned pomdps,” The Interna-
tional Journal of Robotics Research, vol. 32, no. 6, pp. 650–671, 2013.

[25] H. Zhang, J. Chen, H. Fang, and L. Dou, “A role-based pomdps ap-
proach for decentralized implicit cooperation of multiple agents,”
in 2017 13th IEEE International Conference on Control & Automation
(ICCA). IEEE, 2017, pp. 496–501.

[26] M. Lauri, D. Hsu, and J. Pajarinen, “Partially observable markov
decision processes in robotics: A survey,” IEEE Transactions on
Robotics, vol. 39, no. 1, pp. 21–40, 2022.

[27] D. Claes, F. Oliehoek, H. Baier, K. Tuyls, and Others, “Decen-
tralised online planning for multi-robot warehouse commission-
ing,” in AAMAS, 2017, pp. 492–500.

[28] M. Li, W. Yang, Z. Cai, S. Yang, and J. Wang, “Integrating decision
sharing with prediction in decentralized planning for multi-agent
coordination under uncertainty.” in IJCAI, 2019, pp. 450–456.

[29] A. Czechowski and F. A. Oliehoek, “Decentralized mcts via
learned teammate models,” in IJCAI, 2020, pp. 450–456.

[30] S. Choudhury, J. K. Gupta, P. Morales, and M. J. Kochenderfer,
“Scalable anytime planning for multi-agent mdps,” in AAMAS,
2021, pp. 341–349.

[31] L. Kocsis, C. SzepesvÁRi, and J. Willemson, “Improved monte-
carlo search,” Univ. Tartu, Estonia, Tech. Rep, vol. 1, 2006.

[32] R. Coulom, “Efficient selectivity and backup operators in monte-
carlo tree search,” in Proc. 5th Int. Conf. Comput. Games. Springer,
2006, pp. 72–83.

[33] A. Garivier and E. Moulines, “On upper-confidence bound poli-
cies for switching bandit problems,” in Algorithmic Learning Theory.
Springer, 2011, pp. 174–188.

[34] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The
nonstochastic multiarmed bandit problem,” SIAM Journal On Com-
puting, vol. 32, no. 1, pp. 48–77, 2002.

[35] H. Luo, C.-Y. Wei, A. Agarwal, and J. Langford, “Efficient con-
textual bandits in non-stationary worlds,” in Conf. On Learning
Theory. PMLR, 2018, pp. 1739–1776.

[36] W. C. Cheung, D. Simchi-Levi, and R. Zhu, “Learning to optimize
under non-stationarity,” in 22nd Internat. Conf. Artificial Intelligence
Statist. PMLR, 2019, pp. 1079–1087.

[37] Y. Cao, Z. Wen, B. Kveton, and Y. Xie, “Nearly optimal adaptive
procedure with change detection for piecewise-stationary bandit,”
in The 22nd International Conference on Artificial Intelligence and
Statistics. PMLR, 2019, pp. 418–427.

[38] F. Liu, J. Lee, and N. Shroff, “A change-detection based framework
for piecewise-stationary multi-armed bandit problem,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1,
2018.

[39] Z. S. Karnin and O. Anava, “Multi-armed bandits: Competing
with optimal sequences,” Proc. Adv. Neural Inform. Processing Sys-
tems, vol. 29, pp. 199–207, 2016.

[40] J. Luo, Y. Yang, Z. Wang, and Y. Chen, “Localization algorithm
for underwater sensor network: A review,” IEEE Internet of Things
Journal, vol. 8, no. 17, pp. 13 126–13 144, 2021.

[41] R. Su, D. Zhang, C. Li, Z. Gong, R. Venkatesan, and F. Jiang,
“Localization and data collection in auv-aided underwater sensor
networks: Challenges and opportunities,” IEEE Network, vol. 33,
no. 6, pp. 86–93, 2019.

[42] M. Corah and N. Michael, “Efficient online multi-robot exploration
via distributed sequential greedy assignment.” in Robotics: Science
And Systems, vol. 13, 2017.

[43] Y. Satsangi, S. Whiteson, F. A. Oliehoek, and M. T. Spaan, “Exploit-
ing submodular value functions for scaling up active perception,”
Autonomous Robots, vol. 42, no. 2, pp. 209–233, 2018.

[44] M. Prajapat, M. Turchetta, M. Zeilinger, and A. Krause, “Near-
optimal multi-agent learning for safe coverage control,” Advances
in Neural Information Processing Systems, vol. 35, pp. 14 998–15 012,
2022.

[45] G. Best and G. A. Hollinger, “Decentralised self-organising maps
for multi-robot information gathering,” in 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2020, pp. 4790–4797.

[46] B. L. Nguyen, D. D. Nguyen, H. X. Nguyen, D. T. Ngo, and
M. Wagner, “Multi-agent task assignment in vehicular edge com-
puting: A regret-matching learning-based approach,” IEEE Trans-
actions on Emerging Topics in Computational Intelligence, 2023.

[47] C. Dornhege, A. Kleiner, A. Hertle, and A. Kolling, “Multirobot
coverage search in three dimensions,” Journal of Field Robotics,
vol. 33, no. 4, pp. 537–558, 2016.

[48] D. H. Wolpert, S. R. Bieniawski, and D. G. Rajnarayan, “Probability
collectives in optimization,” Handbook of Statistics, vol. 31, pp. 61–
99, 2013.

[49] P.-A. Coquelin and R. Munos, “Bandit algorithms for tree search,”
in Proc. Conf. Uncert. Artif. Intell., ser. UAI’07. Arlington, Virginia,
USA: AUAI Press, 2007, p. 67–74.

[50] J. Faigl and G. A. Hollinger, “Autonomous data collection using
a self-organizing map,” IEEE transactions on neural networks and
learning systems, vol. 29, no. 5, pp. 1703–1715, 2017.

[51] X. Zhuo, M. Liu, Y. Wei, G. Yu, F. Qu, and R. Sun, “Auv-aided
energy-efficient data collection in underwater acoustic sensor net-
works,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10 010–
10 022, 2020.

[52] J. Jiang, W. Tian, G. Han, and F. Zhang, “A medium access control
protocol based on parity group-graph coloring for underwater
auv-aided data collection,” IEEE Internet of Things Journal, 2023.

[53] Y. Guo and Y. Liu, “Localization for anchor-free underwater sensor
networks,” Computers & Electrical Engineering, vol. 39, no. 6, pp.
1812–1821, 2013.

[54] W. Zhang, G. Han, X. Wang, M. Guizani, K. Fan, and L. Shu,
“A node location algorithm based on node movement prediction

15

in underwater acoustic sensor networks,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 3, pp. 3166–3178, 2020.

[55] S.-H. Chang and K.-P. Shih, “Tour planning for auv data gathering
in underwater wireless,” in Proc. IEEE 18th Int. Conf. Netw.-Based
Inf. Syst. IEEE, 2015, pp. 1–8.

[56] G. Han, Z. Tang, Y. He, J. Jiang, and J. A. Ansere, “District
partition-based data collection algorithm with event dynamic
competition in underwater acoustic sensor networks,” IEEE Trans.
Ind. Informat., vol. 15, no. 10, pp. 5755–5764, 2019.

[57] S. Cai, Y. Zhu, T. Wang, G. Xu, A. Liu, and X. Liu, “Data collection
in underwater sensor networks based on mobile edge computing,”
IEEE Access, vol. 7, pp. 65 357–65 367, 2019.

[58] M. Huang, K. Zhang, Z. Zeng, T. Wang, and Y. Liu, “An auv-
assisted data gathering scheme based on clustering and matrix
completion for smart ocean,” IEEE Internet Things J., vol. 7, pp.
9904–9918, 2020.

[59] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” IEEE Trans. Robot. Automat., vol. 12, no. 4,
pp. 566–580, 1996.

[60] B. Barsky and T. Derose, “Geometric continuity of parametric
curves: Three equivalent characterizations,” IEEE Comput. Graph.
Appl., vol. 9, no. 6, pp. 60–69, 1989.

[61] Z. Fang, J. Wang, C. Jiang, Q. Zhang, and Y. Ren, “Aoi-inspired
collaborative information collection for auv-assisted internet of
underwater things,” IEEE Internet of Things Journal, vol. 8, no. 19,
pp. 14 559–14 571, 2021.

[62] Z. Zhou, J.-H. Cui, and S. Zhou, “Efficient localization for large-
scale underwater sensor networks,” Ad Hoc Networks, vol. 8, no. 3,
pp. 267–279, 2010.

[63] M. A. Dinani, A. Holzer, H. Nguyen, M. A. Marsan, and G. Rizzo,
“A gossip learning approach to urban trajectory nowcasting for
anticipatory ran management,” IEEE Transactions on Mobile Com-
puting, 2023.

Nhat Nguyen received the BEng (Hon-
ours) degree in Electrical and Electronic at
the University of Adelaide in 2020. He is
currently pursuing the PhD degree with the
School of Computer and Mathematical Sci-

ences, the University of Adelaide. His research focuses on
sequential decision-making algorithms for multiple-agent
systems.

Duong D. Nguyen received the B.Sc.
degree (Hons.) in electronic communication
systems from the University of Plymouth,
U.K., in 2008, the M.Sc. degree in mobile and
personal communication from King’s College
London, U.K., in 2009, and the Ph.D. degree in
engineering from The University of Adelaide,

Australia, in 2018. From 2018 to 2023, he was a Postdoc-
toral Researcher at The University of Adelaide. In 2023, he
joined as a Research Scientist at the Defence Science and
Technology Group, Australia. His research interests include
game theory models and decision-making algorithms for
autonomous systems.

Dr Junae Kim earned her Ph.D. in Computer Engineer-
ing with a focus on computer vision and machine learning
from the Australian National University. Since 2013, she has
been serving as an AI specialist at DSTG (Defence Science
and Technology Group) in Australia, where her research
centres around artificial intelligence, machine learning and
cybersecurity.

Gianluca Rizzo is Associate Professor of
Computer Science at Università di Foggia ,
Italy, and Senior Research Associate at HES-
SO Valais, Switzerland. Previously, he has
been with Institute IMDEA Network, and
Adjunct Professor at UC3M, Madrid. He re-

ceived his M.Sc. in EE from Politecnico di Torino in 2001,
and his PhD in Computer Science in 2008 from EPFL,
Switzerland. His main research interests are in the perfor-
mance evaluation of distributed systems.

Hung Nguyen is an associate professor in
Computer Science at the University of Ade-
laide, Australia, where he has been since 2009.
He obtained his PhD in computer and com-
munication sciences from EPFL. His current

research interest is in models and algorithms for improving
network performance, security, and resiliency, especially for
IoT and wireless networks.

16

