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Abstract—Radiomics have the ability to comprehensively quan-

tify human tissue characteristics in medical imaging studies.

However, standard radiomic features are highly unstable due

to their sensitivity to scanner and reconstruction settings. We

present an evaluation framework for the extraction of 3D deep

radiomics features using a pre-trained neural network on real

computed tomography (CT) scans for tissue characterization.

We compare both the stability and discriminative power of the

proposed 3D deep learning radiomic features versus standard

hand-crafted radiomic features using 8 image acquisition proto-

cols with a 3D-printed anthropomorphic phantom containing 4

classes of liver lesions and normal tissue. Even when the deep

learning model was trained on an external dataset and for a

different tissue characterization task, the resulting generic deep

radiomics are at least twice more stable on 8 CT parameter

variations than any category of hand-crafted features. Moreover,

the 3D deep radiomics were also discriminative for the tissue

characterization between 4 classes of liver tissue and lesions,

with an average discriminative power of 93.5%.

Index Terms—Radiomics, deep learning, feature stability,

biomedical texture, CT

I. INTRODUCTION

Radiomics transform radiological studies into mineable
quantitative or semi-quantitative data [1]. Combined with
machine learning methods, radiomic features can enable the
diagnostic and therapeutic decision-making process with ob-
jective measurements of high dimensional data [2]. Neverthe-
less, limited generalizability of findings from radiomic studies
has been a major deterrent in the translation of radiomics
into standard clinical practice [3]. Radiomics is a complex
multi-step process with methodological challenges within each
step to ensure robustness and reproducibility [4]. Variations
in the acquisition and reconstruction processes, including
protocol and scanner differences, can have a strong impact
on radiomic features, creating bias and reducing significantly
their stability [5]. Moreover, the required feature stability and
discriminative power for a particular task is strongly linked to
imaging modality, organ, disease, and other factors [6].

Retrospective and prospective validation of radiomic fea-
tures and models is a key step towards clinical application [7],
which are however are not systematically evaluated in most
radiomic studies. In the context of computed tomography
(CT) radiomics, test-retest studies imply radiation exposure
entailing ethical concerns in the recruitment of a large cohort
of patients and are thus limited to small sample sizes [8].
Physical phantoms can be exploited to study variations related
to image acquisition by performing test-retest measurements
in highly controlled settings [9]. Simulator environments have
also been developed to perform this analysis [10]. There are
discrepancies in methodology across the available studies on
how to measure the generalizability of radiomic models [11].
As a general assumption, the differences in radiomic feature
values obtained from different types of tissues should be
greater than the intra-class differences resulting from param-
eter variations during the acquisition [12]. It is therefore es-
sential to evaluate the scope of feature stability in conjunction
with its discriminative power for a specific medical task.

Deep learning radiomics, also called discovery radiomics,
use non-engineered radiomic features that can be learned
from data [13]. Only a couple of studies have measured
the stability of deep radiomics across multiple acquisition
protocols [14], [15]. Features obtained with pre-trained 2D
convolutional neural networks (CNN) were more stable against
technical variations in CT when compared to hand-crafted
radiomics features [15]. However, pre-trained deep learning
models are usually trained on two-dimensional data from
other domains, i.e., photographs, while radiomic data is often
three-dimensional (3D) [16]. Deep learning models used as
2D feature extractors lose the spatial context of 3D patient
scans. Moreover, generic features for tissue characterization
are thought to be more interpretable by a human reader [17].
To the best of our knowledge, no phantom study has evalu-
ated the stability and discriminative power of pre-trained 3D
networks for deep radiomic feature extraction.
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Fig. 1. Our proposed evaluation framework for creating generic 3D deep radiomics for tissue characterization. A 3D deep learning model was pre-trained
and validated on an external dataset for the classification of 5 anatomical structures: right lung, liver, spleen, right kidney and urinary bladder. The pre-trained
model is then used as a feature extractor of deep radiomics in a anthropomorphic phantom study. The feature stability and discriminative power of hand-crafted
radiomics, Riesz wavelets, and deep radiomics is compared using 8 CT parameter variations, and four classes of liver tissue and lesions.

In this pilot study we propose an evaluation framework
for pre-trained 3D deep learning models developed for the
extraction of deep radiomic features that could be used for
tissue characterization on independent data sets (see Fig. 1).
The feature stability and discriminative power are compared
to standard hand-crafted features and to Riesz wavelet fea-
tures [18], in a anthropomorphic phantom study.

II. MATERIAL AND METHODS

A. Anthropomorphic 3D-printed CT phantom

The iodine-ink based 3D-printed phantom described in Bach
et al. was used to study the stability and discriminative power
of hand-crafted, and generic deep radiomics features [9].
The used 3D-printing technique can produce high detail in
both anatomical structure and realistic CT texture in the
phantom [19]. In this study, the radiomic feature analysis
was performed on the phantom section containing the printed
dataset derived from an abdominal CT scan from an oncologic
patient. The liver of this section contains various types of
liver lesions including benign cysts, a hemangioma and a
pathology proven cancer metastasis. Six 3D regions of interest
(ROIs) of 4 classes of liver tissue and normal tissue were
manually annotated by a board-certified radiologist in the liver
of a thin-sliced phantom acquisition: two ROIs with normal
liver tissue, two benign cysts, an hemangioma and a liver
metastasis. The ROIs were not enhanced or modified to focus
on image differences that are attributed to scanning protocols.
The 3D ROI volumes were rigidly registered to the available
CT phantom acquisitions used in this study using the Elastix
toolbox [20].

B. Data acquisition
The phantom was imaged with a Siemens SOMATOM

Definition Edge (Siemens Healthineers, Erlangen, Germany)
CT scanner. No ethical approval was required. Eight groups of
CT parameter variations were selected to study the stability of
radiomic features as it was set up in the study by Jimenez-del-
Toro et al. [12]. The following image reconstruction param-
eters were varied: reconstruction algorithm (iterative recon-
struction, IR or filtered back projection, FBP), reconstruction
kernel (2 standard soft tissue kernels per algorithm) and slice
thickness in millimetres (1, 1.5, 2, 3), and slice spacing
in millimetres (0.75, 1, and 2). Thirty repetition phantom
scans with identical settings were acquired for each of the
8 parameter variation groups. The DICOM dataset is publicly
available 1 [12].

C. Extraction of hand-crafted radiomic features
A total of 86 hand-crafted radiomic features were extracted

from the 3D ROI volumes using the open-source PyRadiomics
(version 3.0) toolkit [21]. The categories of hand-crafted
features include: first-order statistics (N=18), gray level co-
occurrence matrices (N=22), gray level dependence matrices
(N=14), gray level run length matrices (N=16) and gray level
size zone matrices (N=16). Feature parameters were set to their
default value with a fixed bin width of 25 for the discretization
of the gray-intensity levels in the CT scans, i.e., Hounsfield
units.

To further explore tissue texture properties and the char-
acterization of local scales, 3D Riesz filterbanks were also

1https://doi.org/10.7937/a1v1-rc66, as of July 2024.



extracted from the ROI volumes [18]. Twenty-seven Riesz
wavelet features were extracted using the 2nd order of the
Riesz transform at 3 scales, which provides a good trade-off
between the dimensionality of the feature space and the wealth
of the filter banks.

D. Extraction of deep radiomics features

A 3D deep learning model was trained on an external
dataset, the VISCERAL dataset, for generic tissue character-
ization [22]. The pre-trained model was used as a 3D deep
radiomics feature extractor for the phantom study. The VIS-
CERAL project organized three benchmarks on the automated
anatomy localization and segmentation of whole-body 3D vol-
umes. The benchmark dataset included 30 contrast-enhanced
CT scans (ceCT) of the trunk from patients with malignant
lymphoma with a resolution of 0.6042 � 0.7932 ⇥ 1.2 � 1.5
mm3. Twenty anatomical structures were manually annotated
by physicians. An additional Silver Corpus of 65 ceCT scans
was generated with the fusion of the output segmentations
from the participants’ algorithms [23]. For this work, we used
93 ceCT scans, containing 5 anatomical structures, from the
VISCERAL Anatomy dataset and the Silver Corpus to train a
CNN with the goal of classifying 3D tissue samples from these
5 structures: right lung, liver, spleen, right kidney and urinary
bladder. The ceCT scans were resampled to isometric voxels of
1 mm. A single 3D block centered on the segmentation volume
of each anatomical structure was used per patient scan. The
size of each 3D block was 64⇥64⇥32 voxels. A total of 465
3D blocks were randomly separated into an 80-20 distribution
(375-90), keeping blocks from the same patient in the same
set to avoid data leakage.

The self-designed 3D deep learning model comprises two
convolutional layers and two fully connected (FC) layers.
Max-pooling was performed after each of the convolutional
layers. The convolutional layers had 32 channels, a 5⇥ 5⇥ 5
kernel size, a stride of 1, and a padding of 1 for each layer. We
used dropout regularization of 0.5 after the first FC layer of
the model to improve the generalization performance. Cross-
entropy loss with logits is computed to supervise the training
with an Adam optimizer. Once the model has been pre-trained
to classify the 5 anatomical structures, the weights were fixed
and deep radiomics features were extracted on a 3D block of
the same size, centered on the liver ROIs from the phantom.
Thirty deep radiomics features were extracted from the last FC
layer, after the rectified linear unit (ReLU) activation function.

E. Statistical analysis

Sets of univariate Wilcoxon signed rank tests were per-
formed for each of the extracted radiomics features to assess
their stability and discriminative power. Two-tailed tests with
p-value<0.05 were considered statistically significant. For the
feature stability, the tissue class is fixed and the feature values
from each of the 8 CT parameter variation groups (each
group composed of 30 repetition scans) are compared in a
pairwise approach. The hypothesis is that the values for each
pairwise acquisition group comparison originate from the same

Fig. 2. Scatter plot of hand-crafted radiomics, deep and Riesz wavelet features
in terms of percentage of successful stability (x axis) and discriminative
power (y axis) pairwise tests. The univariate performance from each feature
is measured among 8 CT parameter variations and 4 liver tissue classes.

distribution (intraclass variation), as they are obtained from the
same ROI in the 3D-printed phantom. This process is repeated
with the 4 tissue classes, resulting in 112 stability tests per
radiomics feature: 28 unique correlations between the 8 CT
parameter variations ⇥ 4 liver tissue classes. For the discrimi-
native power, the CT parameters are fixed while feature values
from different tissue classes are compared. The hypothesis is
that feature values between two different liver tissue classes
should not originate from the same distribution (interclass
variation), to be useful for tissue characterization tasks. All
8 CT parameter variation groups are compared, resulting in
48 discriminative power tests per radiomics feature: 6 unique
correlations between the 4 liver tissue classes ⇥ 8 CT parame-
ter variations. The number of stability tests and discriminative
power tests supporting the null hypotheses between pairwise
group comparisons were translated into percentages for the
radiomics analysis. Statistical significance was not corrected
for multiple testing as the analysis is performed for individual
features, i.e., univariate performance.

III. RESULTS

A. Pre-trained 3D deep learning model

The 3D deep learning model for tissue classification ob-
tained a 0.93 accuracy on a balanced independent test set
of 90 3D blocks from 5 anatomical structures segmented in
the VISCERAL dataset. Thirty deep radiomics features were
extracted post-ReLU by only forward propagation on all the
liver ROIs from the available CT acquisitions of the 3D-printed
phantom.

B. Radiomics analysis on 3D-printed phantom

Radiomics features were unstable in more than 25% of all
the feature stability tests among the 8 CT parameter variations.



Fig. 3. Best performing radiomics features from each category: hand-crafted, Riesz wavelets and deep radiomics. The boxplots of the feature values obtained
in each of the 6 phanthom ROIs containing 4 classes of liver tissue or lesion are shown with a different color, normal tissue (N 1 and N 2): green, cysts
(C 1 and C 2): blue, hemangioma (Hema): yellow, and metastasis (Meta): red.

TABLE I
AVERAGE FEATURE STABILITY AND DISCRIMINATIVE POWER PER

CATEGORY OF RADIOMICS FEATURES.

Category Num.* Stability % Discrim. Power %
Hand-crafted 86 3.00 86.89

First-order 18 4.27 93.98
GLCM 22 2.19 81.82
GLDM 14 2.68 85.27
GLRLM 16 2.40 85.42
GLSZM 16 3.57 88.80

Riesz wavelets 27 1.65 95.76

Deep radiomics 30 9.58 93.47

*Num.: Total number of individual features.

Deep radiomics were overall more stable than both hand-
crafted and Riesz wavelet features (see Fig. 2). Deep radiomics
had an average stability of 9.58%, while the most stable
category of hand-crafted features, i.e., first-order features, had
an average stability of 4.27% (see Tab. I). Multiple radiomics
features had statistically significant differences in all of their
test comparisons (100% discriminative power) among the four
liver tissue classes. Riesz wavelet features were the most
discriminant features with an average discriminative power of
95.76%, but had the lowest stability among all the categories,
i.e., 1.65%. The deep radiomics features had an average
discriminative power of 93.47%, even though the pre-trained
3D deep learning model was developed with an external
dataset, with different CT protocols and different anatomical
structures used for tissue characterization.

In Fig. 3 the boxplot distributions of the features with
highest score when adding the stability and discriminative
power from each category of features, i.e. hand-crafted, Riesz
wavelets and deep radiomics, are shown. It is possible to
linearly separate all of the ROIs using only the obtained deep
radiomics feature values with similar distributions across the

8 CT parameter variation groups (Fig. 3, right). This is not
the case with the tissue characterization computed with the
best performing hand-crafted features, particularly to identify
differences between the hemangioma and the metastasis ROIs
(Fig. 3, left). The stability of deep radiomics was two times
larger than the most stable group of hand-crafted radiomics
features, while also maintaining a high discriminative power.
Additionally, the deep radiomics targeting the generic char-
acterization of different human tissues could be more inter-
pretable by a human reader than end-to-end deep learning
models [17]. Hybrid radiomics models could improve over the
hand-crafted and deep radiomcs models, particularly through
the use of standardized feature selection based on feature
stability and discriminative power.

There are a couple of limitations in the generalization of our
results to other works. First, the discrimination task is overly
simple as there is only a limited set of lesions present in the
phantom. More challenging discriminative tasks are common
in medical image analysis and require further research on the
development of generic deep learning radiomics. Second, all
the CT acquisitions were performed on a single scanner. This
allowed to focus on reconstruction parameters alone while
removing variations attributed to scanner manufacturers and
models. However, larger studies involving multiple scanners,
ideally from different manufacturers, are necessary to better
understand the scope and limitations on the stability from deep
radiomic features.

IV. CONCLUSION

In this work, generic 3D deep radiomics are presented
as a more stable category of radiomics features for tissue
characterization that could also be more interpretable than end-
to-end deep learning radiomics. Additionally, they improve on
the feature stability shown by standard hand-crafted radiomics



features with different CT parameter variations, while also
showing a promising discriminative power. They could be used
in more generalizable deep and hybrid radiomics models.
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