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ABSTRACT
Digital rehabilitation is dramatically changing the way in which
physiotherapists conduct their practice and analyse the exercises of
patients. As opposed to traditional treatment with episodic verifica-
tion of the therapist, patients can perform prescribed exercises at
home supported by personalised assistive technologies and wear-
able devices. This work presents a prototype that highlights the
integration ofmotion data streams fromwearable sensors in the con-
text of head and neck rehabilitation exercises. The system consists
of self-organising devices placed in shoulders, neck, and head, set
up following low-code interaction flows. Patients can interact with
the platform through a tablet App that provides feedback through
real-time 3D avatars and tracks data for post-exercise analytics.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in ubiq-
uitous and mobile computing; • Theory of computation →
Semantics and reasoning.
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1 INTRODUCTION
Physiotherapy aids individuals to (re)gain physical functions, range
of motion, and improve overall well-being through targeted in-
terventions and exercises [11]. In particular, chronic conditions
and surgical interventions might require a rigorous physiother-
apy and rehabilitation regime, which might entail home therapies
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given by the physiotherapists to the patient [12]. Traditional phys-
iotherapy relies mainly on the expertise and manual skills of ther-
apists. Although effective, such an approach presents limitations,
including scalability and data accuracy/collection, leading to a need
for more personalization. Physiotherapy research promotes tech-
nological integration into conventional practices, promising en-
hanced outcomes [2]. Recent trends in digital physiotherapy and
tele-rehabilitation further advance in the formalisation of obser-
vations and data acquisition to improve diagnostics, therapy per-
sonalisation, while offering continuous monitoring capabilities [7].
The most adopted technologies comprise (wearable) sensing de-
vices, 3D cameras, and smart clothes [2]. Among the algorithms
and techniques, it is worth mentioning machine learning [23], run-
time (and offline) data processing and analytics algorithms [6], and
distributed coordination [21]. Such technologies and techniques
leverage data streams [3, 20] that may include inertial information,
patients’ run-time feedback, and environmental data, among others.
The data variety in these streams presents significant challenges,
often mitigated through machine-readable semantic data models
such as ontologies and knowledge graphs (e.g., RDF streams [18]).
However, current distributed sensing systems still do not provide
real-time guarantees [4] nor seamless semantic-based orchestration
and dynamics [9]. This study targets the latter challenge, proposing
a multi-joint tele-rehabilitation system1. It leverages a semantic-
based dynamically reconfigurable swarm of wearable sensors and
an anthropomorphic avatar-based UI guiding the exercise session.
The selected physiotherapy scenario is Head-and-Neck (HaN) reha-
bilitation. Such a scenario has been selected due to its still unmet
need for dynamic sensor-based support systems and the broad
diversity of possible therapies, which makes it a perfect testbed.
Ultimately, this study highlights two key outcomes: (a) semantic-
based sensor swarm formation can improve practices in digital
physiotherapy, and (b) a distributed sensor network with synchro-
nised connections that can detect node failures and replace them
on-the-fly with minimal disturbance.

The remainder of the paper is organised as follows. Section 2
briefly overviews the state of the art. Section 3 presents the ar-
chitecture and system design. Section 4 focuses on the system
implementation before concluding in Section 5.

1Demo footage in: https://tinyurl.com/57a4dpv8
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2 STATE OF THE ART
Digital rehabilitation systems often rely on camera-based approaches
and wearable technology to monitor, assess, and support therapies.
Moreover, such systems typically include mobile applications (to
manage the exercises) and cloud-based data analysis platforms—
mainly used by doctors and therapists [13]. On the one hand,
several contributions can be acknowledged for camera-based ap-
proaches [2]. For instance, Ye et al. [22] propose a framework that
blends advanced signal processing and computer vision algorithms
to analyse motion from infrared camera data, offering a patient-
centric kinematic analysis for individualised therapy monitoring
and assessment. On the other hand, concerning wearables, a founda-
tional study byMathie et al. [10] validated the use of accelerometers
to assess older adults’ daily activities within their homes. Tim-
mermans et al. [19] evaluated the feasibility, treatment outcomes,
and system usability of a sensor-based, task-oriented arm train-
ing system, providing strong evidence that digital rehabilitation
can improve motor function. Focusing on HaN therapies, several
studies have used sensors with remarkable results [8, 14, 15]. Raya
et al. [15] presented a sensor-based decision support system that
uses wearable inertial motion sensors to measure the cervical range
of motion. Pérez-Fernández et al. [14] aimed to provide objective
measurements for cervical range of motion during injury assess-
ment. Kristjansson et al. [8] implemented head motion tracking to
monitor spinal rotation of a patient following patterns on a screen.

The use of semantic modelling for patients undergoing some
form of physical rehabilitation has shown potential for enhancing
patient recovery. Manzo et al. [9] explored the challenges and op-
portunities associated with using semantically rich abstractions
to model patient trajectories for osteoarthritis rehabilitation using
semantic modelling. Similarly, Subiratz et al. [17] defined a frame-
work incorporating semantic logic within the context of upper limb
rehabilitation, merging the structures of various indicators, medical
ontologies, and time annotations. Another study [3] proposed an
agent-based semantic stream system that aims to improve the accu-
racy and efficiency of physical rehabilitation by providing in-time
feedback and personalised exercises.

To the best of our knowledge, there is not a digital rehabilitation
system employing semantic information to (i) determine the system
actors (e.g., nodes) and their corresponding roles, and (ii) provide
semantic runtime templates according to the system actors and the
user requirements. By incorporating these concepts, we provide
the ability to seamlessly manage a heterogeneous sensor swarm
and analyse the provided (contextual) information for a given goal.

3 PROPOSED ARCHITECTURE
The main requirements for the system aiming at tackling the chal-
lenges mentioned above within HaN rehabilitation are (i) the dress-
ing phase must be semi-automatic, (ii) the sensor discovery and
task/plan-sensors association must be ontology-based, (iii) the pa-
tient movements must be detected with high fidelity (single joint
and derived values), (iv) data analysis and feedback delivery must
be performed at run-time (during the exercise), (v) punctual and
aggregated user data must be stored for offline analysis, (vi) The
patient must have a UI to select their therapy/exercise and get
guidance during the exercise.

ORCHESTRATOR

COORDINATOR

Figure 1: Overall system components.

Figure 1 schematises the proposed architecture to achieve the
requirements mentioned above. The system has four key elements:
(i) the orchestrator: a back-end node tasked to store patent informa-
tion (i.e., profile, therapy, and exercises–beyond the scope of this
paper) (ii) the coordinator: a master node that manages edge-nodes
(i.e., tablet), (iii) edge nodes: leaf nodes of the system that sense or
actuate (i.e., sensors, laser pointer), (iv) the semantic Knowledge
Graphs: the sensors description, exercises and required capabilities.

The semantics of the underlying concepts characterising HaN
digital rehabilitation (i.e., therapy and exercises–neck rotation,
strength, flexion movements, shoulder compensation, etc.) and the
wearable sensing devices characterisation are represented in the
form of a Knowledge Graph. Indeed, the sensor nodes can dynam-
ically join the swarm (set of sensing wearables) or be replaced
according to their capabilities (i.e., sensing properties, data quality,
frequency, connectivity, reliability, and battery level) thanks to a
Thing Description (TD) specification2. The definition and assign-
ment of the exercises to the patients occur at the orchestrator node
(beyond the scope of this paper). The coordinator node (running
on the tablet manages the wearables) identifies the available edge
nodes (wearables) that match the criteria of a given exercise and
allows them to join/form the swarm in charge of the sensing and
(if necessary) the environmental monitoring. Once the swarm is
complete, the wearable sensors self-calibrate automatically (using
the inverted kinematic chain and the free-body movements of the
patient), recognising their position—henceforth, their role in the
exercise (e.g., head sensors, right/left shoulder). Using the UI (see
Figure 3), the patient or the therapist can begin the exercise—thus
the data streaming/collection, calculating exercise correctness and
deviations, and performance, thus allowing the coordinator node
to compute run-time feedback to be displayed to the patient.

4 SYSTEM IMPLEMENTATION
For demonstration purposes, we have implemented a first proto-
type of the HaN rehabilitation system. It consists of three primary
components: (i) wearable sensors for data acquisition, (ii) a tablet
for sensor coordination and to display live exercise feedback, and
(iii) a server to host and serve patient data and exercise plans.. The
implemented functionalities are sensor discovery, connection (and
on-the-fly replacement), coordination, data collection, and run-time
feedback to the patient through a 3D avatar. The wearable sensors

2https://www.w3.org/2019/wot/td
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Figure 2: Coordinator node matches wearable nodes accord-
ing to their capabilities, with the exercise requirements.

are strategically placed (on the head and on the shoulders). The
coordinator receives the sensors’ data streams in near real-time,
processes them, and derives exhaustive information about the head-
/neck/shoulders movements and possible compensations.

4.1 Data acquisition and processing
The prototype integrates different technologies in each component
(Figure 3). The coordinator node runs on a tablet3. As sensing nodes,
we have selected the Nordic Thingy:52, a compact multi-sensor de-
velopment kit designed for IoT applications [16]. The sensor node
provides a data stream (at the frequency defined at connection time)
containing the values of its sensors. For this use case, we focus on ac-
quiring inertial information (Eulerian angles/quaternions). Commu-
nication between the tablet and the Nordic Thingy:52 is over Blue-
tooth Low Energy (BLE). We leverage a Maximo model [1] to create
a realistic 3D representation of the patient and their movement
during the exercise. Figure 3 displays one of the interfaces showing
the integration of the Nordic Thingy:52 data into the 3D patient
model. Moreover, we developed a wrapper for the Flutter Blue
Plus library with Thingy52-specific functionality. The Thingy52
sensors publish data to the stream every 100 ms. and is comprised
of quaternions as a representation of the sensor’s orientation.

Figure 3: System setup showcasing the sensors and the virtual
avatar on the tablet.

The system uses the incremental rotation of sensors over time,
enabling us to easily calibrate the system by storing the initial
sensor orientation and simply applying the stream of orientations.
A quaternion (𝑞) represents the orientation of the sensor and is
defined as: 𝑞 = 𝑤 + 𝑥𝑖 + 𝑦 𝑗 + 𝑧𝑘 where 𝑤, 𝑥,𝑦, 𝑧 are real numbers,
and 𝑖, 𝑗, 𝑘 are the fundamental quaternion units. Let 𝑞𝑡 represent
3Xiamo Redmi Pad link: https://www.mi.com/global/redmi-pad

the quaternion at time 𝑡 . The initial orientation is stored as 𝑞0.
The incremental rotation of the sensor is calculated by updating
the current orientation 𝑞𝑡 using the stream of orientations. The
resulting orientation is calculated as𝑞′𝑡 = 𝑞0∗𝑥𝑞𝑡 . Then this rotation
is applied to the 3Dmodel directly. For the synchrony of the sensors,
we assume a discrete and abstract clock mechanism where each
sensor has its own step alongside a system time step. The system
clock is equal to the highest time step of the sensors. The time of
each sensor is compared to the system clock. Table 1 shows the
maximum latency between the sensor timesteps. Accordingly, for
this prototype, if a static delay of 10 time steps occurs (possibly due
to low battery, connection problems, or hardware errors), the sensor
is considered unsynchronized. Therefore, the running exercise is
interrupted, and the process of replacing the sensor is triggered.

Time / Sensor Sensor A Sensor B Sensor C
5 minutes 3 ± 0.139 6 ± 0.704 5 ± 0.555
10 minutes 3 ± 0.07 7 ± 1.21 4 ± 0.544
20 minutes 8 ± 1.62 8 ± 1.47 6 ± 0.548

Table 1: Synchronisation steps max latency between sensors

4.2 Semantic capabilities
Semantics enable the creation of abstractions that capture the sens-
ing nodes’ essential capabilities, goals, roles, and tasks. These ab-
stractions offer a significant advantage by separating the specific
implementation or device functions from the tasks the devices need
to perform. This separation improves the discoverability of devices
and enhances flexibility, allowing the interoperability of heteroge-
neous nodes (i.e., from various vendors). Additionally, semantic de-
scriptions of IoT devices allow orchestrator and coordinator nodes
to search for or replace them according to their metadata.

The orchestrator composes execution plans organising goals and
tasks for a given context—i.e., it defines which characteristics/speci-
fications are required to be provided by the sensors, selects the goal,
and creates the sequence of actions necessary to achieve such a
goal. Such plans are sent to the coordinator. Specifying the node
capabilities is crucial for the plan. Indeed, they represent the func-
tional requirements of an application and can be described as skills.
The semantic description of these capabilities can be implemented
using semantic models for the Web of Things. Specifically, W3C
Web of Things, the TD proposes ontology terms for describing af-
fordances. These TD affordances provide machine-understandable
metadata about a Thing, indicating the possible interactions con-
sumers can have with it. The TD includes key elements such as
metadata descriptions of the Thing, affordances that specify the
properties, events, and actions possible with the Thing. Listing 1
shows a JSON-LD snippet representing an event to get the current
accelerometer data of Nordic Thingy:52.

1 "events": {
2 "accelerometer": {
3 "title": "Accelerometer",
4 "description": "Get the current accelerometer data",
5 "forms": [ {
6 "op": [ "subscribeevent" ],
7 "href": "uuid:EF680406-9B35-4933-9B10-52FFA9740042" } ] } }

Listing 1: Nordic Thingy:52 TD - events snippet.

https://www.mi.com/global/redmi-pad
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The orchestration and coordination of edge devices require a
standardised representation of their key characteristics, such as
capabilities, roles, and tasks. Previous works have highlighted the
importance of using semantic models to facilitate orchestration.
Notably, different ontologies have been developed to address this
need, including the Semantic Sensor Network (SSN) ontology and
its successor, the Sensor, Observation, Sample, and Actuator (SOSA)
ontology [5]. In this demonstrator, we also highlight the importance
of representing the tasks using ontology-based representations. In
Listing 2 we provide a snippet of a semantic RDF description of an
exercise in JSON-LD format, using schema.org vocabulary terms.

1 { "@context": { "schema": "http://schema.org/", ... },
2 "@id": "http://hevs.ch/exercise1",
3 "@type": "schema:PhysicalTherapy",
4 "name": "Movement control tests",
5 "description": "Active cervical flexion and extension tests",
6 "video": "https://www.youtube.com/watch?v=uKjSvHtylUo",
7 "bodyLocation": "cervical spine", "procedureType": "Noninvasive",
8 "howPerformed": {
9 "@id": "http://schema.org/howPerformed",
10 "text": "The patient flexes the cervical spine so that the chin moves ..."},
11 "schema:exercisePlan": {
12 "@type": "ExercisePlan", "schema:repititions": 3,
13 "schema:activityDuration": 120, "schema:activityFrequency": 5 },
14 "schema:observes": {
15 "@type": "QuantitativeValue",
16 "schema:measuredProperty": "oum:Acceleration",
17 "schema:marginOfError": "...", "schema:measurementMethod": "..." } }

Listing 2: Exercise schema.

Following the Web of Things recommendation, we used TD as a
semantic entry point for our Thing52 sensors. As shown in Figure 2,
the cooridnator needs to match the needs of the task to be executed
(e.g., capture accelerometer data for the HaN exercise) with the TD
capabilities. To actually connect and acquire the data, semanticTD
affordances provide crucial information on how other nodes can
interact with them. The orchestration service, to be completed in a
next iteration of the prototype, will use this information to identify
Things that offer the necessary capabilities for tasks specified in
a plan or template. Additionally, the TD specification introduces
the concept of a Thing Model, which is a logical description of the
potential interactions with a class of Things.

5 DISCUSSION AND FUTUREWORK
This study proposes and tests a prototype leveraging a semantic
coordinator and decentralised edge nodes that can join the system
(and be replaced) seamlessly. Semantic coordination ensures that
the nodes can operate autonomously within the scope and goals
of the broader system while maintaining effective interactions and
communications. Digital HaN rehabilitation has been chosen as
the test bed for the proposed prototype. The complex multi-sensor
interactions and the wide variety of exercises allow us to show how
decentralised semantics can be applied to edge nodes and support
data processing and heterogeneous device coordination. Several
aspects of the system are being enhanced to complete all the needed
functionalities. Specifically, there is a need to automate the orches-
tration process to streamline the integration and management of
the edge nodes, and incorporate more complex templates that can
accommodate different kinds of sensor workflows.
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