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Abstract. Deep Learning (DL) models are increasingly dealing with
heterogeneous data (i.e., a mix of structured and unstructured data),
calling for adequate eXplainable Artificial Intelligence (XAI) methods.
Nevertheless, only some of the existing techniques consider the uncer-
tainty inherent to the data. To this end, this study proposes a pipeline
to explain heterogeneous data-based DL models by combining embed-
ding analysis, rule extraction methods, and probabilistic models. The
proposed pipeline has been tested using synthetic data (multi-individual
food items tracking). This study has achieved (i) inference enhancement
through probabilistic and evidential reasoning, (ii) generation of logical
explanations based on extracted rules and predictions, and (iii) integra-
tion of textual data into the explanation pipeline through embedding
analysis.

Keywords: XAI · Deep learning · Uncertainty reasoning · Rule extrac-
tion · Preference modeling · Heterogeneous data processing.

1 Introduction

Explainable Artificial Intelligence (XAI) is a research and application domain
that arose to foster transparency and understanding of decision processes per-
formed by artificial intelligence (AI) algorithms [33]. XAI enables trust between
users and AI-based systems, which is crucial in user-centric applications such
as virtual coaches, decision support systems, recommender systems, assistive
systems, and safety-critical domains (i.e., healthcare, automotive, aviation, and
nuclear energy) [18,35]. Furthermore, XAI techniques offer numerous advantages
to researchers and machine learning (ML) engineers. These include bias detec-
tion, error diagnosis and debugging, accountability and responsibility, regulatory
compliance, and human-AI interaction [1].

One of XAI’s most prolific research areas is extracting explanations from
DL models [10]. DL models learn efficiently with an excellent generalization ca-
pacity due to their ability to model nonlinear relationships between the input
features and the expected output [72]. However, DL models are black boxes due
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to their nonlinear, distributed, and redundant structure that encodes the knowl-
edge learned from data into connections, weights, and nonlinear activations [20].

The dependency on DL-based applications keeps growing, entailing several
XAI contributions. Among these approaches, it is worth mentioning those based
on gradient analysis [61], rule extraction [81,19], perturbation analysis [31], and
the use of surrogate models [7]. Most of these approaches present different sets of
advantages and drawbacks that make them suitable for given architectures (e.g.,
models with only one hidden layer, hidden layers with linear activations), types
of explanation to be generated (e.g., heat maps, logic models, etc.), and tasks
(e.g., classification, regression, reinforcement learning). Notwithstanding the sig-
nificant progress in the field of XAI and the diversity of methods developed, most
of them entail at least one of the following challenges (C):

C1: Uncertainty is inherent in the data and affects the models, conclusions, and
explanations derived from them [24]. However, uncertainty is rarely taken
into account as a fundamental factor in deep learning and XAI applications.
Therefore, uncertainty must be acknowledged, measurable, and bound in
order to obtain flexible, confident predictions and explanations.

C2: Data heterogeneity commitment. Most of the XAI techniques for DL are
designed to work with homogeneous input data, such as text, images, or
tabular data. However, very few methods are capable of producing explana-
tions with heterogeneous/multimodal data, which refers to a combination of
structured (tabular data), semi-structured (data contained in JSON, XML),
and unstructured (images, text, audio, video) data.

Elaborating on those challenges and the contextual limitations, this study
focuses on the following main research question (MRQ):

MRQ Can heterogeneous data DL models be explained by combining embedding
analysis, reasoning under uncertainty, and logical rules?

Such an MRQ encompasses the following two research topics:

RT1: Application of cluster analysis to integrate embeddings representing un-
structured data (i.e., text) into the explanation pipeline.

RT2: Modelization of the decision processes carried out within a DL model as
probabilistic decision processes, considering the uncertainty inherent in the
data and the models employed.

Considering the MRQ and research topics, we formulate the hypothesis.

Hypothesis 1 (H1): Unstructured data can be integrated into a rule-based ex-
planation pipeline through embedding analysis (RT1). The extracted rule set can
be enhanced through probabilistic modeling (RT2), which considers uncertainty
in data and models.

To test hypothesis H1, we have designed and implemented an explanation
pipeline for explaining DL predictors, combining rule extraction methods, em-
bedding analysis, and probabilistic graphical models. The proposed pipeline in-
tends to overcome challenges C1 (considering the uncertainty of data and mod-
els) and C2 (generating explanations based on heterogeneous data – tabular and
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textual data). The proposed pipeline has been tested on a DL-based food rec-
ommender model. Such a model takes in input recipe features, a user profile,
and contextual information and predicts their food preferences.

The remainder of the paper is organized as follows: Section 2 presents the
state-of-the-art methods and algorithms on rule extraction methods, embedding
analysis, and XAI applied to DL predictors. Section 3 describes the proposed
methodology and pipeline. Section 4 presents results and analysis. Section 6
discusses the overall study. Finally, Section 7 concludes the paper.

2 State of the Art

This section provides an overview and analysis of the relevant works. In particu-
lar, it covers XAI methods and dives into rule extraction algorithms, embedding
representation, and probabilistic reasoning applied to DL predictors.

2.1 XAI methods in a nutshell

XAI is a research field within AI whose main objective is to explain machine
learning (ML) models in human terms [5]. XAI methods can be classified into
two main categories: Explainable-by-design and Post-hoc explanations.

On the one hand, explainable-by-design methods are based on transparent
ML models whose structure and parameters directly explain their behavior [55]
(examples are decision trees [64], rule-based systems [74], and linear models [36]).
On the other hand, Post-hoc explanation methods aim to extract explanations
from trained ML models whose parameters and structure cannot explain their
behavior [71]. Post-hoc methods can generate global and local explanations. Lo-
cal explanations describe the model’s behavior in one particular example (i.e.,
LIME [28], CIU [32]). Global explanations refer to the overall behavior of the
model [4]. Common local explanation approaches include Local feature impor-
tance [69], feature attribution [49], sensitivity analysis [77], and local surrogate
models [82]. Prevalent global explanation methods include global surrogate mod-
els [34], global feature importance [65], and rule extraction approaches [6,18].

Rule extraction methods DL models hold their knowledge in a distributed
and redundant manner. Rule extraction methods applied to DL models aim to
explain their behavior through rules sets [19]. Rule sets can be extracted by
applying one of the following approaches:

– Pedagogical: This approach considers the DL model as a black box and re-
places it with a surrogate model that is explainable by design and trains it
with the input features and with the DL model’s predictions, thus extract-
ing a global rule set [9]. Example of pedagogical methods are: PSyKE [62],
TREPAN [16], and RxREN [11].
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– Decompositional: This approach extracts rules sets from a DL predictor by
analyzing its hidden layers, weights, and activations. Usually, those meth-
ods induce rule sets layer-by-layer and neuron-by-neuron and then merge
them to produce a global explanation of the DL model’s behavior. Common
decompositional methods are FERNN [63], Eclaire [81], and DEXiRE [19].

– Eclectic: This approach iteratively combines pedagogical and decomposi-
tional methods to produce global rule sets that explain the behavior of the
DL model [2]. Examples of this approach are RX [37] and DeepRED [83].

Rule sets can have different representations, such as first-order logic [62]
(i.e., ∀x man(x) =⇒ drink(x,water)) and fuzzy logic [39]
(i.e., IF BMI is obese AND activity is low THEN calories intake is low).

2.2 Embedding representation

An embedding is a numerical representation of a real-world object [44]. Embed-
dings are employed to generate numerical representations of unstructured data
such as text [59] and images [21]. Embedding representation can be learned from
data using different algorithms such as dimensionality reduction [66], manifold
learning [41], and DL models [46]. Embedding algorithms aim to learn representa-
tions that capture semantic characteristics and spatial or temporal dependencies
in the object [22].

Embedding algorithms have been successfully employed in natural language
processing (NLP) as a compact, semantic, and efficient way to represent words,
sentences, paragraphs, and documents [59]. The most recognized embedding
algorithms for NLP include those based on machine learning, such as ones
that capture the syntactic and semantic relationship between words in a text
through methods like a continuous-bag-of-words (CBOW) or skip-gram (i.e.,
word2vec [15], Doc2vec [45]) models, and transformer-based (i.e., Universal Sen-
tence Encoder [12] and BERT [27]). Embeddings have also been used to project
different objects into a common vector space where they can be compared and
processed, with applications in information retrieval [54], recommender sys-
tems [25] and multimodal machine learning [47] (i.e., image captioning [80] and
multimodal question answering [68]).

2.3 Probabilistic graphical models

Probabilistic graphical models (PGM) learn a structural association between
random variables, modeling complex probabilistic relationships [48]. PGM can
be classified into two main categories:

– Undirected Graphical Models (UGD) model bidirectional dependencies be-
tween random variables, considering their context, can contain cycles and
are widely employed in computer vision [43] and natural language process-
ing [38]. Conditional random fields (CRF) [67], Boltzmann machines [3], and
Hidden Markov Models (HMM) [30] are common examples of UGD models.
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– Directed Acyclic Graph Models (DAG) model causal relationships between
random variables. Bayesian networks (BN) are DAG models (each node rep-
resents a feature or measure of interest, and the edges represent causal infor-
mative dependency) [42]. BN is used in probabilistic and evidential reason-
ing [70,79], and to measure causal and intervention effects (Do-calculus) [60].

PGM have been employed as explainers in XAI. Dikopoulou et al. [29] introduced
the gLIME method that combines LIME and graphical least absolute shrinkage
and selection operator (GLASSO) to produce model agnostic PGM-based ex-
planations describing the feature importance and their uncertainty values. Vu
and Thai [73] developed PGM-explainer, a method to generate explanations on
graph neural networks (GNN) via structure learning and surrogate PGM mod-
els. Chen et al. [13] proposed the Breast Cancer Causal XAI Diagnostic Model
to generate causal explanations from mammography reports, employing a GNN
model and causal tabular learning method (Causal-TabNet) to learn a BN from
feature relationships and aggregate node information. The learned BN enables
causal reasoning and feature attribution explanation.

According to Derks et al. [26], BN can model and reason causally, making
them suitable for generating causal explanations.

3 Methodology

This section presents the proposed pipeline’s rationale, description, and experi-
mental protocol to test hypothesis H1.

3.1 The rationale behind the proposed pipeline

On the one hand, rule extraction methods, such as DEXiRE [19] and Eclaire [81],
use frequentist and entropy measures to identify the most relevant neurons in
each layer and the most probable decision path. However, DEXiRE is not a
probabilistic model; consequently, it does not consider the uncertainty in the
data and the DL model to be explained. For this reason, DEXiRE’s explanations
are limited to the domain of deterministic logic.

On the other hand, probabilistic graphical models (PGM) can reason un-
der uncertainty, based on partial or noisy evidence, and employ frequentist or
Bayesian approaches to model beliefs and causal hypotheses [48]. Despite these
advantages, the computational complexity of PGM grows exponentially in the
number of random variables to be considered, which limits their ability to explain
complex models with multiple input features (causes), such as DL models.

Logic and probabilistic approaches cover different XAI aspects. We have
merged these approaches into an explanation generation pipeline to maximize
their benefits and mitigate their drawbacks. The proposed pipeline uses rule-
based explanations as input to build probabilistic models, reducing the number
of factors to be considered and thus limiting its computational complexity.
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Rule-based and probabilistic explanations commonly operate on structured
data (e.g., numerical and categorical data). Nonetheless, structured data is com-
bined with semi-structured and unstructured data in numerous applications. DL
models frequently combine different data modalities (i.e., text, image, tabular),
employing embeddings as a common numerical representation for different data
modalities [52,8,76]. Embedding vectors are not directly interpretable because
they are generated through nonlinear mappings [23,51,75]. We employ cluster
and latent factor analysis to tackle this challenge and to identify and describe
the relationships between the embeddings, the objects they represent, and the
predictions.

3.2 Pipeline from data generation to explanation

Figure 1 shows the five phases composing the pipeline.

Synthetic 
Behavior 

Generator

Context Parameters

User Parameters

Food Recipes DB

Generated User Profiles

User-Food-Context 
Generated Combinations

Stats and Summary

Synthetic Dataset

Ingredient 
Embeddings 
Generation

Test Set

Validation Set

Training Set

DL Model 
Generation 

and Training

DL Model 
Evaluation

Rule Extraction 
via DEXiRE

Embeddings 
Analysis

Probabilistic 
Model Generation

Predictions and 
Explanations 
Generation 

Explanations 
Assessment 

Legend

P1: Synthetic data generation

P2: Embeddings encoding

P3: Data Split

P4: Model training and assessment

P5: Explanation generation
 and assessment

Fig. 1: Proposed pipeline. Input parameters, databases, and generated outcomes
(Unfilled boxes); phases’ processes (Solid-filled boxes).

P1: Synthetic data generation:

We have developed a Synthetic Behavior Generator (SBG) to preserve a con-
trolled environment for experimentation and generate a large amount of data to
train the DL models in a relatively short time1. The SBG’s inputs are:

– Context parameters define the probability that a meal is consumed in a
context characterized by the time of meal consumption, days to generate,
place of meal consumption, and social situation of meal consumption. Table 1
describes the context parameters and the values employed to generate the
experimental data used in this article.1 For example, the SGB can generate 50 users with a tracking of 180 days (36.5k

meal tracked) in 190 seconds and 100 users with a tracking of 365 days (146k meals
tracked) in 285 seconds.
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Table 1: Context parameters for configuring synthetic data generator tool SBG.
Parameter Description Selected Value
Days to generate Number of interaction days to simulate. 730
Meal time consump-
tion

Probability distribution that determines the time
when a user consumes a meal (0-24h).

Normal distribution for each
meal based on CET, 1h of
standard deviation.

Meal consumption Probability that a user consumes a particular meal
type (e.g., breakfast, snacks, lunch, dinner).

Breakfast 70%, morning snack
20%, lunch 90%, afternoon
snack 40%, dinner 80%.

Place of meal con-
sumption

Probability of a user consuming a meal in one of
three locations: a restaurant, home, or outdoors.

restaurant 20%, home 70%,
outdoor 10%.

social situation of
meal consumption

Probability of a user consuming a meal in
one of four social contexts: alone, with fam-
ily/friends/colleagues.

alone 50%, with family 20%,
with friends 20%, with col-
leagues 10%.

User’s appreciation
feedback (δ)

Probability determining if a given user has liked
the recommended recipe.

Normal with a mean of 0.6
and standard deviation of 0.2.

– User parameters define the probability distributions employed to generate
different user profiles. User parameters include total users, age probability,
initial body mass index (BMI) probability, allergies probability, food re-
striction probabilities, and meal probabilities. Table 2 summarizes the user
parameters and the values used to generate user profiles.

– Food Recipes DB is a recipe database that comprises 7000 recipes world-
wide, obtained by querying large language models GPT-3.5-turbo-16k [57]
and GPT-4-preview [58] from OpenAI. The query process has been per-
formed in batches, each time targeting different recipe features to produce
a diverse database that can meet different user preferences. Each recipe is
defined by the following features: recipe ID, name, ingredients, preparation
steps, calories, fat, fiber, proteins, carbohydrates, allergens, price, taste, and
cultural factors. We are aware that such recipes might differ from reality.
Nevertheless, they fulfill the purpose of training the initial model (harmless
at this stage). Further studies will employ real-world datasets.

The SBG generates the following outcomes:

– Generated user profiles: This outcome contains the user profiles gener-
ated based on the user parameters. The user profile comprises the following
features: age range, gender, nutritional goal, lifestyle, weight, height, initial
BMI (BMI), final BMI, recommended daily calories, intake of daily calories,
ethnicity, working status, and marital status.

– User-Food-Context generated combinations: This outcome consists of
the combinations of user profile (U), recommended food recipe (F), and con-
text of meal composition (C) data accompanied by the value of appreciation
and user’s feedback value δ continuous value between 0 and 1 describing
the user’s preference for the recommended recipe given his profile and food
consumption context, where zero denotes strong dislike, and one indicates
strong like.

– Stats and Summary: This outcome presents a visual overview of the tran-
sition probability employed in the simulation and a tabular summary of the
simulation (HTML). Figure 2 is an example of a Markov chain that defines
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Table 2: User parameters for configuring synthetic data generator tool, SBG.
Parameter Description Selected Value
Total users Number of users to simulate 500
Age probability Age distribution is segmented (18-100) European preset for age distri-

bution.
Sex The probability of assigning a male or female sex. Uniform distribution.
Initial user’s BMI BMI is the initial user’s Body Mass Index catego-

rized into four values according to CDC [78]: Un-
derweight (< 18.5), Healthy weight (18.5–24.9),
overweight (25.0–29.9), Obese (>= 30.0).

European preset extracted
from Chooi et al. [14].

Allergies The probability that a user will suffer from one or
more of the ten most common allergic conditions.

European allergy prevalence
distribution [56].

Cultural restric-
tions

The probability that a user follows cultural (e.g.,
vegetarian, vegan) or religious (e.g., halal, kosher)
restrictions, flexible observant (e.g., flexi vegetar-
ian, flexi halal), not restriction.

European preset.

Flexi observant Flexible preferences indicate a strong preference
for some food types. For example, a flexible vegan
prefers vegan food but will eat other types of food
(e.g., vegetarian) if the context requires it. This
variable specifies the probability distributions for
each user in the following categories: flexible ve-
gan, flexible vegetarian, flexible halal, and flexible
kosher.

Flexi-vegan (60% vegan, 20%
vegetarian, 10% halal, Kosher
10%), Flexi-vegetarian (Vege-
tarian 60%, kosher 10%, ha-
lal 10%, No restriction 10%),
Flexi-halal (vegetarian 30%,
halal 60%, kosher 10%) and
Flexi-kosher (vegetarian 20%
halal 10%, kosher 60%).

BMI transition The probability matrix determines the user’s prob-
ability of changing from one BMI state to another
during the simulation period.

Empirically defined probabil-
ity matrix based on the world-
wide BMI distributions. The
probability matrix can be vi-
sualized in Figure 2.

the transition probabilities between different BMI states. This probabilistic
model is used to simulate the users’ progress toward their nutrition goals.

P2: Embeddings encoding:

The ingredients in recipes are presented in natural language (unstructured data)
and need to be transformed into a numerical vector for integration into the
processing pipeline. The following text embedding techniques have been selected
to encode ingredients in dense numeric vectors (embedding vectors):

– Word2vec: Transform each word by considering its context (e.g., the sur-
rounding words). Word2vec can be applied in two ways: a continuous bag of
words (CBOW) or skip-gram [53]. The experiments conducted in this paper
have employed both approaches. Each ingredient has its embedding. They
are averaged to obtain the embedding per recipe.

– Doc2vec: This algorithm is an extension of Word2vec to produce one em-
bedding vector per document (e.g., recipe) [50].

– Universal Sentence Encoder (USE): This transformer-based model has
been trained in a large amount of textual data, and it encodes documents
or words (e.g., recipes) into a semantic embedding [12].

– Bidirectional Encoder Representations from Transformers (BERT):
It is a transformer-based language model (LM) trained in numerous text sam-
ples. BERT produces semantic embeddings per document (e.g., recipe) [27].
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Fig. 2: A Markov chain illustrating the transition probability between different
BMI states. The green arrows indicate a transition to a healthy status, while the
red arrows indicate a deterioration in health status. The probability values are
displayed over the edges. A zero probability value indicates that there is not a
direct transition between these two states.

Before transforming into embedding, the recipes’ ingredients have been pre-
processed by applying the following NLP techniques: i) Text normalization, ii)
Stop-word removal, ii) tokenization, and iv) Stemming and lemmatization.

Once the ingredients have been encoded in embeddings, they are merged
with the Generated user profiles and User-Food context combination
data (generated in phase P1) to produce the full synthetic dataset.

P3: Data split:

In this phase, the dataset is divided into three different groups: Training set
(60%), Validation set (20%), and Test set (20%).

P4: Model training and assessment:

This phase involves the following two processes:

– DL model generation and training: In this process, the DL model’s
architecture is defined, the model is compiled and trained on the training
set, and evaluated on the validation set in each step to avoid overfitting.
Two DL models (described below) have been developed for this study:
• Baseline model: Its inputs are user profile (U) and food data (F) with-
out considering the context and predicts the appreciation feedback. Its
objective is to learn the user-food-appreciation relationship.

• Complete model: Its inputs include user profile (U), food data (F),
and food consumption context (C) and predicts appreciation feedback.
Its objective is to learn the user-food-context-appreciation relationship.
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The models mentioned above have been trained employing a 10-fold cross-
validation. The evaluation metrics reported in the results section have been
calculated on the test set.

– DL model evaluation: This process evaluates the DL model’s performance
on the test set according to the following set of metrics: i) accuracy, ii)
precision, iii) recall, and iv) F1-score.

P5: Explanation generation and assessment:

In this phase, explanations are generated from the DL model trained in phase P4
employing the training set and the following explanation generation methods:

– Embedding Analysis: This process segments the different embeddings ac-
cording to their similarity. Then, each segment’s most probable ingredient
distribution is found by employing cluster analysis techniques. The rule gen-
eration procedure uses the ingredient distribution and cluster membership
to replace the ingredient’s embedding.

– Rule extraction via DEXiRE: A rule set is extracted from the trained
DL model using DEXiRE [17], which extracts rule sets from each hidden
layer and combines into a final rule set employing the embedding analysis.

– Probabilistic Model Generation: The generated Rule and training set
are combined to create a Bayesian Network (BN), which encodes the proba-
bilistic and causal relationship between input features, rules, and predictions.

Finally, the predictions obtained from the set of rules and the probabilistic
model are evaluated using the same metrics used in phase P4 and adding the
following metrics:

– Fidelity: defined as the degree of similarity between the predictions gener-
ated by the DL model and those generated by its explainers.

– Number of terms (Rule length): Counts the number of atomic logic
terms in each rule. It serves as a measure of the complexity of the rule set.

4 Results

This section presents the results of applying the explanation pipeline described
in Section 3 to a set of DL models with different setups. First, the results from
rule-based and PGM explanations are presented. In turn, performance metrics
on baseline and complete models are introduced to contextualize the explanation
results.

4.1 Explanation results

The pipeline described in Section 3 generates a rule-based explanation and a
complementary Bayesian Network (BN) explainer. Both explainers integrate un-
structured data through embedding transformation and cluster analysis. These
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explanation methods are complementary and mutually related. The BN em-
ploys rule predictions and the training data set to build a probabilistic model
that quantifies and bounds the uncertainty in data and rule-based explanations.
Rule-based explanations are extracted from a trained DL predictor. Rule sets
employ different features to describe the user’s profile, the recommended recipe,
and the context of food consumption. These features are generated by the SBG
synthetic generator tool employing the configuration parameters described in
Tables 1 and 2. The rule sets are not only used as an explanation method. They
can also be used for inference and prediction, allowing an objective evaluation
using performance metrics. To exemplify the predictive capacity of rule sets, a
set of 150 users has been randomly selected alongside random recommendations.
For the sake of space, only two of those are presented2.

The rules that support their decision are shown in equations 1 and 2.
Equation 1 shows the rule explaining a user acceptance. In particular, this is
due to their vegan culture/diet, lack of allergen factors like gluten and wheat
(the user’s allergens), the recipe’s taste profile is different from umami and sour,
and the recipe apport less than 558 kcal (kilocalories), maximum 14 grams of
protein, more than 6.9 grams of carbohydrates and 1.95 grams of fat.

IF ((cultural diet = vegan) AND (meal type ̸= Not Information)

AND (taste ̸= sour) AND (fiber ≤ 34.4) AND (allergens ̸= gluten)

AND (taste ̸= umami) AND (carbohydrates > 6.9)

AND (allergens ̸= wheat) AND (fat > 1.95)

AND (calories ≤ 558) AND (protein ≤ 14)) THEN Like

(1)

On the other hand, Equation 2 illustrates the rule supporting a rejection. In
particular, it is because they follow a vegan culture/diet, the meal is categorized,
the recipe does not contain gluten, the recipe’s taste profile is umami or not sour,
and the recipe apports less than 1033 kcal and less than 34.4 grams of fiber.

IF ((cultural diet = vegan) AND (meal type ̸= Not Information)

AND (taste ̸= sour) AND (fiber ≤ 34.4)

AND (calories ≤ 1033) AND (allergens ̸= gluten)

AND (taste = umami)) THEN Dislike

(2)

The rules 1 and 2 explain the model’s decision process based on the most
informative features based on entropy metrics. However, these rules do not pro-
vide any information about the structural relationships between the different
features (e.g., in the Rules 1 and 2), the calorie restrictions and nutritional val-
ues are strongly linked with the user’s physical conditions (gender, age range,
current BMI, lifestyle), user nutritional goals, daily nutritional requirements and

2 Additional examples can be found in https://github.com/aislab-hevs/pro_

DEXiRE

https://github.com/aislab-hevs/pro_DEXiRE
https://github.com/aislab-hevs/pro_DEXiRE
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time of meal consumption. In contrast, features like taste strongly relate to the
recipe’s ingredients (encoded in embeddings and integrated into the explanation
pipeline through cluster analysis). The ingredients are connected to variables
like price, presence of allergens, and cultural diet. In addition, rule sets do not
provide information about the data uncertainty or the probability of observing
a particular combination of features in the data that support a decision. The
BN-based explanation complements the rule-based explanation and quantifies
the uncertainty in data, allowing probabilistic and evidential reasoning.

Figures 3 and 4 display the probabilistic explanation graph generated from
the BN explainer. The probabilistic explanation graph presents the evidence
(current features’ values) in their peripheral nodes and the decision (like or dis-
like the recommendation) in their central node, middle nodes User, Context,
and Recipe nodes group features according to the object they represent. Next
to the edges are shown the likelihood values of observing that feature Xi take
the value vi, given the evidence and the decision. The Equation 3 employs the
BN explainer’s conditional probability distributions (CPD) to calculate the like-
lihood of features given the evidence and decision in an evidential reasoning
process. One great advantage of the evidential reasoning process is its ability to
be performed with incomplete and noisy evidence. Therefore, it does not require
precise knowledge of all feature values.

P (Xi = vi|evidence, decision) (3)

Figure 3 presents the probabilistic explanation graph that supports the de-
cision in Rule 1. This graph extends our understanding of the decision process,
highlighting the link between the recipe’s nutritional values (e.g., carbohydrates,
protein, fat, and calories) and the user’s physical condition, particularly BMI,
nutritional goal, and gender. Finally, we observe a strong connection between
the cluster membership of the recipe and the price because the cluster repre-
sents the recipe’s ingredients, and the combination of the ingredients determines
the recipe’s price.

Figure 4 illustrates the probabilistic explanation graph that supports the
decision in rule 2. Similar relationships to those found in Figure3, between the
user’s physical state and the recipe’s nutritional values, are found in this graph,
but with different interpretations given the evidence and decision. In this case,
the recipe’s nutritional values and the umami taste profile drive the decision. It is
worth mentioning that even though the umami taste profile has a low likelihood
(≈ 2%), we know that it is a determining factor in the decision thanks to Rule 1.
This example demonstrates the complementarity between these two explanation
methods.

In addition, Table 3 summarizes the performance metrics obtained by the
rule sets extracted from the completed models (i.e., DL models that consider
user’s features, food features, and context features) using DEXiRE. All the rule
sets delivered strong performance and high fidelity, except for Doc2vec’s rule set,
which exhibited relatively lower performance. The following sections will analyze
and discuss the reasons for this behavior.
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Fig. 3: The probabilistic explanation graph illustrates the evidential reasoning
process, which complements Rule 1. The nodes show the features’ current values.
The central node in green displays the decision: the user accepts the recommen-
dation. The numeric values in the edges are the likelihood of observing that
feature value given evidence and the decision.

4.2 Baseline model performance metrics

This subsection presents the baseline model performance metrics to contextual-
ize the explanation results.
Table 4 summarizes the results obtained by the baseline model from experi-
mentation with different embedding encoding methods. According to the results
reported in Table 4, the BERT outperforms the other methods in all metrics ex-
cept recall, which is slightly surpassed by the universal sentence encoder (USE).
It is worth noticing that the best-performing techniques are those based on
transformers. This difference in performance arises because Transformer-based
models can capture variable dependencies between tokens (e.g., words). In con-
trast, the dependencies learned by Word2Vec and Doc2Vec models are fixed and
limited to the context window size (the number of adjacent words considered).
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Fig. 4: The probabilistic explanation graph illustrates the evidential reasoning
process, which complements Rule 2. The nodes show the features’ current values.
The central node in red displays the decision: the user rejects the recommenda-
tion. The numeric values in the edges are the likelihood of observing that feature
value given evidence and the decision.

4.3 Complete model performance metrics

This subsection presents the complete model performance metrics to contextu-
alize the explanation results. The completed model considers user profile (U),
food-related features (F), and the food composition context (C).
Results reported in Table 5 indicate that adding the context features has slightly
improved the performance of complete models compared to the baseline one. Re-
sults suggest a significant effect of food consumption context in modeling user
preferences and behaviors in the nutritional domain.

5 Analysis and performance

This section examines the results and performance metrics discussed above.
First, it addresses a statistical significance analysis of the impact of various
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Table 3: The rule set performance outcomes for explaining DL models combin-
ing tabular data and textual data encoded with Word2vec (CBOW), Word2vec
(Skip-gram), Doc2vec, USE, and BERT.

Rule set (RS) Accuracy Precision Recall F1-score
Rule
length

Fidelity

RS Model
word2vec (CBOW)

0.986
± 0.001

0.988
± 0.006

0.990
± 0.004

0.989
± 0.001

50.7
± 2.934

0.983
± 0.001

RS Model
word2vec (skip-gram)

0.978
± 0.007

0.965
± 0.010

1.0
± 0.000

0.984
± 0.005

41.7
± 3.689

0.979
± 0.001

RS Model doc2vec
0.873
± 0.308

0.867
± 0.306

0.8888
± 0.314

0.877
± 0.310

46.0
± 16.438

0.874
± 0.309

RS Model USE
0.9763
± 0.007

0.9666
± 0.009

1.0
± 0.000

0.983
± 0.005

40.9
± 4.060

0.980
± 0.001

RS Model BERT
0.985
± 0.001

0.984
± 0.007

0.994
± 0.005

0.989
± 0.001

52.7
± 3.661

0.984
± 0.001

Table 4: Baseline model results, combining users’ profiles (U) with the recipe
ingredients embedding algorithms (F), without food consumption context.
Model Accuracy Precision Recall F1-score

Model word2vec (CBOW) 0.976± 0.005 0.969± 0.006 0.996± 0.005 0.982± 0.004
Model word2vec (Skip-gram) 0.975± 0.002 0.967± 0.005 0.997± 0.002 0.982± 0.002
Model doc2vec 0.973± 0.006 0.962± 0.008 0.998± 0.003 0.980± 0.004
Model USE 0.974± 0.003 0.963± 0.004 1.0± 0.000 0.981± 0.002
Model BERT 0.981± 0.003 0.974± 0.004 0.999± 0.001 0.986± 0.002

model configurations on their performance. Then, it examines embedding en-
coding methods and the influence of cluster membership on the explanation.
Finally, this section concludes by analyzing the rule sets obtained as explana-
tions.

5.1 Statistical significance analysis

A statistical significance test has been applied to measure the impact of employ-
ing different embedding methods and the inclusion or exclusion of context on
the models’ performance.
Figure 5 shows the p-values obtained by comparing different embedding encod-
ing methods in the baseline model. The null hypothesis is defined as: there are no
significant differences in the baseline models’ performances when different em-
bedding encode methods are used. The significant test results demonstrate that
only BERT embedding has a statistically significant difference from the rest of
the embedding techniques in the baseline model.
Figure 6 illustrates the p-values obtained by comparing different embedding en-
coding methods on the complete models’ performance. The null hypothesis is as
follows: There are no significant differences in the complete models’ performance
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Table 5: Complete model results, combining users’ profiles (U), food consumption
context (C), and different recipe ingredients embedding algorithms (F).
Model Accuracy Precision Recall F1-score

Model word2vec (CBOW) 0.990± 0.002 0.986± 0.003 1.0± 0.000 0.993± 0.001
Model word2vec (Skip-gram) 0.977± 0.004 0.968± 0.006 1.0± 0.000 0.983± 0.003
Model doc2vec 0.989± 0.004 0.983± 0.006 1.0± 0.000 0.991± 0.003
Model USE 0.976± 0.003 0.966± 0.005 1.0± 0.000 0.983± 0.002
Model BERT 0.992± 0.002 0.989± 0.003 1.0± 0.000 0.994± 0.001

when different embedding methods are applied. The tests indicate substantial
differences between the USE, Doc2vec, CBOW, and BERT. However, there is
no significant difference between the USE and Skip-gram embedding methods.
Similarly, the BERT embedding method has shown significant differences with
the other embedding methods, except CBOW. Finally, Doc2vec embedding has
demonstrated significant differences with other methods, except for CBOW. The
influence of context features addition can explain these differences.
Figure 7 presents the significance test results comparing the performance dif-
ferences between the baseline and complete models. The null hypothesis in this
test states that: There is no significant difference between baseline and complete
models’ performance. These results are crucial in understanding the impact of
the context features on model performance. Significant differences have been
found in BERT, CBOW, and Doc2vec models. For the case of USE embedding,
there is only a significant difference in performance if we compare it with BERT
on the baseline model. Finally, in the case of Skip-gram embedding, there is no
significant difference between baseline and complete models. Statistically signif-
icant differences between embedding encode methods and between the baseline
and the complete models support the hypothesis that the integration of unstruc-
tured data through embeddings and the integration of context features have a
significant effect on the performance of the model and the explanations derived
from them.
5.2 Embedding analysis

A cluster analysis has been performed to integrate text embeddings into the
explanation pipeline. We have employed the elbow method (distortion score)
and the silhouette score to determine the number of clusters centroids (K) using
the KMeans clustering method. Figures 8 and 11 show the elbow and silhouette
scores diagrams for USE and Doc2vec embeddings methods.
One point to note is the marked difference between Doc2vec and the rest of
the embedding encoding algorithms. While the rest of the embedding encoding
methods have shown an optimal cluster number between 4 and 6 clusters coincid-
ing with taste profiles (see Figure 8), Doc2vec does not converge to an optimal K
value (see Figures 10 and 11). Non-converging results indicate a mostly uniform
distribution of objects in the embedding space, which implies that the embed-
dings are not accurately segmented and lack discriminative power and semantic
meaning.
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Fig. 5: Results of significance tests ap-
plied to measure the effect of differ-
ent embedding on the baseline model’s
performance. In green are shown the
cases where there is a significant differ-
ence in the results of the experiments.
In red are shown the cases where there
is no significant difference between the
results of the experiments.

Fig. 6: Results of significance tests ap-
plied to measure the effect of different
embedding on the complete model’s
performance. In green are shown the
cases where there is a significant differ-
ence in the results of the experiments.
In red are shown the cases where there
is no significant difference between the
results of the experiments.

Fig. 8: Elbow method determinating
the optimal number of clusters ap-
plied to USE embeddings. # of clusters
(blue), execution time (green), optimal
# of clusters (vertical dotted line).

Fig. 9: Silhouette coefficient metric to
determine the optimal # of clusters
applied to USE embeddings.

5.3 Rule-based explanation analysis

For each embedding encoding method (e.g., word2vec (CBOW), word2vec (Skip-
gram), Doc2vec, USE, BERT), different models have been trained and evaluated
employing 10-fold cross-validation. A cluster analysis has been performed for
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Fig. 7: Results of significance tests applied to measure the effect of context addi-
tion, comparing the baseline and complete models. In green are shown the cases
where there is a significant difference in the results of the experiments. In red
are shown the cases where there is no significant difference between the results
of the experiments.

each embedding encode method. Then, a rule set has been extracted employing
DEXiRE and cluster membership instead of the embedding vector.

Figures 12–16 illustrate the feature occurrence in rule sets for different em-
bedding encode methods per target class. The most common feature among the
rule sets is the user’s allergies, a fundamental factor that cannot be neglected
since it can endanger the user’s life. The following most common features are
the taste profile and the time of meal consumption, the recipe’s calories, and the
user’s weight. In the middle of the top appear the recipe’s nutritional values and
the user’s features (e.g., age range and cultural diet).

It is also worth highlighting the differences between classes (e.g., dislike and
like). Based on these results, we can mark that even the rules for classes like
and dislike share the most common features with different frequencies in all the
embedding methods. The class like includes additional features in their analysis,
particularly the day number, BMI, and recipe’s cultural factor.
The top feature distribution is similar for all the embedding methods, with
minor variations, particularly at the end of the top. The distribution of the top
features for all the embedding encoding methods closely matches the generation
process of the synthetic data tool SBG. The employ of synthetic data allows the
verification of the rule extraction process by comparing the learned rules with
the known and controlled data generation process. This verification confirms
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Fig. 10: Elbow method to determine
the optimal number of clusters applied
to Doc2vec embeddings. # of clusters
(blue), execution time (green), optimal
# of clusters (vertical dotted line).

Fig. 11: Silhouette coefficient metric to
determine the optimal number of clus-
ters applied to Doc2vec embeddings.
In blue silhouette score for different
numbers of clusters.

that the rule sets can correctly capture the most significant variables that drive
the decision.

6 Discussion

This section discusses the role of embeddings in the explanation pipeline. Then,
we examine the role of Bayesian Networks (BN) as auxiliary explainers. We
explore the limits of rule-based explanations and conclude the section by revising
the advantages and limitations of using synthetic data in this study.

6.1 Embedding integration in the explanation pipeline

Table 4 reports the baseline model’s performance results for embedding encod-
ing methods Word2vec (CBOW and Skip-gram), Doc2vec, USE, and BERT. Ac-
cording to the reported results, baseline models, including BERT’s embeddings,
outperform the others with statistically significant differences, as is shown in
Figure 5. The performance difference between these two types of models can
be attributed to the following reasons: (i) the number and variety of training
samples and (ii) model architecture. Concerning reason (i), the BERT model
has been trained in a large amount of data extracted from the internet covering
different domains. In contrast, Word2vec and Doc2vec have been trained on the
recipe database employed to generate data in phase P1. Concerning reason (ii),
BERT is a transformer-based model that considers a broader dynamic context
(i.e., surrounding text). At the same time, Word2vec and Doc2vec are based on
shallow architectures with a fixed context window (set to 4 for this paper).

Table 5 reports the performance measure of complete DL models employ-
ing different embedding encoding methods and the context of meal consumption



20 Contreras et al.

data. Unlike the baseline model results, the performance gap between transformer-
based and shallow embedding encode methods has been reduced. Because the
only difference between experiments on the baseline model and the complete one
is the addition of the context, we can infer that this change is due to the influ-
ence of context and not to embedding representations since those ones remain
consistent across both experiments.

Regarding the effect of embedding representation on DL models’ performance
based on the results reported in Section 4, we can infer that the impact of dif-
ferent embedding representations is moderate and reduced as more features and
information are aggregated to the model. Extending this analysis, we can imply
that DL models employing heterogeneous data (i.e., multimodal DL models) are
more robust because the dependence on a single set of features is reduced.

Embedding vectors are integrated into the explanation pipeline through clus-
ter analysis, replacing the embedding vector with a cluster membership. Rule
sets and BN generated in phase P5 integrate the recipe’s ingredients (text data)
into the explanation by replacing the embedding vector with a cluster member-
ship. The results obtained indicate that cluster memberships are strongly related
to the recipe’s price, taste profile, and allergens. These results can be explained
because the cluster analysis captures the semantic relationship between ingre-
dients and those strongly influencing the price, taste profile, and allergens. To
conclude this discussion, it is necessary to mention that cluster analysis cannot
always capture the semantic relationships encoded into embeddings. This limita-
tion could be avoided if the embedding vectors could be automatically translated
into domain concepts. However, this is still an open research topic.

6.2 Probabilistic explanations

Uncertainty is inherent to data. Thus, any data-driven explanation method must
consider the data uncertainty as an essential factor. The proposed pipeline in
phase P5 combines a Bayesian Network (BN) with the extracted rule set to
quantify the uncertainty in data and produce probabilistic explanations. BN
learns the relationship between the rule set, predictions, and input features.
In particular, the BN models causal relationships and conditional probability
distributions (CPDs).
Figures 3 and 4 have been generated employing evidential reasoning, calculating
the conditional probability to observe a particular feature’s value given evidence
(i.e., other features’ values) and the decision (i.e., the user accepts or rejects the
recommendation). Evidential reasoning is a complementary and flexible method
that supports a given decision based on data observation and Bayesian statistics.

Despite its clear advantages, BN explainers present some limitations related
to scalability, particularly memory scalability. CPDs are tables stored in mem-
ory and grow exponentially with the nodes’ indegree, the number of possible
values in a discrete distribution, and the network structure’s complexity. This
condition restrings its application. The BN in this pipeline is employed as an
additional explainer to complement the rule-based explanations by quantifying
the uncertainty in data and enabling reasoning under noise and missing data.
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One fascinating aspect of BNs is their ability to model causal relationships, re-
sulting in causal explanations. However, it is crucial to note that this does not
necessarily imply that the explained model considers causality. Instead, causal
modeling is specific to the explanation constructed based on the hypothesis of
causality between the input features, rule set, and prediction. However, the ac-
tual causal relationships are domain-dependent, and only domain experts’ knowl-
edge can define them. Although BN models can use structuring learning to learn
their own structure, there is no guarantee that structure makes sense in the
application domain and reflects a real causal phenomenon.

6.3 Limits on rule-based explanations

Based on the results obtained from the Doc2vec rule set, as presented in Table 5
and figures 11 and 10, we can infer that Doc2vec embeddings for this case are
almost uniformly distributed in the embedding space, for this reason, it is not
feasible to extract distinctive patterns and integrate them with the rule sets.
Although rule sets can still be extracted, those exhibit worse performance and
less reliability. One of the limitations of rule-based explanations is their difficulty
in integrating unstructured data, such as text or images, because of the semantic
gap and their wide range of variation.

Rule extraction methods like DEXiRE [19] and Eclaire [81] induce rules
through distinctive pattern identification in the DL model’s hidden layers and
input features. In this case, DEXiRE could identify distinct patterns inside the
hidden layers but could not obtain a distinctive pattern from Doc2vec embed-
ding, producing degraded rule sets with biased predictions.

An additional limitation in explaining DL models through rule sets involves
the rules sharply partitioning the decision space, in contrast to DL models, whose
decision function exhibit smooth and curved surfaces. This difference limits the
rules that can be extracted from a DL model, especially in cases where the de-
cision surface is too curved, and the relationship with the input features is non-
linear. In this scenario, the extracted rule sets could have various failures, such
as empty or contradictory rules, low quality, biased rule sets, or over-specificity
(low coverage) rules.

In this work, we have proposed employing an ensemble of explainers (e.g.,
cluster membership, rule-set, and PGM) to reduce the impact of the above-
mentioned limitations. In this manner, if some explainers fail to cover all cases,
approximate explanations can still be obtained through majority voting, first-hit,
or high-performance strategies to break ties between explainers. The proposed
pipeline and hypothesis H1 were formulated to overcome this limitation.

6.4 Synthetic data advantages and limitations in XAI applications

Real-world data is not always available due to time, cost, technical limitations,
privacy preservation requirements, infrequent events, and ethical or legal restric-
tions. For these reasons, synthetic datasets are becoming increasingly common
in machine learning and XAI experimentation and research [40].



22 Contreras et al.

On the one hand, using synthetic data for experimentation on ML and XAI
offers several advantages, including a controlled environment where the underly-
ing data generation process is known, which enables the possibility of evaluating
the model performance and explanations generated qualitatively, allowing the
understanding of whether the explanations are based on the actual underlying
factors or not.

On the other hand, synthetic data is generated from a simplified model of
the real-world scenario. The model proposed in this paper captures the user’s
main biological and socio-cultural features. However, the model does not cap-
ture other variables that affect users’ decision processes, such as stress, political
positions, personal preferences, and psychological states. These factors, among
others, could not be modeled due to their complexity, unobservability, and the
unavailability of data that permits their accurate estimation and integration in
simulation models.

Since each user has hidden preferences and psychological states, we have
employed synthetic data to overcome the cold-start problem. When feedback
from the user has been collected, this information will be used to update and
adapt the model preferences to the particular user.

7 Conclusions and Future Work

This paper presented a pipeline for explaining DL models employing embedding
analysis, rule sets, and probabilistic graphical models. The proposed pipeline has
been developed with the following hypothesis: “Unstructured data can be inte-
grated into a rule-based explanation pipeline through embedding analysis (RT1).
The extracted rule set can be enhanced through probabilistic modeling (RT2),
which considers uncertainty in data and models“. The proposed pipeline has
been evaluated using a synthetic dataset generated from software developed in-
house. Elaborating on the obtained results and analysis, we can summarize the
following statements:

– The proposed pipeline combines embedding analysis, rule extraction meth-
ods, and probabilistic graphical models. To produce robust, flexible expla-
nations that consider uncertainty and combine structured and unstructured
data, satisfying challenges C1 and C2.

– The embedding representation selected and the posterior cluster analysis sig-
nificantly impact the DL model and explanation’s performance and quality,
affecting the model, rule-set generation, and posterior probabilistic models.

– Limitations of rule-based explanations (see Section 6.3) can be mitigated by
combining different explainer models, such as probabilistic graphical models,
in an ensemble of complementary explainers.

– Rule-based and probabilistic-based explanations are complementary XAI
methods that together improve overall performance and reduce their in-
dividual limitations. Ensemble XAI methods are more flexible and robust.

– To integrate structured and unstructured data into the explanation pipeline,
it is necessary to translate the embedding vector into a cluster membership.
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Then, the cluster membership is integrated into the explanation pipeline,
producing a set of rules and a Bayesian network that generates explanations
for heterogeneous data models (e.g., text and tabular data).

– The use of synthetic datasets for XAI presents several advantages, partic-
ularly related to evaluating the explanations qualitatively. Synthetic data
is generated based on known patterns that can be verified in the resulting
explanations. However, synthetic datasets may not account for all the con-
cealed factors interacting in real-world scenarios. In these cases, the uncer-
tainty modeling takes special significance, making the explanation pipeline
robust, flexible, and able to perform well in new contexts.

Finally, we envision the following future works:

– Generate natural language explanations from embedding analysis, proba-
bilistic graphical models, and rule sets.

– Personalize and update the DL model for the user based on their feedback.
Generate explanations from the updated model and validate it with the
user using reinforcement learning from human feedback (RLHF) and lifelong
learning techniques.
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A Most Recurring Features in Rule Sets.

Figures 12-16 summarize the most common features in the rule sets.

Fig. 12: Top features (CBOW). Fig. 13: Top features (Skip-gram).
Fig. 14: Top features (Doc2vec).

Fig. 15: Top features (USE). Fig. 16: Top features (BERT).
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